
Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 1

Chapter 14
Temporal Planning

Lecture slides for
Automated Planning: Theory and Practice

Dana S. Nau

University of Maryland

10:45 PM April 15, 2018

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 2

Temporal Planning
 Motivation: want to do planning in situations where actions

 have nonzero duration
 may overlap in time

 Need an explicit representation of time

 In Chapter 10 we studied a “temporal” logic
 Its notion of time is too simple: a sequence of discrete events
 Many real-world applications require continuous time
 How to get this?

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 3

Temporal Planning
 The book presents two equivalent approaches:

1. Use logical atoms, and extend the usual planning operators to
include temporal conditions on those atoms

» Chapter 14 calls this the “state-oriented view”

2. Use state variables, and specify change and persistence
constraints on the state variables

» Chapter 14 calls this the “time-oriented view”
 In each case, the chapter gives a planning algorithm that’s like a

temporal-planning version of PSP

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 4

The Time-Oriented View
 We’ll concentrate on the “time-oriented view”: Sections 14.3.1–14.3.3

 It produces a simpler representation
 State variables seem better suited for the task

 States not defined explicitly
 Instead, can compute a state for any time point, from the values of the

state variables at that time

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 5

State Variables
 A state variable is a partially specified function telling what is true at

some time t
 cpos(c1) : time  containers U cranes U robots

» Tells what c1 is on at time t
 rloc(r1) : time  locations

» Tells where r1 is at time t
 Might not ever specify the entire function

 cpos(c) refers to a collection of state variables
 But we’ll be sloppy and just call it a state variable

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 6

DWR Example robot r1

 in loc1 at time t1

 leaves loc1 at time t2

 enters loc2 at time t3

 leaves loc2 at time t4

 enters l at time t5

 container c1

 in pile1 until time t6

 held by crane2 until t7

 sits on r1 until t8

 held by crane4 until t9

 sits on p until t10
(or later)

 ship Uranus
 stays at dock5

from t11 to t12

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 7

Temporal Assertions
 Temporal assertion:

 Event: an expression of the form x@t : (v1,v2)

» At time t, x changes from v1 to v2 ≠ v1

 Persistence condition: x@[t1,t2) : v

» x = v throughout the interval [t1,t2)

 where

» t, t1, t2 are constants or temporal variables

» v, v1, v2 are constants or object variables

 Note that the time intervals are semi-open
 Why?

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 8

Temporal Assertions
 Temporal assertion:

 Event: an expression of the form x@t : (v1,v2)

» At time t, x changes from v1 to v2 ≠ v1

 Persistence condition: x@[t1,t2) : v

» x = v throughout the interval [t1,t2)

 where

» t, t1, t2 are constants or temporal variables

» v, v1, v2 are constants or object variables

 Note that the time intervals are semi-open
 Why?
 To prevent potential confusion about x’s value at the endpoints

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 9

Chronicles
 Chronicle: a pair  = (F,C)

 F is a finite set of temporal assertions
 C is a finite set of constraints

» temporal constraints and object constraints
 C must be consistent

» i.e., there must exist variable assignments that satisfy it
 Timeline: a chronicle for a single state variable

 The book writes F and C in a calligraphic font
 Sometimes I will, more often I’ll just use italics

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 10

loc3

 l1
 l2 l4

 l5
 l3

Example

 Timeline for rloc(r1), from Example 14.9 of the book

Similar to Figure 14.5,
but changed to match
the timeline

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 11

C-consistency
 A timeline (F,C) is c-consistent (chronicle-consistent) if

 C is consistent, and
 Every pair of assertions in F are either disjoint or they refer to the same value

and/or time points:

» If F contains both x@[t1,t2):v1 and x@[t3,t4):v2, then C must entail
{t2 ≤ t3}, {t4 ≤ t1}, or {v1 = v2}

» If F contains both x@t:(v1,v2) and x@[t1,t2):v, then C must entail
{t < t1}, {t2 < t}, {v = v2, t1 = t}, or {t2 = t, v = v1}

