A4B33ALG 2010/04

One dimensional searching

Searching in an array
naive search, binary search, interpolation search

Binary search tree (BST)
operations Find, Insert, Delete

A4B33ALG 2010/04

Naive search in a sorted array — linear, SLOW.

Array
Sorted array: Size =N

363(369|388(603(638|693(803|833|836|839|860(863|938[939(966|968(983|993

Find 993 !
Tests: N @ v
NRRRRRIRRRRNRRIRRIRIRIRS
363(369(388|603(638|693|803(833|836(839|860(863|938|939(966|968|983(99

3

Find 363!

S\iv Tests: 1 @
36

3[(369[388]603]638|693|803|833|836(839{860[{863]938|939|966|968(983(993

A4B33ALG 2010/04

Nty
~ e

Search in a sorted array — binary, FASTER

©

Find 863 ! 863 > 8367 1 test \fg

363|369|388|603|638|693|803|833|836(839|860(863|938(939(966|968|983|993
363|369/ 38R 15U2189610521803|833|836|839860|863|938|939|966|968(983[993

863 > 9397 1 test 839(860(863/938/939|966|968|983(993
— T Toc,
839/860|863|938|939| 966 [9B8{883[993
863 > 8637 1 test 839(860(863(938/939
839(860|863 0351039

v
839(860|863

(935960863
4

863 == 863 1 test 863

863 > 8607 1 test

0D

A4B33ALG 2010/04
sy

:@:

Search in a sorted array — binary, FASTER @

Find 863 |

The search follows the
structure of a binary tree.

363(369|388(603(638|693(803|833|836|839|860(863|938(939(|966|968(983|993

A4B33ALG 2010/04

Search in a sorted array — binary, FASTER

S ok
. (@)=
L)=22
Search time
‘ @2 N =2¢ =>
(D=2° K =10g,(N) é

A4B3BALG 2010/04

*Q-

Search in a sorted array — binary, FASTER @

Find g = 863!

|§63|369i38 EG:ClCSClCiTmUBISS 836!|839 860(863[938(939(966|968|983|993
Typically, on average, the query value 839(860(863 938|i939 6695212531993
IS close to a leaf in the search tree.)

I

It takes too much time to test each 839 86(1 863|b38|959|
value in the tree during the search _
descent to the leaf. 834 bO||863 S tests in total

Therefore, the method first finds the
exact place where the query value
should be located and only then it
checks if the value is really there.

Y

During the search, the current segment is divided
to two halves and the unpromissing half is discarded.
The final test "Is g in the array?" is performed only

once, when the current segment length is 1.

863

Though the query
value 863 was
encountered
already in the 3rd
check, its presence
In the array was
confirmed only
after the 4th test.

A4B33ALG 2010/04

Binary search -- fast variant

def binarySearch(arr, value):
low = 0; high = len(arr)-1
while low < high: # while segment length > 1
mid = (low + high) // 2 # bug ?
fix: mid = low + (high-low)/2;
it arr[mid] < value: low = mid+1
else: high = mid
if arr[low] == value: return low # found or
return -1 # not found

Bug? : When low + high > INT_MAX in some languages overflow appears
https://research.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html

A4B33ALG 2010/04

Interpolation search

Array al | Find q = 939

363|369(388(603(638|693|803|833|836(839|860|863|938|939|966|968(983(993
0O 1 2 13 15 17

first position last

When the values are expected to be more or less evenly
distrubuted over the range then the interpolation search might help.
The position of the element should roughly correspond to its value.

(g — a[first])
position = first + - - —————————————— *(last — first)
a[last]-a[Tirst]
939 - 363
position = 0 + ——————————— *(17 — 0) = 15.54 Example
993 - 363

A4B33ALG2010/04

.... 6
a[last]l .. o .’
a[last]-a[Tirst] o . Thevalues
e e e e e e o o e o e s e e o (D) r Xim I !
9 5~ ©-y approximately(t)
o % ¥ .- I follow a linear function.
© . | .
g-a[first] -~ The ratios should be
““““““ approximately(!) the same:
. “““ N :
o q — a[first] position — first
a[f|rst]....................“.‘. ___________________________________
““““““““ a[last]-a[first] last - first
“““““““““ _ | :
values| .- last-first I
““““““ : I
“““““““ o @ : _position-first §:
o < - = I : positions
first position last

q — a[first]

a[last]-a[first]

* (last — first)

7a

A4B33ALG 2010/04

Interpolation search

Array al | Find q = 939
363|369(388|603|638[693(803|833|836(839(860|863|938(939(966 968M
0 1 2 13 14 15 17
first position - ‘ last

When the element is not found at the first hit then
continue the search recursively in the part of the array
which was not excluded form the search yet.

