X36DSA 2006 The complexity of different algorithms varies: O(n), Q(n?), ©(n-log,(n)), ...

e

The complexity
of different algorithms

varies

An algorithm is not a program

An algorithm is not a program

X36DSA 2006 The complexity of different algorithms varies: O(n), Q(n2), ©(n-log,(n)), ... 1/1
s)
The speed...

(=
One algorithm (program, method...)
is faster than another one.
[What do we mean by this statement?? J
_ _/

An algorithm is not a program

X36DSA 2006 The complexity of different algorithms varies: O(n), Q(n?), ©(n-log,(n)), ... 2/1

&)

Asymptotic complexity

— y
> — X >
\\ AN J /)
/ Each algorithm can be unambiguously assigned \
[growing function]
named

[asymptotic complexity)

which characterizes the number of algorithm operations with
respect to the growing size of input data.

K The slower this function grows the faster the algorithm. /

An algorithm is not a program

X36DSA 2006 The complexity of different algorithms varies: O(n), Q(n2), ©(n-log,(n)), ... 3/1

-

Asymptotic complexity

4)
4y

(computing time)

[Y ~ system load }

X ~ our demands
(input data size)

An algorithm is not a program

X36DSA 2006

The complexity of different algorithms varies: O(n), Q(n?), ©(n-log,(n)), -..

Examples

: Find min and max value in an array — STANDARD/
f min max a@

3 3 312 |7 1|10| 0 -10
_

min max a &

3 3 312 |7 1(10| 0 -10

1t (afr] < min) min = afi];

if (afi] > max) max = a[i];

min max a &

2 |[3 3/2|7]|10{0]5 |10

An algorithm is not a program

X36DSA 2006 The complexity of different algorithms varies: O(n), Q(n?), ©(n-log,(n)), ...
-~

Examples
: Find min and max value in an array — STANDARD[
f min max a @
2 7 3(2(7 |10 0| 5 |-10
\§
[min max a
[done J
L -10] |10 3(2 /7|10 0 | 5
()
[code } min = af0]; max = a[O0];
for (1 =1; 1 < a.length; i1++) {
if (a[i] < min) min = a[i];
1t (a[1] > max) max = a[i1]; }
by J

An algorithm is not a program

X36DSA 2006

The complexity of different algorithms varies: O(n), Q(n?), ©(n-log,(n)), -..

Examples®” | =~ mommm ——

zFind min and max value in an array — FASTER!
i min max a <y
3|3 327|100 5 |-10
N
i min max a @
3|3 3(2(7(10/0 |5 [-10
if (a[i] < a[i+1]D {
1t C a[r] < min) min = a[i];
1T (a[1+1] > max) max = a[i1+1];}
min max a @
2 | |7 3|2|(7(10{0| 5 |-10

An algorithm is not a program

X36DSA 2006 The complexity of different algorithms varies: O(n), Q(n?), ©(n-log,(n)), ... 711

zFind min and max value in an array — FASTER!
-

(- — B %
Examples [— 7

]

_

min max a @

2 (|7 312|710 0| 5|-10(4 | 6

it (afr] < afi+1]) {

if (a[i] < min) min = a[i];

1T (a[1+1] > max) max = a[i1+1];}
—lelse {
iIT (aJi1] > max) max = a[i];

if (a[1+1] < min) min = a[i+1];}
min max a 0
0 10 3(2 (7 (101 0| 5 |-10{ 4 | ©
L Y,

An algorithm is not a program

X36DSA 2006 The complexity of different algorithms varies: O(n), Q(n2), ©(n-log,(n)), ... 8/1
p

Examples [.

[Find min and max value in an array — FASTER!

. _J
[e J min max a g }
-10] |10 312 |7 (|10(0|5 -10/ 4 | 6
[code } min = af0]; max = a[O0]:{}
for (1=1; 1 < a.length-1; 1=1+2) {
if (a[1] < a[+1]) {
if (a[i1] < min) min = a[i];
1T (a[1+1] > max) max = a[i1+1];}
else {
1Tt C a[r] > max) max = a[i];
1t (a[i+1] < min) min = a[i1+1];}}

An algorithm is not a program

X36DSA 2006

The complexity of different algorithms varies: O(n), Q(n?), ©(n-log,(n)), ... 9/1

&

Computing the complexity

-

arithmetic operation

(Elementary operation J comparison of two numbers

N

number move in the memory

7\

-

(Complexity

7
H) a total number of elementrary operations

.