» If F contains both x@t:(v1,v2) and x@t':(v'1,v'2), then C must entail
{t ≠ t'} or {v1 = v'1, v2 = v'2}

 (F,C) is c-consistent iff every timeline in (F,C) is c-consistent
 The book calls this consistency, not c-consistency

 But it’s a stronger requirement than ordinary mathematical consistency
 Mathematical consistency: C doesn’t contradict the separation constraints
 c-consistency: C must actually entail the separation constraints

 It’s sort of like saying that (F,C) contains no threats

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 12

loc3

 l1
 l2

 l4

 l5
 l3

 Let (F,C) be the timeline given earlier for r1
 (F,C) is not c-consistent

 To ensure that rloc(r1)@[t1,t2):loc1 and rloc(r1)@t3:(l3,loc2) don’t conflict,
need t2 < t3 or t3 < t1

 To ensure that rloc(r1)@[t1,t2):loc1 and rloc(r1)@[t3,t4):loc2 don’t conflict,
need t2 < t3 or t4 < t1

 Etc.
 If we add some additional time constraints, (F,C) will be consistent:

 e.g., t2 < t3 and t4 < t5

Example

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 13

Support and Enablers
 Let  be either x@t:(v,v') or x@[t,t'):v

 Note that  requires x = v either at t or just before t
 Intuitively, a chronicle  = (F,C) supports  if

 F contains an assertion  that we can use to establish x = v at some time s <t,
 is called the support for 

 and if it’s consistent with  for v to persist over [s,t) and for  be true
 Formally,  = (F,C) supports  if

 F contains an assertion  of the form  = x@s:(w',w) or  = x@[s',s):w, and
  separation constraints C' such that the following chronicle is c-consistent:

» (F  {x@[s,t):v, α}, C  C'  {w=v, s < t})
 C' can either be absent from  or already in 

 The chronicle  = ({x@[s,t):w, }, C'  {w=v, s < t}) is an enabler for α
 Analogous to a causal link in PSP

 Just as there could be more than one possible causal link in PSP, there can be more
than one possible enabler

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 14

Example

  supports α1 in two different ways:

 1 establishes rloc(r1) = routes at time t2

» this can support α1 if we constrain t2 < t < t3

» enabler is δ1 = ({rloc(r1)@[t2,t):routes, α1}, {t2 < t < t3}

 2 establishes rloc(r1) = routes at time t4

» this can support α1 if we constrain t4 < t < t5

» enabler is δ2 = ({rloc(r1)@[t4,t):routes, α1}, {t4 < t < t5}

 1 = rloc(r1)@t2 : (loc1, routes)

 2 = rloc(r1)@t4 : (loc2, routes)

α1 = rloc(r1)@t : (routes, loc3)

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 15

Enabling Several Assertions at Once
  = (F,C) supports a set of assertions E = {1, …, k} if both of the following

are true

 F  E contains a support i for i other than i itself

 There are enablers 1, …, k for 1, …, k such that
the chronicle   1  …  k is c-consistent

 Note that some of the assertions in E may support each other!

  = {1, …, k} is an enabler for E

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 16

Example

  supports{α1, α2}in four different ways:

 As before, for α1 we can use either 1 and δ1 or 2 and δ2

 We can support α2 with 3

» Enabler is δ3 = ({rloc(r1)@[t5,t'):loc3, α2}, {l = loc3, t5 < t'})

 Or we can support α2 with α1

» If used 1 and δ1 for α1,

• Then α2’s enabler is δ4 = ({rloc(r1)@[t,t'):loc3, α2}, {t < t' < t3})

» If we used 1 and δ2 for α1, then replace t3 with t5 in δ4

 1 = rloc(r1)@t2 : (loc1, routes)

 2 = rloc(r1)@t4 : (loc2, routes)

α1 = rloc(r1)@t : (routes, loc3)

 3 = rloc(r1)@t5:(routes,loc3) α2 = rloc(r1)@[t',t'') : loc3

δ1 = ({rloc(r1)@[t2,t):routes, α1}, {t2 < t < t3}
δ2 = ({rloc(r1)@[t4,t):routes, α1}, {t4 < t < t5}

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 17

One Chronicle Supporting Another

 Let ' = (F',C') be a chronicle
 Suppose  = (F,C) supports F'.