(g — a[first])
position = first + -~ —————————————— *(last — first)
a[last]-a[Tirst]
939 - 363 Example
position = 0 + ——————————— *(15 - 0) = 14.12
968 - 363

Interpolation search

A4B33ALG 2010/04

Array al | Find q = 939
363|369(388|603|638[693(803|833|836(839(860|863|938(939(966 3
0 1 2 13 14715 17
first position last
When the element is not found at the first hit then
continue the search recursively in the part of the array
which was not excluded form the search yet.
(g — a[first])
position = first + -~ —————————————— *(last — first)
a[last]-a[Tirst]
939 - 363 Example
position = 0 + -~ —————————- *(14 - 0) = 13.37
966 - 363 Finished.

A4B33ALG 2010/04
Interpolation search

def interpolationSearch(arr, q):

g 1s the query
first = 0; last = len(arr)-1

while True:

found?

if first == last :
if arr[first] == q: return pos
else: return -1

continue search
pos = First + round((g-arr[first])/
(arr[last]-arr[first]) * (last-first))

it arr[pos] == q: return pos
if arr[pos] < q: First = pos+l # check left side
else: last = pos-1 # check right side

10

Search in a sorted array — speed comparison

A4B33ALG 2010/04

Method
Array |Linear search Interpolation search Binary search
size N | average case average case all cases
10 5.5 1.60 4
30 15.5 2.12 5
100 50.5 2.56 7
300 150.5 2.89 9
1 000 500.5 3.18 10
3000 1500.5 3.41 12
10 000 5 000.5 3.63 14
30 000 15 000.5 3.80 15
100 000 50 000.5 3.96 17
300 000 150 000.5 4.11 19
1 000 000 500 000.5 4.24 20
Asymptotic _ Random uniform distribution Due to the binary
complexity Obviously &(n) log,(log,(N)) € ®(log(log(N))) tree structure ®(log(n))

11

Binary search tree

For each node Y it holds:

Keys in the left subtree of Y

are smaller than the key of Y.

Keys in the right subtree of Y

are bigger than the key of Y.

18

22

25

34

40

45

51

68

70

/3

74

76

92

A4B33ALG 2010/04

12

A4B33ALG 2010/04

Binary search tree

BST may not be balanced
and usually it is not.

BST may not be regular
and usually it is not.

Apply the INORDER
traversal to obtain
sorted list of the

keys of BST.

BST is flexible due to the operations:
Find —return the pointer to the node with the given key (or null).

Insert — insert a node with the given key.
Delete — (find and) remove the node with the given key.

13

A4B33ALG 2010/04

Binary search tree implementation -- Python

Tree .. Node ™
’0’ \ NOde

______________________ representation

o,
TN class Node:
9968 > def _Init__ (self, key):

self.left = None
self.right = None
self.key = key

14

A4B33ALG 2010/04

Binary search tree implementation -- Python

Tree
., Node
\
\\
//\\ ,\\ \\
e) > \
/ \\ 4 \ \
4 o % \ P G N \

7 S . N , . \ \
/ \ P N\ \
e e e e e e e e - = KN v N _‘ \

... TN\
A
6084
335 22107

class Node:
def intt_ (self, key):
self.left = None
self.right = None
self.key = key

class BinaryTree:
def _init_ (self):
self.root = None

15

Each BST
operation starts
In the root.

Operation Find in BST

Iteratively

A4B33ALG 2010/04

def Findlter(se key, node):

while(True):
1T node == None

if key == node.key :

1T key < node.key
else

return

None

return

- node
- node

Findlter(key, tree.root) # call

node
node . left
node.right

16

Operation Find in BST

A4B33ALG 2010/04

Each BST
operation starts
In the root.
_Recursively
def Find(self, key, node):
i1f node == None > return None
1T key == node.key : return node
1T key < node.key : self.Find(key, node.left)
else - self_Find(key, node.right)

Find(key, tree.root) # call

17

A4B33ALG 2010/04

Operation Insert in BST

Insert 42 é @

Key 42 belongs here

Insert
1. Find the place (like in Find) for the leaf where the key belongs.
2. Create this leaf and connect it to the tree.

18

Operation Insert in BST iteratively

def Insertlter(self, key):
iIT self_root == None: # empty tree
self.root = Node(key);
return self._root

node = self._root
while True:
1T key == node.key: return None # no duplicates!
if key < node.key:
if node.left == None:
node.left = Node(key)
return node.left
else: node = node.left
else:
i1f node.right == None:
node.right = Node(key)
return node.right
else: node = node.right

A4B33ALG 2010/04

19

A4B33ALG 2010/04

Operation Insert in BST recursively

def Insert(self, key, node):
if key == node.key: return None # no duplicates
if key < node.key:
iIT node.left == None: node.left = Node(key)

else: self.Insert(key, node.left)
else:
1T node.right == None: node.right = Node(key)
else: self._Insert(key, node.right)
call
1T self.root == None:

self.root = Node(key)
else: Insert(key, self._root)

20

A4B33ALG 2010/04

Building BST by repeated Insert

insert 40
Insert 60 Insert 70 (40)
(60) (20) (60)
(50 9)
insert 50 (40) insert 30 (40)
(60) (20] (60,
(50) 3 G @
Insert 20 (40) Insert 10 (40)
(20) (60,
(0 G G @)

21

A4B33ALG 2010/04

The shape of the BST depends on the order in which data are inserted.

insert 50 iInsert 70
Insert 30

@ insert 10
insert 60 @

(30 (60)
insert 20 Insert 40

22

A4B33ALG 2010/04

Operation Delete in BST (l.)

