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Temporal Planning
 Motivation: want to do planning in situations where actions

 have nonzero duration
 may overlap in time

 Need an explicit representation of time

 In Chapter 10 we studied a “temporal” logic
 Its notion of time is too simple: a sequence of discrete events
 Many real-world applications require continuous time
 How to get this?
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Temporal Planning
 The book presents two equivalent approaches:

1. Use logical atoms, and extend the usual planning operators to 
include temporal conditions on those atoms

» Chapter 14 calls this the “state-oriented view”

2. Use state variables, and specify change and persistence 
constraints on the state variables

» Chapter 14 calls this the “time-oriented view”
 In each case, the chapter gives a planning algorithm that’s like a 

temporal-planning version of PSP
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The Time-Oriented View
 We’ll concentrate on the “time-oriented view”: Sections 14.3.1–14.3.3

 It produces a simpler representation
 State variables seem better suited for the task

 States not defined explicitly
 Instead, can compute a state for any time point, from the values of the 

state variables at that time
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State Variables
 A state variable is a partially specified function telling what is true at 

some time t
 cpos(c1) : time  containers U cranes U robots

» Tells what c1 is on at time t
 rloc(r1) : time  locations

» Tells where r1 is at time t
 Might not ever specify the entire function

 cpos(c) refers to a collection of state variables
 But we’ll be sloppy and just call it a state variable
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DWR Example robot r1

 in loc1 at time t1

 leaves loc1 at time t2

 enters loc2 at time t3

 leaves loc2 at time t4

 enters l at time t5

 container c1 

 in pile1 until time t6

 held by crane2 until t7

 sits on r1 until t8

 held by crane4 until t9 

 sits on p until t10 
(or later)

 ship Uranus
 stays at dock5 

from t11 to t12
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Temporal Assertions
 Temporal assertion:

 Event: an expression of the form x@t : (v1,v2)

» At time t, x changes from v1 to v2 ≠ v1 

 Persistence condition: x@[t1,t2) : v

»  x = v throughout the interval [t1,t2)

 where

» t, t1, t2 are constants or temporal variables

» v, v1, v2 are constants or object variables

 Note that the time intervals are semi-open
 Why?
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Temporal Assertions
 Temporal assertion:

 Event: an expression of the form x@t : (v1,v2)

» At time t, x changes from v1 to v2 ≠ v1 

 Persistence condition: x@[t1,t2) : v

»  x = v throughout the interval [t1,t2)

 where

» t, t1, t2 are constants or temporal variables

» v, v1, v2 are constants or object variables

 Note that the time intervals are semi-open
 Why?
 To prevent potential confusion about x’s value at the endpoints
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Chronicles
 Chronicle: a pair  = (F,C)

 F is a finite set of temporal assertions
 C is a finite set of constraints

» temporal constraints and object constraints
 C must be consistent 

» i.e., there must exist variable assignments that satisfy it
 Timeline: a chronicle for a single state variable

 The book writes F and C in a calligraphic font
 Sometimes I will, more often I’ll just use italics
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loc3

     l1   
     l2     l4       

        l5 
       l3 

Example

 Timeline for rloc(r1), from Example 14.9 of the book

Similar to Figure 14.5, 
but changed to match 
the timeline
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C-consistency
 A timeline (F,C) is c-consistent (chronicle-consistent) if 

 C is consistent, and 
 Every pair of assertions in F are either disjoint or they refer to the same value 

and/or time points:

» If F contains both x@[t1,t2):v1 and x@[t3,t4):v2, then C must entail
{t2 ≤ t3}, {t4 ≤ t1}, or {v1 = v2}

» If F contains both x@t:(v1,v2) and x@[t1,t2):v, then C must entail
{t < t1}, {t2 < t}, {v = v2, t1 = t}, or {t2 = t, v = v1}

» If F contains both x@t:(v1,v2) and  x@t':(v'1,v'2), then C must entail
{t ≠ t'} or {v1 = v'1, v2 = v'2}