\ /
[simplification]

7

[

(Complexity

@

N

a total number of elementary operations on data]

o

J

An algorithm is not a program

X36DSA 2006

The complexity of different algorithms varies: O(n), Q(n?), ©(n-log,(n)), -..

10/1

a N\
Computing the complexity

r R
[Complexitv\J) a total number of elementary operations on data

N

another
simplification
[: @ a total number of number
[Complexity (or character) comparisons on the data
(The most common way of computing the complexity J

_ _/

An algorithm is not a program

X36DSA 2006

The complexity of different algorithms varies: O(n), Q(n?), ©(n-log,(n)), ... 11/1
-

Computing the complexity

[Complexity\/f 1 1 a.length =N
All min ¥ a[0]; max ¥ a[0];
operations 1 N N—1
for (i ¥ 1; i ¥ a.length; i+f){
0...N-1
if (a[i] Y min) min = a[i];
N—1 0..N-1
[lf‘se J if (a[i] ¥ max) max = a[i]; }
best 1+1+1+N+N-1+N-1+0+N-1+0 = 4N
worst 1+1+1+N+N-1+N-1+N-1 +N-1+N-1 = 6N-2
_

An algorithm is not a program

X36DSA 2006

-

The complexity of different algorithms varies: O(n), Q(n?), ©(n-log,(n)), -..

Computing the complexity

[Flnd min and max value in an array — STANDARD L ¢
(B
L Complexity 1 1
Eperations min ¥ a[0]; max ¥ a[0];
on data T Sl sl

L -

for (1 = 1; I € a.length; i+¥){
0...N-1
if (a[il Y min) min = a[i];
N1 0..N-1
case
(lL] it (a[1] > max) max = a[i]; }
best 1+1+N-1+0+N-1+0 = 2N
worst 1+1+N-1+N-1+N-1+N-1 = 4N-2
NG J

An algorithm is not a program

X36DSA 2006

The complexity of different algorithms varies: O(n), Q(n?), ©(n-log,(n)), -..

-

Computing the complexity

[Find min and max value in an array — FASTER!

s /’C\\
L Complexny\{< T T
onlytests ||min £ a[0]; max ¥ a[0];
on data y ;'“‘: ;'“‘: ,'“‘:
for (i _S—""l; i € a. length; i)
if (a[il Y min) mlh" "é'l[i];
N—1
if (afi] ¥ max) ma3<"‘:'"é'[i]; 1
always N-1+ N-1= 2N-2 tests
N\ J

An algorithm is not a program

X36DSA 2006

The complexity of different algorithms varies: O(n), Q(n?), ©(n-log,(n)), -..

&

Computing the compl[

[Find min and max value in an array — FASTER!

77N\

-

(

g

Complexity

©

:

only tests
on data

A

J

N |a.|ength=N
3 _A—
- ™~
3 (2|7 |10]{0| 5|10/ 4 | 6
L
Y

(one pair — 3 tests

L—

) ((N-1)/2 pairs

)

always

|

|

1

3(N-1)/2 = (3N — 3)/2

tests

An algorithm is not a program

X36DSA 2006

The complexity of different algorithms varies: O(n), Q(n?), ©(n-log,(n)), -..

15/1

(

Computing the complexity

-

Array size No. of tests No. of tests Ratio
STANDARD FASTER | STD/FASTER

N 2(N-1) (3N - 3)/2

11 20 15

21 40 30

ol 100 75

101 200 150

201 400 300

501 1000 750

1001 2 000 1500

2 001 4 000 3 000

5001 10 000 7 500

1 000 001 2 000 000 1 500 000

Tab. 1

An algorithm is not a program

X36DSA 2006 The complexity of different algorithms varies: O(n), Q(n2), ©(n-log,(n)), ... 16 /1

a)
Examples
C ™
(Data | arraya: [1]-1]0[2[5]1]0
L arrayb: (4 | 2|14 (3 |4 |2 |7
J
C A
(ProblemJ How many elements of array b are equal
L to the sum of all elements of array a?
J
. h
[SolutlonJ

~
array a: 1110|2510 sum=@

array b: 1(4)l 2 |(4)| 3 |(4) 2|7

result=3 <
_ J

An algorithm is not a program

X36DSA 2006

The complexity of different algorithms varies: O(n), Q(n?), ©(n-log,(n)), -..

