
0

A4B33ALG 2010/04

One dimensional searching

Searching in an array
naive search, binary search, interpolation search

Binary search tree (BST)
operations Find, Insert, Delete

1

Sorted array:

693 803 833 836 860 863 938 939 966 968 983 993638603388369363 839

693 803 833 836 860 863 938 939 966 968 983 993638603388369363 839

693 803 833 836 860 863 938 939 966 968 983 993638603388369363 839

A4B33ALG 2010/04

Array

Find 993 !

Naive search in a sorted array — linear, SLOW.

Size = N

Tests: N

Find 363 !

Tests: 1

2

Search in a sorted array — binary, FASTER

693 803 833 836 860 863 938 939 966 968 983 993638603388369363 839
693 803 833 860 863 938 939 966 968 983 993638603388369363 839

860 863 938 939 966 968 983 993839
860 863 938 966 968 983 993839

860 863 938839
863 938839

863

Find 863 ! 1 test

1 test

1 test

1 test

A4B33ALG 2010/04

836

939

939
939860

860 863839
863839 860

1 test

863 > 836?

863 > 939?

863 > 863?

863 > 860?

863 == 860?

3

Search in a sorted array — binary, FASTER

Find 863 !

4

603

968

839

938

966 983

993

693

638 803

833

369

363 388

693 803 833 836 860 863 938 939 966 968 983 993638603388369363 839

836

939

860

863

The search follows the
structure of a binary tree.

A4B33ALG 2010/04

4

…k
…

2

3

1

0

N = 2k

k = log2(N)
=>

. . .

2

4

8

1

N

=20

=21

=22

=23

=2k

1

2

4

8

N

Search in a sorted array — binary, FASTER

Search time

A4B33ALG 2010/04

5

Search in a sorted array — binary, FASTER

836693 803 833 860 863 938 939 966 968 983 993638603388369363 839

860 863 938 939 966 968 983 993839

860 863 938839

863

Find q = 863 !

5 tests in total

A4B33ALG 2010/04

5 6 7 10 11 12 13 14 15 16 1743210 98

939

860 863839

Typically, on average, the query value
is close to a leaf in the search tree.

It takes too much time to test each
value in the tree during the search
descent to the leaf.

So, the method first finds the exact
place where the query value should
be located and only then it checks if
the value is really there.

During the search, the current segment is divided
to two halves and the unpromissing half is discarded.
The final test "Is q in the array?" is performed only
once, when the current segment length is 1.

Though the query
value 863 was
encountered
already in the 3rd
check, its
presence in the
array was
confirmed only
after the 4th test.

6

def binarySearch(arr, value):
low = 0; high = len(arr)-1
while low < high: # while segment length > 1

mid = (low + high) // 2 # bug ?
fix: mid = low + (high-low)/2;

if arr[mid] < value: low = mid+1
else: high = mid

if arr[low] == value: return low # found or
return -1 # not found

Binary search -- fast variant
A4B33ALG 2010/04

Bug? : When low + high > INT_MAX in some languages overflow appears
https://research.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html

7

693 803 833 836 860 863 938 939 966 968 983 993638603388369363 839

(q – a[first])
position = first + ---------------- *(last – first)

a[last]-a[first]

939 - 363
position = 0 + ----------- *(17 – 0) = 15.54

993 - 363

Array a[] Find q = 939

When the values are expected to be more or less evenly
distrubuted over the range the interpolation search might help.
The position of the element should roughly correspond to its value.

0 1 2 171513
first lastposition

Example

Interpolation search
A4B33ALG 2010/04

8

693 803 833 836 860 863 938 939 966 968 983 993638603388369363 839

(q – a[first])
position = first + ---------------- *(last – first)

a[last]-a[first]

939 - 363
position = 0 + ----------- *(15 – 0) = 14.12

968 - 363

Array a[] Find q = 939

When the element is not found at the first hit then
continue the search recursively in the part of the array
which was not excluded form the search yet.

0 1 2 171513
first lastposition

Example

14

Interpolation search
A4B33ALG 2010/04

9

693 803 833 836 860 863 938 939 966 968 983 993638603388369363 839

(q – a[first])
position = first + ---------------- *(last – first)

a[last]-a[first]

939 - 363
position = 0 + ----------- *(14 – 0) = 13.37

966 - 363

Array a[] Find q = 939

When the element is not found at the first hit then
continue the search recursively in the part of the array
which was not excluded form the search yet.