 (F,C) is c-consistent iff every timeline in (F,C) is c-consistent
 The book calls this consistency, not c-consistency

 But it’s a stronger requirement than ordinary mathematical consistency
 Mathematical consistency: C doesn’t contradict the separation constraints
 c-consistency: C must actually entail the separation constraints

 It’s sort of like saying that (F,C) contains no threats
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loc3

     l1   
     l2   

  l4       

        l5 
       l3 

 Let (F,C) be the timeline given earlier for r1
 (F,C) is not c-consistent

 To ensure that rloc(r1)@[t1,t2):loc1 and rloc(r1)@t3:(l3,loc2) don’t conflict, 
need t2 < t3 or  t3 < t1

 To ensure that rloc(r1)@[t1,t2):loc1 and rloc(r1)@[t3,t4):loc2 don’t conflict, 
need t2 < t3 or  t4 < t1

 Etc.
 If we add some additional time constraints, (F,C) will be consistent:

 e.g.,  t2 < t3  and   t4 < t5

Example
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Support and Enablers
 Let  be either x@t:(v,v') or x@[t,t'):v

 Note that  requires x = v either at t or just before t
 Intuitively, a chronicle  = (F,C) supports  if

 F contains an assertion  that we can use to establish x = v at some time s <t,
 is called the support for  

 and if it’s consistent with  for v to persist over [s,t) and for  be true
 Formally,  = (F,C) supports  if

 F contains an assertion  of the form  = x@s:(w',w) or  = x@[s',s):w, and 
  separation constraints C' such that the following chronicle is c-consistent:

» (F  {x@[s,t):v, α},  C  C'  {w=v, s < t})
 C' can either be absent from   or already in 

 The chronicle  = ({x@[s,t):w, },  C'  {w=v, s < t}) is an enabler for α
 Analogous to a causal link in PSP

 Just as there could be more than one possible causal link in PSP, there can be more 
than one possible enabler
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Example

  supports α1 in two different ways:

  1 establishes  rloc(r1) = routes at time t2

» this can support α1 if we constrain t2 < t < t3

» enabler is δ1 = ({rloc(r1)@[t2,t):routes, α1}, {t2 < t < t3} 

  2 establishes  rloc(r1) = routes at time t4

» this can support α1 if we constrain t4 < t < t5

» enabler is δ2 = ({rloc(r1)@[t4,t):routes, α1}, {t4 < t < t5} 

 1 = rloc(r1)@t2 : (loc1, routes)

 2 = rloc(r1)@t4 : (loc2, routes)

   

α1 = rloc(r1)@t : (routes, loc3)
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Enabling Several Assertions at Once
  = (F,C) supports a set of assertions E = {1, …, k} if both of the following 

are true

 F  E contains a support i for i other than i itself

 There are enablers 1, …, k for 1, …, k such that
the chronicle   1  …  k is c-consistent

 Note that some of the assertions in E may support each other!

  = {1, …, k} is an enabler for E
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Example

  supports{α1, α2}in four different ways:

 As before, for α1 we can use either 1 and δ1 or 2 and δ2

 We can support α2 with 3

» Enabler is δ3 = ({rloc(r1)@[t5,t'):loc3, α2}, {l = loc3, t5 < t'})

 Or we can support α2 with α1

» If used 1 and δ1 for α1, 

• Then α2’s enabler is δ4 = ({rloc(r1)@[t,t'):loc3, α2}, {t < t' < t3})

» If we used 1 and δ2 for α1, then replace t3 with t5 in δ4

 1 = rloc(r1)@t2 : (loc1, routes)

 2 = rloc(r1)@t4 : (loc2, routes)

   

α1 = rloc(r1)@t : (routes, loc3)

 3 = rloc(r1)@t5:(routes,loc3) α2 = rloc(r1)@[t',t'') : loc3

δ1 = ({rloc(r1)@[t2,t):routes, α1}, {t2 < t < t3} 
δ2 = ({rloc(r1)@[t4,t):routes, α1}, {t4 < t < t5} 



Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 17

One Chronicle Supporting Another

 Let ' = (F',C') be a chronicle
 Suppose  = (F,C) supports F'.

