Lecture slides for *Automated Planning: Theory and Practice*

Chapter 14 Temporal Planning

Dana S. Nau
University of Maryland

10:45 PM April 15, 2018

Temporal Planning

- Motivation: want to do planning in situations where actions
 - have nonzero duration
 - may overlap in time
- Need an explicit representation of time
- In Chapter 10 we studied a "temporal" logic
 - Its notion of time is too simple: a sequence of discrete events
 - Many real-world applications require continuous time
 - How to get this?

Temporal Planning

- The book presents two equivalent approaches:
 - 1. Use logical atoms, and extend the usual planning operators to include temporal conditions on those atoms
 - » Chapter 14 calls this the "state-oriented view"
 - 2. Use state variables, and specify change and persistence constraints on the state variables
 - » Chapter 14 calls this the "time-oriented view"
- In each case, the chapter gives a planning algorithm that's like a temporal-planning version of PSP

The Time-Oriented View

- We'll concentrate on the "time-oriented view": Sections 14.3.1–14.3.3
 - It produces a simpler representation
 - State variables seem better suited for the task
- States not defined explicitly
 - ◆ Instead, can compute a state for any time point, from the values of the state variables at that time

State Variables

- A **state variable** is a partially specified function telling what is true at some time *t*
 - cpos(c1): time \rightarrow containers U cranes U robots
 - Tells what c1 is on at time t
 - rloc(r1): time \rightarrow locations
 - » Tells where r1 is at time t
- Might not ever specify the entire function
- \bullet **cpos**(c) refers to a collection of state variables
 - But we'll be sloppy and just call it a state variable

DWR Example

- robot r1
 - in loc1 at time t_1
 - leaves loc1 at time t_2
 - enters loc2 at time t_3
 - leaves loc2 at time t_{A}
 - enters l at time t_5
- container c1
 - in pile1 until time t_6
 - held by crane2 until t_7
 - sits on r1 until t_8
 - ullet held by crane4 until t_9
 - sits on p until t_{10} (or later)
- ship Uranus
 - stays at dock5

Temporal Assertions

- Temporal assertion:
 - Event: an expression of the form $x@t:(v_1,v_2)$
 - » At time *t*, *x* changes from v_1 to $v_2 \neq v_1$
 - Persistence condition: $x@[t_1,t_2): v$
 - » x = v throughout the interval $[t_1, t_2)$
 - where
 - » t, t₁, t₂ are constants or temporal variables
 - » v, v_1 , v_2 are constants or object variables
- Note that the time intervals are semi-open
 - Why?

Temporal Assertions

- Temporal assertion:
 - Event: an expression of the form $x@t:(v_1,v_2)$
 - » At time *t*, *x* changes from v_1 to $v_2 \neq v_1$
 - Persistence condition: $x@[t_1,t_2): v$
 - » x = v throughout the interval $[t_1, t_2)$
 - where
 - » t, t₁, t₂ are constants or temporal variables
 - » v, v_1 , v_2 are constants or object variables
- Note that the time intervals are semi-open
 - Why?
 - ◆ To prevent potential confusion about *x*'s value at the endpoints

Chronicles

- Chronicle: a pair $\Phi = (F,C)$
 - F is a finite set of temporal assertions
 - *C* is a finite set of constraints
 - » temporal constraints and object constraints
 - C must be consistent
 - » i.e., there must exist variable assignments that satisfy it
- Timeline: a chronicle for a single state variable
- The book writes F and C in a calligraphic font
 - Sometimes I will, more often I'll just use italics

Example

Timeline for rloc(r1), from Example 14.9 of the book

```
 \begin{array}{ll} (\{ & \mathsf{rloc}(\mathsf{r}1)@t_1 : (l_1, \mathsf{loc}1), \\ & \mathsf{rloc}(\mathsf{r}1)@[t_1, t_2) : \mathsf{loc}1, \\ & \mathsf{rloc}(\mathsf{r}1)@t_2 : (\mathsf{loc}1, l_2), \\ & \mathsf{rloc}(\mathsf{r}1)@t_3 : (l_3, \mathsf{loc}2), \\ & \mathsf{rloc}(\mathsf{r}1)@[t_3, t_4) : \mathsf{loc}2, \\ & \mathsf{rloc}(\mathsf{r}1)@t_4 : (\mathsf{loc}2, l_4), \\ & \mathsf{rloc}(\mathsf{r}1)@t_5 : (l_5, \mathsf{loc}3) \ \ \}, \\ \{ & \mathsf{adjacent}(l_1, \mathsf{loc}1), \mathsf{adjacent}(\mathsf{loc}1, l_2), \\ & \mathsf{adjacent}(l_3, \mathsf{loc}2), \mathsf{adjacent}(\mathsf{loc}2, l_4), \mathsf{adjacent}(l_5, \mathsf{loc}3), \\ & t_1 < t_2 < t_3 < t_4 < t_5 \ \} \ ). \end{array}
```