17/ 1

e

Examples

{{unctionJ int sumArr(int[] a) { /7* easy */ } J
= =) sLow |
=8 lcount = 0O; method |
~[for (int 1 = 0; i < b.length; i++)
1T (b[1]== sumArr (@)) count++;
return count;
~/
-

/

63‘ FAST
count = 0O; method

sumOf _a = sumArr(a);
jfor (int 1 = 0; 1 < b.length; 1++)

1T (b[1]==sumOf_a) count++;
return count;

=~/

An algorithm is not a program

X36DSA 2006 The complexity of different algorithms varies: O(n), Q(n2), ©(n-log,(n)), ... 18 /1

Computing the complexity
/a.length == j\
(array a: 11-1101(-2| 5| 1 0 Lb.length ==n
[SLOW] ~n x n = n? operations
method
Quadratic
arrayb: | (4] (2/|14]|3]|14]]|2]]|!7 complexity
/
a length == n
array a: 1(-110(-2| 51110 blength ==n
FAST sumofa:| 4 ~ :
method j | 2 X n operations
Linear
array b: | |42 |14)|13]|14]| 2|7 complexity/

An algorithm is not a program

X36DSA 2006

The complexity of different algorithms varies: O(n), Q(n?), ©(n-log,(n)), -..

19/1

(

Computing the complexity

Array size SLOW method FAST method Ratio
N operations N2 operations 2N SLOWI/FA
11 121 22 kS
21 441 42 S
51 2 601 102 S
101 10 201 202 9
201 40 401 402 S
501 251 001 1002 S
1001 1002 001 2 002 5
2 001 4 004 001 4 002 S
5001 25010 001 10 002 S
1 000001 | 1000002000001 2 000 002 9

Tab. 2

An algorithm is not a program

X36DSA 2006

The complexity of different algorithms varies: O(n), Q(n?), ©(n-log,(n)), -..

20/1

-

Computing the complexity

Array Size
N

Speed ratios Speed ratios

solutions of task 1 | solutions of task 2

11

21

o1

101

201

001

1001

2001

5001

1 000 001

alojlo|la|lala|loa|loa|o|o

Tab. 3

An algorithm is not a program

X36DSA 2006 The complexity of different algorithms varies: O(n), Q(n?), ©(n-log,(n)), ... 21/1

')

Examples

[Search in a sorted array — linear, SLOW)

_

~
(array J sorted array: size = N

L» 363|369|388|603|638|693|803(833|836(839(860(863(938(939(966(968(983(993
J

[)
_ Find 9931 | tests: N () ;
R R AR R R RIRRIRIRIRE
363|369(388(603|638|693(803|833|836(839(860|863{938(939/966/968(983|993
- J

L
[Find 363! |

2 tests: 1@
3|638

363|369(388|60

J

693|803(833(836|839(860(863|938/939(966968|983 (993

An algorithm is not a program

X36DSA 2006

The complexity of different algorithms varies: O(n), Q(n?), ©(n-log,(n)), ... 22/1

f

B
Examples
(Search in a sorted array — binary, FAST
\N—~
-)

[Fast 863! |

oY

363|369(388|603

638

693|803(833|826(839|860(863(938|939 (066|968 (983|993

363369 3BR808

oY W3
-
A A

hd3/303(833 839|860|863|938|939|966|968|983|993

2 tests

839|860|863(938(929|966|968|983|993

2 tests —————— —_— T
839/860/863/938 966 [962,883993
&
2 tests 839'8’50 863|938
829 863938
‘SZ
1 test 863938

An algorithm is not a program

X36DSA 2006 The complexity of different algorithms varies: O(n), Q(n?), ©(n-log,(n)), ...

e

Exponent, logarithm and interval halving

N)

OB APAEAHA

k aina @:2k

0 = (D)=2" k = log,(N) é

An algorithm is not a program

X36DSA 2006

The complexity of different algorithms varies: O(n), Q(n?), ©(n-log,(n)), -..

