

Partially Observable Markov Decision Processes

PAH 2013/2014

Partial Observability

- the world is not perfect
 - actions take some time to execute
 - actions may fail or yield unexpected results
 - the environment may change due to other agents
 - the agent does not have knowledge about whole situation
 - sensors are not precise

Partial Observability

Partially Observable MDPs

- main formal model for scenarios with uncertain observations
- $\langle S, A, D, O, b_0, T, \Omega, R, \gamma \rangle$
 - states finite set of states of the world
 - actions finite set of actions the agent can perform
 - time steps
 - observations finite set of possible observations
 - initial belief function $b_0: S \rightarrow [0,1]$
 - transition function $T: S \times A \times S \rightarrow [0,1]$
 - observation probability $\Omega: A \times O \times S \rightarrow [0,1]$
 - reward function $R: S \times A \to \mathbb{R}$
 - discount factor $0 \le \gamma < 1$

Partially Observable MDPs - probabilities

Partially Observable MDPs - beliefs

- beliefs represent a probability distribution over states
- beliefs are uniquely identified by the history
 - b_1 probability distribution over states after playing one action
 - $b_t \leftarrow \Pr(s_t | b_0, a_0, o_1, \dots, o_{t-1}, a_{t-1}, o_t)$
- we can exploit dynamic programming (define transformation of beliefs)
 - $b_t(s') = \mu \Omega(a, o, s') \sum_{s \in S} T(s, a, s') b_{t-1}(s)$
 - where
 - *o* is the last observation
 - *a* is the last action
 - μ is the normalizing constant

Partially Observable MDPs - values

- beliefs determine new values
 - $V(b) = \max_{a \in A} [R(b, a) + \gamma \sum_{b' \in B} T(b, a, b')V(b')]$
- what we have done ...
 - we have transformed a POMDP to a continuous state MDP
 - belief state is a simplex
 - |S| 1 dimensions

- in theory we can use all the algorithms for MDPs (value iteration)
 - but B is infinite

Solving Continuous State MDPs

- in value iteration we take max of actions
- the belief space can be partitioned depending on the fact, which action is the best one

s2	s3	s4	V(a4)	V(a5)
0.2	0.1	0.7	3	2
0.7	0.1	0.2	I	7

Solving Continuous State MDPs

- values can be compactly represented as a finite set of α vectors; $V = \{\alpha_0, \dots, \alpha_m\}$
 - α vector is an |S| dimensional hyper-plane
 - a linear function representing utility values after selecting some fixed action
 - defines the value function over a bounded region of the belief
 - $V(b) = \max_{\alpha \in V} \sum_{s \in S} \alpha(s) b(s)$
 - V is a piece-wise linear convex function

- Q: Can we modify value iteration algorithm to work with α • functions?
- exact value iteration for POMDPs
 - $V^{t}(b) = \max_{a \in A} [\sum_{s \in S} R(s, a)b(s) +$
 - + $\gamma \sum_{o \in O} \max_{\alpha' \in V^{t-1}} \sum_{s \in S} \sum_{s' \in S} T(s, a, s') \Omega(o, s', a) \alpha'(s') b(s)$]
- the above formula compute values (we need α -vectors)
 - $\alpha^{a,*}(s) = R(s,a)$
 - $\alpha_i^{a,o}(s) = \gamma \sum_{s' \in S} T(s, a, s') \Omega(o, s', a) \alpha_i'(s')$
 - $V^a = \alpha^{a,*} \oplus \alpha^{a,o_1} \oplus \alpha^{a,o_2} \oplus \cdots$
 - $V = \bigcup_{a \in A} V^a$

Solving Continuous State MDPs

belief (simplex)

$$\forall \alpha'_i \in V'$$

Exact Value Iteration for POMDPs

- exact baseline algorithm, however has several disadvantages
- complexity
 - exponential in size of observations |O|
 - base of the exponent is |V|
 - it is important to remove dominated alpha-vectors
 - useful only for very small domains
- can we do better?
- only a fraction of all belief state is actually achievable in POMDP
 - we can sample the belief state

Point Based Value Iteration for POMDPs

- instead of the complete belief space we use a limited set
 - $B = \{b_0, ..., b_q\}$
- the algorithm keeps only a single alpha vector for one belief point
- anytime algorithm altering 2 main steps
 - belief point value update
 - belief point set expansion

Point Based Value Iteration for POMDPs

- belief value update
 - $V_b^a = \alpha^{a,*} + \gamma \sum_{o \in O} \arg \max_{\alpha \in \alpha_i^{a,o}} (\alpha, b)$
 - $V \leftarrow \arg \max_{V_b^a, \forall a \in A} V_b^a \cdot b \quad \forall b \in B$
- removes the exponential complexity
- VI state ends after *h* iterations
 - finite horizon / the error is smaller than ε
- belief point set expansion
 - sampling new beliefs from existing beliefs
 - trying to uniformly cover reachable belief space

Point Based Value Iteration for POMDPs

- further improvements
- exploiting heuristics
 - for setting initial values
 - selecting belief points

- current scalability
 - up to 10^5 states of POMDP
- further reading
 - Shani, Pineau, Kaplow: A survey of point-based POMDP solvers (2012)

Beyond (PO)MDPs

- many other models
- specific variants of MDPs / generalization
 - AND/OR graphs
 - influence diagrams
 - dynamic Bayesian networks
- multiple agents
 - decentralized (PO)MDPs DEC-(PO)MDPs
 - theoretical framework for multi-agent planning
 - partially observable stochastic games (POSG)
 - theoretical framework for interaction of rational agents