Delete a node with O children (= leaf)

Leaf with key 25
disappears

Delete I. Find the node (like in Find operation) with the given key and
set the reference to it from its parent to null.

23

A4B33ALG 2010/04

Operation Delete in BST (ll.)

Delete a node with 1 child.

Delete 68 é @

(34) (76
n
® D @) &
(8 (22) (45) (73)
Node with key 68 (18) (42) (70) (74)
disappears
Change the 76 --> 68 reference to 76 --> 73 reference.
Delete II. Find the node (like in Find operation) with the given key and

set the reference to it from its parent to its (single) child.

24

A4B33ALG 2010/04

Operation Delete in BST (ll.)

Delete a node with 1 child. Before

Delete 68

25

A4B33ALG 2010/04

Operation Delete in BST (llla.)

Delete a node with 2 children. Delete 34 \}

Concept: (70) (74)

Key 34 disappears. A

And it is substituted by key 36. .

Implementation:

Delete llla.
1. Find the node x (like in Find operation) with the given key and then

find the leftmost (= smallest key) node y in the right subtree of x.
2. Point from y to children of x, from parent of y point to the child of v instead of v,

from parent of x point to .

26

A4B33ALG 2010/04

Operation Delete in BST (llla.)

Before

Delete 34

old
edges/pointers/references

new
edges/pointers/references

27

A4B33ALG 2010/04

Operation Delete in BST (lllb.) is equivalent to Delete llla.

Delete a node with 2 children. ~ Delete 34 *

Concept:
Key 34 disappears. :

And it is substituted by key 22.

.
lllllllll

Implementation:

Delete llIb.

1. Find the node (like in Find operation) with the given key and then
find the rightmost (= biggest key) node y in the left subtree of x.

2. Point from y to children of x, from parent of y point to the child of v instead of v,
from parent of x point to y.

28

A4B33ALG 2010/04
Operation Delete in BST (lllb.) is equivalent to Delete llla.

Delete 34 Zeieie

old
edges/pointers/references

new

edges/pointers/references
e

The moved node may
itself have a child.

In such case it looks
as if variant Delete I
was applied locally on
the moved node.

29

A4B33ALG 2010/04

Operation Delete in BST -- recursively

def delete(self, node, parent, key):

not found or search recursively In L or R subtree

node == None: return None

key < node.key: self.delete(node.left, node, key); return
node.key < key: self.delete(node.right, node, key); return

b

found 1n current node, delete the key/node
1f node.left !'= None and node.right != None:
both children
rightMinNode, rightMinParent = self.findMin(node.right, node)
node.key = rightMinNode.key
self.delNodeWithAtMostlChild(rightMinNode, rightMinParent)
else:
single child
self._delNodeWithAtMostlChild(node, parent)

30

A4B33ALG 2010/04

Operation Delete in BST -- support functions

def findMin(self, node, parent):
while node.left !'= None:
parent = node; node = node.left
return node, parent

def delNodeWithAtMostliChild(self, node, parent):
1T node.left is None:
1f node.right == None:
leaf, no child

1T parent.left == node: parent.left = None
else: parent.right = None
else: # single R child
1T parent.left == node: parent.left = node.right
else: parent.right = node.right
else:
1f node.right == None:
single L child
1T parent.left == node: parent.left = node.left
else: parent.right = node.left

31

A4B33ALG 2010/04

Operation Delete in BST

Asymptotic complexities of operations Find, Insert, Delete in BST

BST with n nodes
Operation Balanced Not balanced
Not guaranteed !! (expected general case)
Must be induced by additional conditions.
Find O(log(n)) O(n)
Insert O(log(n)) O(n)
Delete O(log(n)) O(n)

Additional Fact :

The expected height of a randomly built binary search tree on
n distinct keys is O (log n). source: [CLRS]

Randomly, in this case: Each of the n! permutations of the input keys
Is equally likely.

32

A4B33ALG 2010/04

Uniformly random BST Experiment

def depth(self):
return self. depth(self._root)

def _depth(self, node):
i1f node == None: return -1
return 1 + max(self. depth(node.left),self. depth(nhode.right))

def createRandomTree(self, Nkeys): Experiment results
keys = list(range(0,Nkeys))
random.shuffle (keys) Uniformly Random BST
for key in keys: self.insert(key) with N nodes
for i1 in range(1, 6): N depth 2*1og2(N)
tree = BinarySearchTree() 10 4 6.6
tree.createRandomTree(10**i) 100 11 13.3
print(tree.N, tree.depth() \ 1000 19 19.9
"4 . 1F""%(2*math. log2(tree.N))) |10000 30 26.6
100000 37 33.2
1000000 48 39.9

33