24 /1

(

Computing the complexity

Number of tests

Array linear search — case binary search
size best worst | average worst case
3) 1 3) 3 3)
10 1 10 5.5 7
20 1 20 10.5 9
50 1 50 25.5 11
100 1 100 50.5 13
200 1 200 100.5 15
500 1 500 250.5 S 17
1000 N\ 1 N\ 1000 N\ 500.5 /V\ 19
2000 & 1] & 2000 \F10005| & 21
5000 1 5000 2500.5 25
1 000 000 1 1 000 000 500 000.5 59
Tab. 4

An algorithm is not a program

X36DSA 2006

The complexity of different algorithms varies: O(n), Q(n?), ©(n-log,(n)), -..

25/1

/

Computing the complexity

The computation time
for various time complexities
assuming that 1 operation takes 1 ps (10° sec)

complexity Size of data
10 20 40 60 500 1000
log, n 3,3pus | 43ps S us 5,8 us 9 ps 10 ps
n 10 ps 20 ps 40 ps 60 us | 0,5ms 1 ms
nlog,n | 33us | 86ps 0,2 ms 0,35ms | 45ms | 10 ms
n2 001ms | 0,4ms 1,6 ms 36ms | 0,25s 1s
n3 1 ms 8 ms 64 ms 02s 125s | 17 min
n4 10 ms | 160 ms 2,56 s 13s
2" 1 ms 1s 600 102
o[e o] 0|ty 107 e

Tab. 5

An algorithm is not a program

X36DSA 2006

The complexity of different algorithms varies: O(n), Q(n?), ©(n-log,(n)), -..

26/1

-~

Functions’ order of growth

Functions’ order of growth

An algorithm is not a program

X36DSA 2006 The complexity of different algorithms varies: O(n), Q(n2), ©(n-log,(n)), ... 2711
-
Functions’ order of growth
8 1 (x+26.44)
e(x) = 1.072
7.5 -
T 1
p(x) =g (x*+100)
6.5
6 \ \ \ \ x\
-1 0 1 2 3 4
_

An algorithm is not a program

X36DSA 2006 The complexity of different algorithms varies: O(n), Q(n2), ©(n-log,(n)), ... 28/1
-
Functions’ order of growth
Zoom out! :
25 p(x) =- (x+100)
20 -
x+26.44
e(x) = 1.072""**
15 -
10 -
5 1 B 4.::::: pI’EVIOUS VIeW :::::
0 \ \ \ \ X \
-5 0 5 10 15 20
_

An algorithm is not a program

X36DSA 2006 The complexity of different algorithms varies: O(n), Q(n2), ©(n-log,(n)), ... 29/1
&)
Functions’ order of growth
Zoom out! :

(X+26.44)
350 - e(x) =1.072
_ J

An algorithm is not a program

X36DSA 2006 The complexity of different algorithms varies: O(n), Q(n2), ©(n-log,(n)), ... 30/1
&)

Functions’ order of growth

Zoom out! :

(x+26.44)

10000 - y e(x) = 1.072
8000
6000
4000 -

2000 -

etc:... ¢(1000) = 9843181236605408906547628704342.9 p(1000) = 62506.25 ...

An algorithm is not a program

X36DSA 2006 The complexity of different algorithms varies: O(n), Q(n2), ©(n-log,(n)), ... 31/1
&)

Functions’ order of growth

Q(f(x)) | //"gz<x) c Q ()

! 010 € Q ()

) € Q (f(x)

X

»
»

Caution! The picture is not exact, it is a mere illustration.

An algorithm is not a program

X36DSA 2006 The complexity of different algorithms varies: O(n), Q(n?), ©(n-log,(n)), ... 32/1
e)

Functions’ order of growth

\
[\ Q(f(x)))

[Q Omega) =
| The set Q(f(x))

contains every function g(x) which from some point x, on
(and the position of x, is completely arbitrary)

a) — has always bigger value than function f(x) @ OR

b) — has not bigger value than f(x), however

after being multiplied by some positive constant
(the constant value is arbitrary as well)
has always biggeer value than function f(x).