 Let δ1, …, δk be all the possible enablers of '

 For each δi, let δ'i = δ1  C'

 If there is a δ'i such that   δ'i is c-consistent,

 Then  supports ', and δ'i is an enabler for '

 If δ'i  , then  entails '

 The set of all enablers for ' is (/') = {δ'i :   δ'i is c-consistent}

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 18

Chronicles as Planning Operators

 Chronicle planning operator: a pair o = (name(o), (F(o),C(o)), where

 name(o) is an expression of the form o(ts, te, …, v1, v2, …)

» o is an operator symbol

» ts, te, …, v1, v2, … are all the temporal and object variables in o

 (F(o), C(o)) is a chronicle

 Action: a (partially) instantiated operator, a
 If a chronicle  supports (F(a),C(a)), then a is applicable to 

 a may be applicable in several ways, so the result is a set of chronicles
(,a) = {   |   (a/)}

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 19

Example: Operator for Moving a Robot

move(ts, te, t1, t2, r, l, l') =

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 20

Applying a Set of
Actions

 Just like several temporal assertions can
support each other, several actions
can also support each other

 Let π = {a1, …, ak} be a set of actions

 Let π = i (F(ai),C(ai))

 If  supports π then π is applicable to 

 Result is a set of chronicles
(,π) = {   |   (π/)}

 Example:

 Suppose  asserts that at time t0,
robots r1 and r2 are at
adjacent locations loc1 and loc2

 Let a1 and a2 be as shown

 Then  supports {a1, a2} with
l1 = loc1, l2 = loc2, l'1 = loc2, l'2 = loc1,
t0 < ts < t1 < t'2, t0 < t's < t'1 < t2

a1

a2

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 21

Domains and Problems
 Temporal planning domain:

 A pair D = (,O)

» O = {all chronicle planning operators in the domain}
 = {all chronicles allowed in the domain}

 Temporal planning problem on D:
 A triple P = (D,0,g)

» D is the domain
0 and g are initial chronicle and goal chronicle

» O is the set of chronicle planning operators
 Statement of the problem P:

 A triple P = (O, 0, g)

» O is the set of chronicle planning operators
0 and g are initial chronicle and goal chronicle

 Solution plan:
 A set of actions π = {a1, …, an} such that at least one chronicle in (0,π)

entails g

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 22

 As in plan-space planning, there are two
kinds of flaws:

 Open goal: a tqe that isn’t yet enabled
 Threat: an enabler that hasn’t yet been

incorporated into 

set of sets of enablers

set of open goals (tqes)

{(/)}

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 23

Resolving Open Goals

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 24

Resolving Threats
 Threat: each enabler in K that isn’t yet entailed by  is threatened

 For each C in K, we need only one of the enablers in C

» They’re alternative ways to achieve the same thing
 “Threat” means something different here than in PSP, because we won’t try

to entail all of the enablers

» Just the one we select
 Resolver: any enabler  in C that is consistent with 
 Refinement:

» K  K – C
    

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 25

Example

 Let 0 be as shown, and
g = 0 U ({α1,α2},{}),
where α1 and α2 are
the same as before:

 α1 = rloc(r1)@t:(routes, loc3)

 α2 = rloc(r1)@[t',t''):loc3

 As we saw earlier, we can support {α1,α2} from 0

 Thus CP won’t add any actions

 It will return a modified version of 0 that includes the enablers for {α1,α2}

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 26

Modified
Example

 Let 0 be as shown, and
g = 0 U ({α1,α2},{}),
where α1 and α2 are
the same as before:

 α1 = rloc(r1)@t:(routes, loc3)

 α2 = rloc(r1)@[t',t''):loc3

 This time, CP will need to insert an action move(ts, te, t’1, t’2, r1, loc4, loc3)

» with t5 < ts < t’1 < t’2 < te

loc4

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