0 1 2 171513
first lastposition

Example

14

Finished.

Interpolation search
A4B33ALG 2010/04

10

def interpol(arr, q): # q is the query
first = 0; last = len(arr)-1

while True:
if first == last :

if arr[first] == q: return pos
else: return -1

pos = first + round((q-arr[first])/
(arr[last]-arr[first]) *(last-first))

if arr[pos] == q: return pos
if arr[pos] < q: first = pos+1 # check left side
else: last = pos-1 # check right side

Interpolation search
A4B33ALG 2010/04

11

10 5.5 1.60 4

30 15.5 2.12 5

100 50.5 2.56 7

300 150.5 2.89 9

1 000 500.5 3.18 10

3 000 1 500.5 3.41 12

10 000 5 000.5 3.63 14

30 000 15 000.5 3.80 15

100 000 50 000.5 3.96 17

300 000 150 000.5 4.11 19

1 000 000 500 000.5 4.24 20

Linear search
average case

A4B33ALG 2010/04

Array
size N

Interpolation search
average case

Random uniform distribution
log2(log2(N)) (log(log(N)))

Obviously (n)
Due to the binary

tree structure (log(n))

Search in a sorted array — speed comparison

Asymptotic
complexity

Binary search
all cases

12

34 40 45 51 70 73 74 76 92252218138

68

8

18 25

22

13

34

40

45

51

70 74

73

76

92

Keys in the left subtree of Y
are smaller than the key of Y.

Y

< Y
> YKeys in the right subtree of Y

are bigger than the key of Y.

A4B33ALG 2010/04

Binary search tree

For each node Y it holds:

68

13

68

8

18 25

22

13

34

40

45

51

70 74

73

76

92
BST may not be regular

and usually it is not.

BST may not be balanced
and usually it is not.

Apply the INORDER
traversal to obtain
sorted list of the

keys of BST.

BST is flexible due to operations:

Find – return the pointer to the node with the given key (or null).
Insert – insert a node with the given key.
Delete – (find and) remove the node with the given key.

A4B33ALG 2010/04

Binary search tree

14

key
left right

9968

497 73501

class Node:
def __init__(self, key):

self.left = None
self.right = None
self.key = key

Binary search tree implementation -- Python

Tree Node Node
representation

A4B33ALG 2010/04

497

15

Node class Node:
def __init__(self, key):

self.left = None
self.right = None
self.key = key

class BinaryTree:
def __init__(self):

self.root = None
6084

335 22107

Binary search tree implementation -- Python

Tree

A4B33ALG 2010/04

16

68

8

25

40

45

70 74

73

76

92

18

22

13

34

def FindIter(self, key, node):
while(True):

if node == None : return None
if key == node.key : return node
if key < node.key : node = node.left
else : node = node.right

FindIter(key, tree.root) # call

Operation Find in BST

Find 18 51

Each BST
operation starts
in the root.

Iteratively

A4B33ALG 2010/04

17

def Find(self, key, node):
if node == None : return None
if key == node.key : return node
if key < node.key : self.Find(key, node.left)
else : self.Find(key, node.right)

Find(key, tree.root) # call

68

8

25

40

45

70 74

73

76

92

18

22

13

34

Find 18 51

Each BST
operation starts
in the root.

Recursively

Operation Find in BST

A4B33ALG 2010/04

18

68

8

25 70 74

73

76

92

18

22

13

34

Insert 42 51

Operation Insert in BST

40

42

45

Key 42 belongs here

Insert
1. Find the place (like in Find) for the leaf where the key belongs.
2. Create this leaf and connect it to the tree.