N[
y u

Thus: if we find some x, and ¢>0 such that
c-g(x) > f(x) everywhere to the right of x
(sometimes c=1 is enough), then surely g(x) € Q(f(x))

An algorithm is not a program

X36DSA 2006 The complexity of different algorithms varies: O(n), Q(n?), ©(n-log,(n)), ... 33/1
o)

Functions’ order of growth

Thus: if we find some X, and ¢c>0 such that A
c-g(x) > f(x) everywhere to the right of x,
(sometimes c=1 is enough), then surely g(x) € Q(f(x)))
4)
100007y c=1 e(x) = 1.072 (x+26:44)
8000 Xg = 60 |
6000 - EE:>
4000 - —
2000 - | . 1,
! x) = —(x4*+100
) __Fa= p(x) ; 6()
0 20 40 60 80 100 X
1 (y2
x>60 = e(x)>p(x), ie 1.072(x*2644) > 1—6(x +100)
% hence holds | e(x) € Q(p(x)) (check it!) y
b =

An algorithm is not a program

X36DSA 2006

The complexity of different algorithms varies: O(n), Q(n?), ©(n-log,(n)), -..

34/1

& R
Functions’ order of growth
Thus: if we find some X, and ¢c>0 such that A
c-g(x) > f(x) everywhere to the right of x,
(sometimes c=1 is enough), then surely g(x) € Q(f(x)))
4)
b(x)=x+3(x | 20 _, 4-r(x) = 4(x1)
r(x) = x-1 15 x0=34 B> 7 o =xedlx
10 - e
5 - .':"/ _—— r(x)=x-1
0 \ \ ! \ \ X
50 1 2 3 4 5 6
—=>
x>31 = 4r(x)>b(x), i.e. 4(x-1)>x+3(x (check it!)
—>
hence holds | r(x) € Q(b(x
9 (x) € Q(b(x)) y
" J

An algorithm is not a program

X36DSA 2006 The complexity of different algorithms varies: O(n), Q(n?), ©(n-log,(n)), ...

35/1

3
Functions’ order of growth
: Typical examples \
4)
x2 e Q(x) x3 e Q(x3) x"1 e Q(x")
_ J
()
2X ¢ O(x3) 2X O(x3) 2X e O(x°000)
_ J
()
x € Q(log(x)) x-log(x) € Q(x) x2 e Q(x-log(x))
_ J
()
2X ¢)(x20000) x20000 - O(x) xe Q(1)
_ J
<
 aways] f)>1 = fxe Q))
[Lhard to believe J 200 000\/7 e O(log(x)200 000)

o

An algorithm is not a program

X36DSA 2006 The complexity of different algorithms varies: O(n), Q(n2), ©(n-log,(n)), ... 36/1

o)

Functions’ order of growth

0,09 € O(f(x))

8100 € O(f()

Caution! The picture is not exact, it is a mere illustration.

An algorithm is not a program

X36DSA 2006

The complexity of different algorithms varies: O(n), Q(n?), ©(n-log,(n)), ... 37171
[

Functions’ order of growth

()

. O(f(x))
[O Omicron g
r ’)
The set O(f(x))
contains each function(x) which from some point x; on
(and the position of x, is completely arbitrary)
a) — has always smaller value than function f(x)
b) — has not smaller value than f(x), however
after being multiplied by some positive constant (<1 ©)
(the constant value is arbitrary as well)
_ has always smaller value than f(x).)
4)
Thus: if we find some x, and ¢>0 such that
c-g(x) < f(x) everywhere to the right of x,
(sometimes c=1 suffices) then surely, g(x) € O(f(x))
_ J
J

An algorithm is not a program

X36DSA 2006

The complexity of different algorithms varies: O(n), Q(n?), ©(n-log,(n)), -..

38/1

-~

Functions’ order of growth

Thus: if we find some X, and ¢c>0 such that
c-g(x) < f(x) everywhere to the right of x,
(sometimes c=1 suffices) then surely, g(x) € O(f(x))

\.

=>

X > 60
>

10000 -
y c
8000 - Xg
6000 -
4000 -

2000 -

=1
= 60

=>
=>

e(x) = 1.072 (x+26.44)

_ p(x)= %6(x2+100)

0

et

0 20

40 60 80 100 X

= p(x) < e(x),

ie. —1-(x2+100) < 1.072 (x*26.44)

16

N

hence holds

pP(x) € O(e(x))

(check it!)