C-consistency

- A timeline (F,C) is *c-consistent* (chronicle-consistent) if
 - C is consistent, and
 - Every pair of assertions in *F* are either disjoint or they refer to the same value and/or time points:
 - » If F contains both $x@[t_1,t_2):v_1$ and $x@[t_3,t_4):v_2$, then C must entail $\{t_2 \le t_3\}, \{t_4 \le t_1\}, \text{ or } \{v_1 = v_2\}$
 - » If F contains both $x@t:(v_1,v_2)$ and $x@[t_1,t_2):v$, then C must entail $\{t < t_1\}, \{t_2 < t\}, \{v = v_2, t_1 = t\}, \text{ or } \{t_2 = t, v = v_1\}$
 - » If F contains both $x@t:(v_1,v_2)$ and $x@t':(v_1,v_2)$, then C must entail $\{t \neq t'\}$ or $\{v_1 = v_1', v_2 = v_2'\}$
- (F,C) is c-consistent iff every timeline in (F,C) is c-consistent
- The book calls this consistency, not c-consistency
 - But it's a stronger requirement than ordinary mathematical consistency
- Mathematical consistency: C doesn't contradict the separation constraints
- c-consistency: *C* must actually entail the separation constraints
- Lana Nau: Lecture slides for Automated Planning (F,C) contains no threats

Example

- Let (F,C) be the timeline given earlier for r1
- (F,C) is not c-consistent
 - ◆ To ensure that $rloc(r1)@[t_1,t_2):loc1$ and $rloc(r1)@t_3:(l_3,loc2)$ don't conflict, need $t_2 < t_3$ or $t_3 < t_1$
 - ◆ To ensure that $rloc(r1)@[t_1,t_2):loc1$ and $rloc(r1)@[t_3,t_4):loc2$ don't conflict, need $t_2 < t_3$ or $t_4 < t_1$
 - Etc.
- If we add some additional time constraints, (F,C) will be consistent:
 - e.g., $t_2 < t_3$ and $t_4 < t_5$

Support and Enablers

- Let α be either x@t:(v,v') or x@[t,t'):v
 - Note that α requires x = v either at t or just before t
- Intuitively, a chronicle $\Phi = (F,C)$ supports α if
 - F contains an assertion β that we can use to establish x = v at some time s < t, $\approx \beta$ is called *the support for* α
 - and if it's consistent with Φ for v to persist over [s,t) and for α be true
- Formally, $\Phi = (F,C)$ supports α if
 - *F* contains an assertion β of the form $\beta = x@s:(w',w)$ or $\beta = x@[s',s):w$, and
 - \bullet \exists separation constraints C' such that the following chronicle is c-consistent:
 - $(F \cup \{x@[s,t):v, α\}, C \cup C' \cup \{w=v, s < t\})$
 - C' can either be absent from Φ or already in Φ
- The chronicle $\delta = (\{x@[s,t):w, \alpha\}, C' \cup \{w=v, s < t\})$ is an enabler for α
 - Analogous to a causal link in PSP
- Just as there could be more than one possible causal link in PSP, there can be more than one possible enabler

- Φ supports α_1 in two different ways:
 - β_1 establishes rloc(r1) = routes at time t_2
 - » this can support α_1 if we constrain $t_2 < t < t_3$
 - » enabler is $\delta_1 = (\{\text{rloc(r1)}@[t_2,t):\text{routes}, \alpha_1\}, \{t_2 < t < t_3\}$
 - β_2 establishes rloc(r1) = routes at time t_4
 - » this can support α_1 if we constrain $t_4 < t < t_5$
 - » enabler is $\delta_2 = (\{ \text{rloc}(\text{r1})@[t_4,t) : \text{routes}, \alpha_1 \}, \{ t_4 < t < t_5 \}$

Enabling Several Assertions at Once

- $\Phi = (F,C)$ *supports* a set of assertions $E = \{\alpha_1, ..., \alpha_k\}$ if both of the following are true
 - $F \cup E$ contains a support β_i for α_i other than α_i itself
 - There are enablers $\delta_1, ..., \delta_k$ for $\alpha_1, ..., \alpha_k$ such that the chronicle $\Phi \cup \delta_1 \cup ... \cup \delta_k$ is c-consistent
- Note that some of the assertions in E may support each other!
- $\phi = {\delta_1, ..., \delta_k}$ is an enabler for E

