VI extensions

6. května 2019

B4M36PUI/BE4M36PUI - Planning for Artificial Intelligence

Outline

- Review of MDP concepts
- Value Iteration algorithm
- MDP solution
- Value function calculation

Review of last tutorial

Value function of a policy

Look at the following definition of a value function of a policy for inifnite-horizon MDP. It contains multiple mistakes, correct them on a piece of paper:

Def: Value function of a policy for infinite-horizon MDP

Assume infinite horizon MDP with $\gamma \in[0,100]$. Then let Value function of a policy π for every state $s \in S$ be defined as

$$
V^{\pi}(s)=\sum_{s^{\prime} \in S}\left(s, \pi(s), s^{\prime}\right) R\left(s, \pi(s), s^{\prime}\right)+\gamma \pi\left(s^{\prime}\right)
$$

Value function of a policy

Look at the following definition of a value function of a policy for inifnite-horizon MDP. It contains multiple mistakes, correct them on a piece of paper:

Def: Value function of a policy for infinite-horizon MDP

Assume infinite horizon MDP with $\gamma \in[0,100]$. Then let Value function of a policy π for every state $s \in S$ be defined as

$$
V^{\pi}(s)=\sum_{s^{\prime} \in S}\left(s, \pi(s), s^{\prime}\right) R\left(s, \pi(s), s^{\prime}\right)+\gamma \pi\left(s^{\prime}\right)
$$

$$
\begin{aligned}
\gamma & \in[0,1) \\
V^{\pi}(s) & =\sum_{s^{\prime} \in S} T\left(s, \pi(s), s^{\prime}\right)\left[R\left(s, \pi(s), s^{\prime}\right)+\gamma V^{\pi}\left(s^{\prime}\right)\right]
\end{aligned}
$$

Value function of a policy

Look at the following definition of a value function of a policy for inifnite-horizon MDP. It contains multiple mistakes, correct them on a piece of paper:

Def: Value function of a policy for infinite-horizon MDP

Assume infinite horizon MDP with $\gamma \in[0,100]$. Then let Value function of a policy π for every state $s \in S$ be defined as

$$
V^{\pi}(s)=\sum_{s^{\prime} \in S}\left(s, \pi(s), s^{\prime}\right) R\left(s, \pi(s), s^{\prime}\right)+\gamma \pi\left(s^{\prime}\right)
$$

$$
\begin{aligned}
\gamma & \in[0,1) \\
V^{\pi}(s) & =\sum_{s^{\prime} \in S} T\left(s, \pi(s), s^{\prime}\right)\left[R\left(s, \pi(s), s^{\prime}\right)+\gamma V^{\pi}\left(s^{\prime}\right)\right]
\end{aligned}
$$

Question: Difference to def. of an optimal value function?

Bellman Equations

Write down equations for finding a value function of a policy π. How would you solve these equations?

- $S: S_{0}, S_{1}, S_{2}, S_{3}$
- $A: a_{0}, a_{1}, a_{2}$

$$
\begin{aligned}
& T\left(S_{0}, a_{0}, S_{1}\right)=0.6 \\
& T\left(S_{0}, a_{0}, S_{2}\right)=0.4
\end{aligned}
$$

- $T: T\left(S_{1}, a_{1}, S_{3}\right)=1$

$$
\begin{aligned}
& T\left(S_{2}, a_{2}, S_{3}\right)=0.7 \\
& T\left(S_{2}, a_{2}, S_{0}\right)=0.3 \\
& R\left(S_{0}, a_{0}, S_{1}\right)=5 \\
& R\left(S_{0}, a_{0}, S_{2}\right)=2
\end{aligned}
$$

- $R: R\left(S_{1}, a_{1}, S_{3}\right)=1$

$$
\begin{aligned}
& R\left(S_{2}, a_{2}, S_{3}\right)=4 \\
& R\left(S_{2}, a_{2}, S_{0}\right)=3
\end{aligned}
$$

Value Iteration

value Iteration algorithm

Basic algorithm for finding solution of Bellman Equations iteratively.

1. initialize V_{0} arbitrarily for each state, e.g to 0 , set $n=0$
2. Set $n=n+1$.
3. Compute Bellman Backup, i.e. for each $s \in S$:
$3.1 V_{n}(s)=\max _{a \in A} \sum_{s^{\prime} \in S} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V\left(s^{\prime}\right)\right]$
4. GOTO 2.

value Iteration algorithm

Basic algorithm for finding solution of Bellman Equations iteratively.

1. initialize V_{0} arbitrarily for each state, e.g to 0 , set $n=0$
2. Set $n=n+1$.
3. Compute Bellman Backup, i.e. for each $s \in S$:

$$
3.1 V_{n}(s)=\max _{a \in A} \sum_{s^{\prime} \in S} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V\left(s^{\prime}\right)\right]
$$

4. GOTO 2.

Question: Does it converge? When do we stop?

Residual - definition

Def: Residual

Residual of value function V from V^{\prime} at state $s \in S$ is defined by:

$$
\left|V(s)-V^{\prime}(s)\right|
$$

Residual - definition

Def: Residual

Residual of value function V from V^{\prime} at state $s \in S$ is defined by:

$$
\left|V(s)-V^{\prime}(s)\right|
$$

Residual of value function V from V^{\prime} is given by:

$$
\left\|V-V^{\prime}\right\|_{\infty}=\max _{s}\left|V(s)-V^{\prime}(s)\right|
$$

VI stopping criterion

Stopping criterion: When residual of consecutive value functions is below low value of ϵ :

$$
\left\|V_{n}-V_{n+1}\right\|<\epsilon
$$

However, this does not imply ϵ distance of value of greedy policy from optimal value function.

Theorems exist of form:

$$
V_{n}, V^{*} \text { as above } \rightarrow \forall s\left|V_{n}(s)-V^{*}(s)\right|<\epsilon \max \left\{N^{*}(s), N^{\pi_{n}}(s)\right\}
$$

Value iteration properties

- Convergence: VI converges from any initialization (unlike PI)
- Termination: when resiudal is "small"
- Fixed point: V^{*} is a fixed point of Bellman operator
- Corollary: VI is monotonic

VI improvements

Asynchronous VI

Prioritized VI

- Prioritized sweeping

Partitioned VI

- Topological VI