An algorithm is not a program

X36DSA 2006

The complexity of different algorithms varies: O(n), Q(n?), ©(n-log,(n)), -..

39/1

it
Functions’ order of growth

Thus: if we find some X, and ¢c>0 such that

c-g(x) < f(x) everywhere to the right of x,

(sometimes c=1 suffices) then surely, g(x) € O(f(x))
4)

b(X)=X+3V; 20 y x0=1
r(x) = x—1 15 =>
' b(x) =x + 3V;
10 =
5 r(x) = x—1
~ _
0 ’L‘K‘ | | | X
o 1 2 3 4 5 6
—>
x>1 = r(x)<b(x), i.e. x-1 < x+3|x
—>
hence holds | r(x) € O(b(x
9 (x) € O(b(x)) y
"

An algorithm is not a program

X36DSA 2006 The complexity of different algorithms varies: O(n), Q(n2), ©(n-log,(n)), ... 40/1

f

Functions’ order of growth

(fe Q@) < geO)

4)
x e O(x?) x2 e O(x3) x" e O(x"*1)

_ J

4)
x2 e O(2%) x3 e O(2%) x°000 - O(2%)

_ J
()
log(x) € O(x) x € O(x-log(x)) x-log(x) € O(x?)

_ J
4)

x20000 - o(2%) xe O(x20000) 1e O(x)
_ J
.
 aways] fx)>1 = 1< O(f(x)
J
[Lhard tobelieve | 150200000 ¢ (200000,

\

An algorithm is not a program

X36DSA 2006

The complexity of different algorithms varies: O(n), Q(n?), ©(n-log,(n)), ... 41/1

f

Functions’ order of growth

9:(x) € O(f(x)) /

gy € 0(i(x) X

»

»

Caution! The picture is not exact, it is a mere illustration

An algorithm is not a program

X36DSA 2006 The complexity of different algorithms varies: O(n), Q(n?), ©(n-log,(n)), ... 42/1

o)

Functions’ order of growth

(O(f(x)) = Q(f(x)) O(F(x)))

(® Theta }

The set ©(f(x)) contains every function g(x)

which belongs to both Q(f(x)) and O(f(x)).

[f(x) € ©(g(x)) < 9(x) € 6(f(x))]

An algorithm is not a program

X36DSA 2006

The complexity of different algorithms varies: O(n), Q(n?), ©(n-log,(n)), -..

43 /1

f

Functions’ order of growth

[

f(x) € ©(g(x)) < 9(x) € 6(f(x))

s N
b(x) =x+3x | 20
0= :z __— b(x) = x + 3\(x_
r(x) € Q(b(x)) 5 / 0 =t
r(x) € O(b(x)) 0 ,/ |
50 1 3 4 5 6
TJ> r(x) € O(b(x)) || b(x) € O(r(x))
\ Y,

An algorithm is not a program

X36DSA 2006 The complexity of different algorithms varies: O(n), Q(n?), ©(n-log,(n)), ... 44 /1
f)

Functions’ order of growth

l Rules J
1. (a>0) < O(f(x)) = 6O(a - f(x))

2. d(x) € O(f(x)) < Of(f(x)) = O(f(x) + g(x))

N

(In words] 1. Multiplication by positive constant
does not affect belonging to O(f(x)).

2. Addition or substraction of a ,,smaller* function
does not affect belonging to O(f(x)).

/[Examples) N

~

4-2" +3-2M14+5.2n2 ¢ @(2)
1.8x + 600 - log,(x) € BO(x) 0.1x5 + 200x* + 7x2 — 3 € O(x5)

x3 + 7x12 + 5(log,(x))* € O(x3) —"— € O(x%)

13 - 3% + 9x12 + 42x4 + 29 € O(3¥) —— € Q(x°)
/L J

.