Example

$$\delta_1 = (\{\text{rloc(r1)}@[t_2,t):\text{routes, }\alpha_1\}, \{t_2 < t < t_3\} \\ \delta_2 = (\{\text{rloc(r1)}@[t_4,t):\text{routes, }\alpha_1\}, \{t_4 < t < t_5\}$$

- Φ supports{ α_1 , α_2 } in four different ways:
 - As before, for α_1 we can use either β_1 and δ_1 or β_2 and δ_2
 - We can support α_2 with β_3
 - » Enabler is $\delta_3 = (\{rloc(r1)@[t_5,t'):loc3, \alpha_2\}, \{l = loc3, t_5 < t'\})$
 - Or we can support α_2 with α_1
 - » If used β_1 and δ_1 for α_1 ,
 - Then α_2 's enabler is $\delta_4 = (\{rloc(r1)@[t,t'):loc3, \alpha_2\}, \{t < t' < t_3\})$

If we used β_1 and δ_2 for α_1 , then replace t_3 with t_5 in δ_4

One Chronicle Supporting Another

- Let $\Phi' = (F', C')$ be a chronicle
- Suppose $\Phi = (F,C)$ supports F'.
- Let $\delta_1, ..., \delta_k$ be all the possible enablers of Φ'
 - For each δ_i , let $\delta'_i = \delta_1 \cup C'$
- If there is a δ'_i such that $\Phi \cup \delta'_i$ is c-consistent,
 - Then Φ *supports* Φ' , and δ' , is an *enabler* for Φ'
 - If $\delta'_i \subseteq \Phi$, then Φ entails Φ'
- The set of all enablers for Φ' is $\theta(\Phi/\Phi') = \{\delta'_i : \Phi \cup \delta'_i \text{ is c-consistent}\}$

Chronicles as Planning Operators

- Chronicle planning operator: a pair o = (name(o), (F(o), C(o)), where
 - name(o) is an expression of the form $o(t_s, t_e, ..., v_1, v_2, ...)$
 - *» o* is an operator symbol
 - » t_s , t_e , ..., v_1 , v_2 , ... are all the temporal and object variables in o
 - (F(o), C(o)) is a chronicle
- Action: a (partially) instantiated operator, a
- If a chronicle Φ supports (F(a),C(a)), then a is applicable to Φ
 - \bullet a may be applicable in several ways, so the result is a set of chronicles

$$\approx \gamma(\Phi, a) = \{\Phi \cup \phi \mid \phi \in \theta(a/\Phi)\}$$

Example: Operator for Moving a Robot

Applying a Set of Actions

- Just like several temporal assertions can support each other, several actions can also support each other
 - Let $\pi = \{a_1, ..., a_k\}$ be a set of actions
 - Let $\Phi_{\pi} = \bigcup_i (F(a_i), C(a_i))$
 - If Φ supports Φ_{π} then π is applicable to Φ

 $a_{\scriptscriptstyle 1}$

 a_2

- Result is a *set* of chronicles $\gamma(\Phi,\pi) = \{\Phi \cup \phi \mid \phi \in \theta(\Phi_{\pi}/\Phi)\}\$
- Example:
 - Suppose Φ asserts that at time t_0 , robots r1 and r2 are at adjacent locations loc1 and loc2
 - Let a_1 and a_2 be as shown
 - Then Φ supports $\{a_1, a_2\}$ with $l_1 = loc1, l_2 = loc2, l'_1 = loc2, l'_2 = loc1,$

