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 the world is not perfect

 actions take some time to execute

 actions may fail or yield unexpected 

results

 the environment may change due to 

other agents

 the agent does not have knowledge 

about whole situation

 sensors are not precise

Partial Observability
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 main formal model for scenarios with uncertain observations

 𝑆, 𝐴, 𝐷, 𝑂, 𝑏0, 𝑇, Ω, 𝑅, 𝛾

 states – finite set of states of the world

 actions – finite set of actions the agent can perform

 time steps

 observations – finite set of possible observations

 initial belief function 𝑏0: 𝑆 → [0,1]

 transition function 𝑇: 𝑆 × 𝐴 × 𝑆 → [0,1]

 observation probability Ω: 𝐴 × 𝑂 × 𝑆 → [0,1]

 reward function 𝑅: 𝑆 × 𝐴 → ℝ

 discount factor 0 ≤ 𝛾 < 1

Partially Observable MDPs



Partially Observable MDPs - probabilities
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 beliefs represent a probability distribution over states

 beliefs are uniquely identified by the history

 𝑏1 - probability distribution over states after playing one action 

 𝑏𝑡 ← Pr 𝑠𝑡 𝑏0, 𝑎0, 𝑜1, … , 𝑜𝑡−1, 𝑎𝑡−1, 𝑜𝑡

 we can exploit dynamic programming (define transformation of 

beliefs)

 𝑏𝑡 𝑠
′ = µΩ 𝑎, 𝑜, 𝑠′ .  𝑠∈S 𝑇 𝑠, 𝑎, 𝑠

′ 𝑏𝑡−1(𝑠)

 where 

 𝑜 is the last observation

 𝑎 is the last action

 µ is the normalizing constant

Partially Observable MDPs - beliefs



 beliefs determine new values

 𝑉 𝑏 = max
𝑎∈𝐴

[𝑅 𝑏, 𝑎 + 𝛾  𝑏′∈𝐵 𝑇 𝑏, 𝑎, 𝑏
′ 𝑉(𝑏′)]

 what we have done … 

 we have transformed a POMDP to a continuous state MDP 

 belief state is a simplex

 𝑆 − 1 dimensions

 in theory we can use all the algorithms for MDPs (value iteration)

 but B is infinite 

Partially Observable MDPs - values



 in value iteration we take max of actions

 the belief space can be partitioned depending on the fact, which 

action is the best one

Solving Continuous State MDPs
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 values can be compactly represented as a finite set of 𝛼 vectors; 

𝑉 = {𝛼0, … , 𝛼𝑚}

 𝛼 vector is an |𝑆| dimensional hyper-plane 

 a linear function representing utility values after selecting some fixed 

action

 defines the value function over a bounded region of the belief

 𝑉 𝑏 = max
𝛼∈𝑉

 𝑠∈𝑆𝛼 𝑠 𝑏(𝑠)

 𝑉 is a piece-wise linear convex function

Solving Continuous State MDPs
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 Q: Can we modify value iteration algorithm to work with 𝜶
functions?

 exact value iteration for POMDPs

 𝑉𝑡 𝑏 = max
𝑎∈𝐴

[  𝑠∈𝑆𝑅 𝑠, 𝑎 𝑏 𝑠 +

 +𝛾  𝑜∈𝑂 max
𝛼′∈𝑉𝑡−1

 𝑠∈𝑆 𝑠′∈𝑆𝑇 𝑠, 𝑎, 𝑠
′ Ω 𝑜, 𝑠′, 𝑎 𝛼′ 𝑠′ 𝑏(𝑠)]

 the above formula compute values (we need 𝛼-vectors)

 𝛼𝑎,∗ 𝑠 = 𝑅 𝑠, 𝑎

 𝛼𝑖
𝑎,𝑜 𝑠 = 𝛾  𝑠′∈𝑆𝑇 𝑠, 𝑎, 𝑠

′ Ω 𝑜, 𝑠′, 𝑎 𝛼𝑖
′ 𝑠′ ∀𝛼′𝑖 ∈ 𝑉′

 𝑉𝑎 = 𝛼𝑎,∗⊕𝛼𝑎,𝑜1⊕𝛼𝑎,𝑜2⊕⋯

 𝑉 =  𝑎∈𝐴𝑉
𝑎

Solving Continuous State MDPs
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 exact baseline algorithm, however has several disadvantages

 complexity

 exponential in size of observations |𝑂|

 base of the exponent is |𝑉|

 it is important to remove dominated alpha-vectors

 useful only for very small domains

 can we do better?

 only a fraction of all belief state is actually achievable in POMDP

 we can sample the belief state

Exact Value Iteration for POMDPs



 instead of the complete belief space we use a limited set

 𝐵 = {𝑏0, … , 𝑏𝑞 }

 the algorithm keeps only a single alpha vector for one belief point

 anytime algorithm altering 2 main steps

 belief point value update

 belief point set expansion

Point Based Value Iteration for POMDPs
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 belief value update

 𝑉𝑏
𝑎 = 𝛼𝑎,∗ + 𝛾 𝑜∈𝑂 arg max

𝛼∈𝛼𝑖
𝑎,𝑜
(𝛼. 𝑏)

 𝑉 ← arg max
𝑉𝑏
𝑎,∀𝑎∈𝐴

𝑉𝑏
𝑎. 𝑏 ∀𝑏 ∈ 𝐵

 removes the exponential complexity

 VI state ends after ℎ iterations

 finite horizon / the error is smaller than 𝜀

 belief point set expansion

 sampling new beliefs from existing beliefs 

 trying to uniformly cover reachable belief space

Point Based Value Iteration for POMDPs



 further improvements

 exploiting heuristics

 for setting initial values

 selecting belief points

 current scalability

 up to 105 states of POMDP

 further reading

 Shani, Pineau, Kaplow: A survey of point-based POMDP solvers (2012)

Point Based Value Iteration for POMDPs



 many other models

 specific variants of MDPs / generalization

 AND/OR graphs

 influence diagrams

 dynamic Bayesian networks

 multiple agents

 decentralized (PO)MDPs - DEC-(PO)MDPs

 theoretical framework for multi-agent planning

 partially observable stochastic games (POSG)

 theoretical framework for interaction of rational agents

Beyond (PO)MDPs