A4B33ALG 2010/04

19

def InsertIter(self, key):
if self.root == None: # empty tree

self.root = Node(key);
return self.root

node = self.root
while True:

if key == node.key: return None # no duplicates!
if key < node.key:

if node.left == None:
node.left = Node(key)
return node.left

else: node = node.left
else:

if node.right == None:
node.right = Node(key)
return node.right

else: node = node.right

Operation Insert in BST iteratively
A4B33ALG 2010/04

20

def Insert(self, key, node):
if key == node.key: return None # no duplicates
if key < node.key:

if node.left == None: node.left = Node(key)
else: self.Insert(key, node.left)

else:
if node.right == None: node.right = Node(key)
else: self.Insert(key, node.right)

call
if self.root == None:

self.root = Node(key)
else: Insert(key, self.root)

Operation Insert in BST recursively

A4B33ALG 2010/04

21

10

20

30

40

50 70

60

insert 40

insert 60

insert 20

insert 70

insert 50

40

40
60

40

50

60
insert 30

insert 10
20

40

50

60

50 70

60

20

30

40

50 70

60

A4B33ALG 2010/04

Building BST by repeated Insert

20
40

22

40

10

20

20 70

60

insert 50

insert 30

insert 20

insert 70

insert 60

50

50
30 insert 10

insert 40
30

50
60

50
30

30
50

60

20 70

30
50

60

10

20 70

30
50

60

The shape of the BST depends on the order in which data are inserted.

A4B33ALG 2010/04

23

Operation Delete in BST (I.)

68

8

18

40

70 74

73

76

92

Delete I. Find the node (like in Find operation) with the given key and
set the reference to it from its parent to null.

42

45

Delete a node with 0 children (= leaf)

25

22

13

34

51

Leaf with key 25
disappears

Delete 25

A4B33ALG 2010/04

24

Operation Delete in BST (II.)

8

18

40

70 74

73

92

42

45

Delete a node with 1 child.

22

13

34

Delete 68

68

76

Change the 76 --> 68 reference to 76 --> 73 reference.

51

A4B33ALG 2010/04

Node with key 68
disappears

Delete II. Find the node (like in Find operation) with the given key and
set the reference to it from its parent to its (single) child.

25

8

18

40

70 74

73

92

42

4522

13

34

Delete 68 68

51

76

8

18

40

70 74

73 92

42

4522

13

34

51

76

Before

After

Operation Delete in BST (II.)

A4B33ALG 2010/04

Delete a node with 1 child.

26

Operation Delete in BST (IIIa.)

8

18 70 74

73

92

Delete IIIa.
1. Find the node (like in Find operation) with the given key and then

find the leftmost (= smallest key) node y in the right subtree of x.
2. Point from y to children of x, from parent of y point to the child of y instead of y,

from parent of x point to y.

36

4522

13

34

Delete 34

68

76

Key 34 disappears.

51

And it is substituted by key 36.

x

y

A4B33ALG 2010/04

40

38

Delete a node with 2 children.

Concept:

Implementation:

27

38

8

18 70 74

73

92

4522

13

34

68

76

51

x

y
36

8

18

40

70 74

73

92

4522

13

36

68

76

51
y

Delete 34

Before

After

old
edges/pointers/references

new
edges/pointers/references

A4B33ALG 2010/04

38

40

Operation Delete in BST (IIIa.)

28

Operation Delete in BST (IIIb.) is equivalent to Delete IIIa.

8

18

40

70 74

73

92

Delete IIIb.
1. Find the node (like in Find operation) with the given key and then

find the rightmost (= smallest key) node y in the left subtree of x.
2. Point from y to children of x, from parent of y point to the child of y instead of y,

from parent of x point to y.

42

4522

13

34

Delete 34

68

76

51

Na jeho místo nastoupí 22.

x

y

A4B33ALG 2010/04

Key 34 disappears.

And it is substituted by key 22.

Delete a node with 2 children.

Concept:

Implementation:

29

8

18

40

70 74

73

92

42

45

13

34

Delete 34

68

76

51

x

y 22

Before

After

8

40

70 74

73

92

42

45

13

22

68

76

51
y

18

The moved node may
itself have a child.

In such case it looks
as if variant Delete II

was applied locally on
the moved node.

A4B33ALG 2010/04

Operation Delete in BST (IIIb.) is equivalent to Delete IIIa.

old
edges/pointers/references

new
edges/pointers/references

30

def Delete (self, key):
... # homework...

Operation Delete in BST

Asymptotic complexities of operations Find, Insert, Delete in BST

Operation Balanced
not guaranteed,

must be induced by additional conditions

Not balanced
(expected general case)

Find (log(n)) (n)

Insert (log(n)) (n)

Delete (log(n)) (n)

BST with n nodes

A4B33ALG 2010/04