Domains and Problems

- Temporal planning domain:
 - A pair $\mathbf{D} = (\Lambda_{\Phi}, O)$
 - \rightarrow O = {all chronicle planning operators in the domain}
 - $\approx \Lambda_{\Phi}$ = {all chronicles allowed in the domain}
- Temporal planning problem on D:
 - A triple $P = (D, \Phi_0, \Phi_q)$
 - » **D** is the domain
 - $\approx \Phi_0$ and Φ_a are initial chronicle and goal chronicle
 - » O is the set of chronicle planning operators
- Statement of the problem P:
 - A triple $P = (O, \Phi_0, \Phi_a)$
 - » *O* is the set of chronicle planning operators
 - $\approx \Phi_0$ and Φ_q are initial chronicle and goal chronicle
- Solution plan:
 - A set of actions $\pi = \{a_1, ..., a_n\}$ such that at least one chronicle in $\gamma(\Phi_0, \pi)$

```
set of open goals (tqes)
                                                           As in plan-space planning, there are two
                                                            kinds of flaws:
            / _ set of sets of enablers
                                                             Open goal: a tqe that isn't yet enabled
CP(\Phi, G, \mathcal{K}, \pi)
                                                                 Threat: an enabler that hasn't yet been
     if G = \mathcal{K} = \emptyset then return(\pi)
                                                                 incorporated into \Phi
     perform the two following steps in any order
          if G \neq \emptyset then do
               select any \alpha \in G
               if \theta(\alpha/\Phi) \neq \emptyset then return(CP(\Phi, G - \{\alpha\}, \mathcal{K} \cup \{\theta(\alpha/\Phi)\}, \pi))
               else do
                    relevant \leftarrow \{a \mid a \text{ contains a support for } \alpha\}
                    if relevant = \emptyset then return(failure)
                    nondeterministically choose a \in relevant
                    return(CP(\Phi \cup (\mathcal{F}(a), \mathcal{C}(a)), G \cup \mathcal{F}(a), \mathcal{K} \cup \{\theta(a/\Phi)\}, \pi \cup \{a\}\})
          if \mathcal{K} \neq \emptyset then do
               select any C \in \mathcal{K}
               threat-resolvers \leftarrow \{ \phi \in C \mid \phi \text{ consistent with } \Phi \}
               if threat-resolvers = \emptyset then return(failure)
               nondeterministically choose \phi \in threat-resolvers
               return(CP(\Phi \cup \phi, G, \mathcal{K} - C, \pi))
```

end

22

Resolving Open Goals

- Let $\alpha \in G$ be an open goal
- Case 1: Φ supports α
 - Resolver: any enabler for α that's consistent with Φ
 - Refinement:
 - $\rightarrow G \leftarrow G \{\alpha\}$
 - » $K \leftarrow K \cup \theta(\alpha/\Phi)$
- Case 2: Φ doesn't support α
 - Resolver: an action a = (F(a), C(a)) that supports α
 - » We don't yet require a to be supported by Φ
 - Refinement:
 - $\rightarrow \pi \leftarrow \pi \cup \{a\}$
 - $\rightarrow \Phi \leftarrow \Phi \cup (F(a), C(a))$
 - » $G \leftarrow G \cup F(a)$ Don't remove α yet: we haven't chosen an enabler for it
 - We'll choose one in a later call to CP, in Case 1 above
 - » $K \leftarrow K \cup \theta(a/\Phi)$ put a's set of enablers into K

Resolving Threats

- *Threat*: each enabler in K that isn't yet entailed by Φ is threatened
 - \bullet For each *C* in *K*, we need only one of the enablers in *C*
 - » They're alternative ways to achieve the same thing
 - "Threat" means something different here than in PSP, because we won't try to entail *all* of the enablers
 - » Just the one we select
 - Resolver: any enabler ϕ in C that is consistent with Φ
 - Refinement:

$$K \leftarrow K - C$$

$$\approx \Phi \leftarrow \Phi \cup \phi$$

Example

- Let Φ_0 be as shown, and $\Phi_g = \Phi_0 \cup (\{\alpha_1, \alpha_2\}, \{\}),$ where α_1 and α_2 are the same as before:
 - $\alpha_1 = \text{rloc}(r1)@t:(routes, loc3)$
 - $\alpha_2 = \text{rloc}(r1)@[t',t''):loc3$
- As we saw earlier, we can support $\{\alpha_1, \alpha_2\}$ from Φ_0
 - Thus CP won't add any actions
- $\bullet \text{ It will return a modified version of } \Phi_0 \text{ that includes the enablers for } \{\alpha_1, \alpha_2\}$ Dana Nau: Lecture slides for *Automated Planning*

Modified Example

- Let Φ_0 be as shown, and $\Phi_g = \Phi_0 \cup (\{\alpha_1, \alpha_2\}, \{\}),$ where α_1 and α_2 are the same as before:
 - $\alpha_1 = \text{rloc}(r1)@t:(routes, loc3)$
 - $\alpha_2 = \text{rloc}(r1)@[t',t''):\text{loc3}$
 - This time, CP will need to insert an action $move(t_s, t_e, t'_1, t'_2, r1, loc4, loc3)$

with
$$t_5 < t_s < t'_1 < t'_2 < t_e$$