An algorithm is not a program

6 The complexity of different algorithms varies: O(n), Q(n?), ©(n-log,(n)), ... 45/1

Functions’ order of growth

Q(f(x)) = { 9(x) ; x,>0,c>0 Vx>x,: c-f(x) < g(x) }

v

O(f(x)) = { g(x) ; I%,>0,c>0 Vx>X,: g(X) < c-f(x) }

O(f(x)) = { g(x) ; 3%;>0,c,>0, c,>0 Vx>X,: c4-f(X) < g(X) < ¢, f(x)
}

Caution! The pictures are not exact, they are mere illustration,

An algorithm is not a program

X36DSA 2006 The complexity of different algorithms varies: O(n), Q(n?), ©(n-log,(n)), ...

46 /1

[

[Comparing the speed of growth of functions }

Functions’ order of growth

o

f(x) € Q(g(x)) & f(x) & 6(g(x))

Function f(x) grows asymptoticall/fa@han function g(x) when

~

(

L Be careful!

~

J

\—/

Comparing the speed of algorithms

Algorithm A is asymptotically Gicwer then algorithm B when

fa(n) € Q(fg(n)) & fa(n) € B(fg(n)),

where f,(n), resp. fg(n) is a function

determining the number of operations executed by algorithm
A, resp. B when they process data of size n.

\

An algorithm is not a program

X36DSA 2006 The complexity of different algorithms varies: O(n), Q(n?), ©(n-log,(n)), ...

47 /1

/

Functions’ order of growth

G

.

/[Order of growth of a function] A
Order of growth of function f
is “the most simple” function g, for which holds
g(x) € O(f(x))
Y,
([Manipulation } ~
The order of growth is mostly obtained by dropping
1. additive members of “slower or equal” rate of growth,
2. multiplicative constants.
f[Examples])
ff(n) = 42" +3.2"1+ 5.2"2 ¢ ©(2") order of growth is 2"
hh(x) = x + log,(x) - V? € O(x) order of growth is x
J

An algorithm is not a program

X36DSA 2006 The complexity of different algorithms varies: O(n), Q(n2), ©(n-log,(n)), ... 48/1

[

Asymptotic complexity

/—[Asymptotic complexity of an algorithm J—\

Asymptotic complexity of algorithm A
is the order of growth of the function f(n) which chracterizes
maximum number of elementary operations
which algoritm A performs when it processes any data of size n.

We suppose that the data are the most "difficult” ones.

N
4

(size of data = the total number of data elements) /
. . . .)
Mostly it makes no difference if we consider

A) total of all elementary operations,
B) total of all elementary operations on data,
C) total of tests on data.

The asymptotic complexity is usually the same.

An algorithm is not a program

X36DSA 2006 The complexity of different algorithms varies: O(n), Q(n2), ©(n-log,(n)), ... 49/1

o)

Asymptotic complexity

/——{ Asymptotic complexity of the introductory examples }——\

Searching for min and max in an array.
Asymptotic complexity is ®(n) in both cases.

. Y,
4)
Checking how many elements are equal to sum of an array.
Asymptotic complexity of the SLOW solution is ®(n?).
Asymptotic complexity of the FAST solution is ©(n).
L Assuming both arrays are of length n. y
-

Asymptotic complexity of linear search in a sorted array is O(n).

Asymptotic complexity of binary search in a sorted array is

O(log(n)).

Assuming the array is of length n.

An algorithm is not a program

X36DSA 2006 The complexity of different algorithms varies: O(n), Q(n2), ©(n-log,(n)), ... 50/1

f

Asymptotic complexity

Conventions J

Simplification } ~

Usually the term ,,algorithm complexity“
is interpreted as ,,asymptotic complexity of the algorithm®.

/(Confusion)

N

) N

Usually they do not say f(x) belongs to ®(g(x)),
but rather | f(x) is_ ©(g(x)).
And they mark it accordingly | f(x) = ® (g(x))
instead of f(x) € ® (g(x)).
The same convention holds for O and Q.

But they think of it in the original meaning defined above. Y,

An algorithm is not a program

X36DSA 2006 The complexity of different algorithms varies: O(n), Q(n2), ©(n-log,(n)), ... 51/1

Ve

Asymptotic complexity

An algorithm is not a program

X36DSA 2006 The complexity of different algorithms varies: O(n), Q(n?), ©(n-log,(n)), ...

o

The complexity
of different algorithms

varies

An algorithm is not a program

An algorithm is not a program