 Let δ1, …, δk be all the possible enablers of '

 For each δi, let δ'i = δ1   C'

 If there is a δ'i such that    δ'i is c-consistent,

 Then  supports ', and δ'i is an enabler for '

 If δ'i  , then  entails '

 The set of all enablers for ' is (/') = {δ'i :   δ'i is c-consistent}
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Chronicles as Planning Operators

 Chronicle planning operator: a pair o = (name(o), (F(o),C(o)), where

 name(o) is an expression of the form o(ts, te, …, v1, v2, …)

» o is an operator symbol

» ts, te, …, v1, v2, … are all the temporal and object variables in o

 (F(o), C(o)) is a chronicle

 Action: a (partially) instantiated operator, a
 If a chronicle  supports (F(a),C(a)), then a is applicable to 

 a may be applicable in several ways, so the result is a set of chronicles
(,a) = {   |   (a/)}
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Example: Operator for Moving a Robot

move(ts, te, t1, t2, r, l, l') = 
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Applying a Set of 
Actions

 Just like several temporal assertions can
support each other, several actions
can also support each other

 Let π = {a1, …, ak} be a set of actions

 Let π = i (F(ai),C(ai))

 If  supports π then π is applicable to 

 Result is a set of chronicles 
(,π) = {   |   (π/)}

 Example:

 Suppose  asserts that at time t0,
robots r1 and r2 are at
adjacent locations loc1 and loc2

 Let a1 and a2 be as shown

 Then  supports {a1, a2} with
l1 = loc1, l2 = loc2, l'1 = loc2, l'2 = loc1,
t0 < ts < t1 < t'2, t0 < t's < t'1 < t2

   

   

   

   

a1

a2
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Domains and Problems
 Temporal planning domain: 

 A pair D = (,O)

» O = {all chronicle planning operators in the domain}
 = {all chronicles allowed in the domain}

 Temporal planning problem on D: 
 A triple P = (D,0,g)

» D is the domain
0 and g are initial chronicle and goal chronicle

» O is the set of chronicle planning operators
 Statement of the problem P:

 A triple P = (O, 0, g)

» O is the set of chronicle planning operators
0 and g are initial chronicle and goal chronicle

 Solution plan: 
 A set of actions π = {a1, …, an} such that at least one chronicle in (0,π) 

entails g
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 As in plan-space planning, there are two 
kinds of flaws:

 Open goal: a tqe that isn’t yet enabled
 Threat: an enabler that hasn’t yet been 

incorporated into  

set of sets of enablers

set of open goals (tqes)

{(/)}
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Resolving Open Goals
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Resolving Threats
 Threat: each enabler in K that isn’t yet entailed by  is threatened

 For each C in K, we need only one of the enablers in C

» They’re alternative ways to achieve the same thing
 “Threat” means something different here than in PSP, because we won’t try 

to entail all of the enablers

» Just the one we select
 Resolver: any enabler  in C that is consistent with 
 Refinement:

» K  K – C
    
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Example

 Let 0 be as shown, and
g = 0 U ({α1,α2},{}),
where α1 and α2 are 
the same as before:

 α1 = rloc(r1)@t:(routes, loc3)

 α2 = rloc(r1)@[t',t''):loc3

 As we saw earlier, we can support {α1,α2} from 0

 Thus CP won’t add any actions

 It will return a modified version of 0 that includes the enablers for {α1,α2}
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Modified 
Example

 Let 0 be as shown, and
g = 0 U ({α1,α2},{}),
where α1 and α2 are 
the same as before:

 α1 = rloc(r1)@t:(routes, loc3)

 α2 = rloc(r1)@[t',t''):loc3

 This time, CP will need to insert an action move(ts, te, t’1, t’2, r1, loc4, loc3) 

» with t5 < ts < t’1 < t’2 < te

loc4
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