Quiz

Michal Štolba stolba@agents.fel.cvut.cz

PAH (Planning and Games)

M.Štolba (PAH)

Tutorial 4 1 / 11

Abstraction heuristics are

- 1. safe, goal-aware, admissible and consistent
- 2. safe, goal-aware, not admissible and not consistent
- 3. only admissible

Abstraction heuristics are

- 1. safe, goal-aware, admissible and consistent
- 2. safe, goal-aware, not admissible and not consistent
- 3. only admissible

Which combination of several abstraction heuristics is always admissible?

- 1. sum
- 2. multiplication
- 3. maximum

A b

Which combination of several abstraction heuristics is always admissible?

- 1. sum
- 2. multiplication
- 3. maximum

A b

Let $\alpha_1, ..., \alpha_k$ be abstraction mappings on *T*. We say that $\alpha_1, ..., \alpha_k$ are orthogonal if for each transition $\langle s, l, t \rangle \in T$:

- 1. $\alpha_i(s) \neq \alpha_j(t)$ for all $i \neq j$
- **2.** $\alpha_i(s) \neq \alpha_i(t)$ for at least one $i \in 1...k$
- **3.** $\alpha_i(s) \neq \alpha_i(t)$ for at most one $i \in 1...k$

Let $\alpha_1, ..., \alpha_k$ be abstraction mappings on *T*. We say that $\alpha_1, ..., \alpha_k$ are orthogonal if for each transition $\langle s, l, t \rangle \in T$:

- 1. $\alpha_i(s) \neq \alpha_j(t)$ for all $i \neq j$
- **2.** $\alpha_i(s) \neq \alpha_i(t)$ for at least one $i \in 1...k$
- 3. $\alpha_i(s) \neq \alpha_i(t)$ for at most one $i \in 1...k$

Tutorial 4

7/11

Abstractions

Let $\alpha_1, ..., \alpha_k$ be orthogonal abstraction mappings on *T*. Then $\sum_{i=1}^k h_{\alpha_i}$ is

- 1. safe, goal-aware, admissible and consistent
- 2. safe, goal-aware, not admissible and not consistent
- 3. only admissible

Abstractions

Let $\alpha_1, ..., \alpha_k$ be orthogonal abstraction mappings on *T*. Then $\sum_{i=1}^k h_{\alpha_i}$ is

- 1. safe, goal-aware, admissible and consistent
- 2. safe, goal-aware, not admissible and not consistent
- 3. only admissible

What is a refinement of abstraction?

- 1. Abstraction of the same transition system with more states.
- 2. Abstraction of the same transition system with less states.
- 3. A refinement of abstraction *A* is such abstraction *A'* that *A* is an abstraction of *A'*.

Tutorial 4

10/11

What is a refinement of abstraction?

- 1. Abstraction of the same transition system with more states.
- 2. Abstraction of the same transition system with less states.
- 3. A refinement of abstraction *A* is such abstraction *A'* that *A* is an abstraction of *A'*.

s there a relation between the heuristic h_A and its refinement $h_{A'}$?

What is a refinement of abstraction?

- 1. Abstraction of the same transition system with more states.
- 2. Abstraction of the same transition system with less states.
- 3. A refinement of abstraction *A* is such abstraction *A'* that *A* is an abstraction of *A'*.
- Is there a relation between the heuristic h_A and its refinement $h_{A'}$?

Tutorial 4

11/11