

Markov Decision Processes and Probabilistic Planning

Branislav Bošanský

PAH 2015/2016

Markov Decision Processes

- main formal model
- $\langle S, A, D, T, R \rangle$
 - states finite set of states of the world
 - actions finite set of actions the agent can perform
 - horizon finite/infinite set of time steps (1,2,...)
 - transition function
 - $T: S \times A \times S \rightarrow [0,1]; \sum_{s' \in S} T(s, a, s') = 1$
 - reward function

.

- $R: S \times A \times S \to \mathbb{R}$
- typically bounded

MDPs – policy

- history-dependent policy
 - $\pi: H \times A \rightarrow [0,1]; \sum_{a \in A} \pi(h,a) = 1$
- for simple cases we do not need history and randomization
 - Markovian assumption
 - finite-horizon MDPs
 - infinite-horizon MDPs with reward discount factor $0 \leq \gamma < 1$
 - stochastic shortest path
 - (... and some others)
- from now on, policy is an assignment of an action in each state and time

MDPs – policy (2)

- $\pi: S \to A$
- stationary policy
 - when the policy is same every time state s is visited
 - otherwise nonstationary policy
- positional policy
 - deterministic and stationary policy

• Q: for which problems is the stationary policy sufficient?

MDPs – value of a policy

- we can express an expected reward for every state and time-step when specific policy is followed
- $V_{\pi}^{k}(s) = \mathbb{E}\left[\sum_{t=0}^{k} \gamma^{t} \cdot R(s_{t}, a_{t}, s_{t+1}) | s_{0} = s, a_{t} = \pi(s_{t})\right]$
 - optimal policy : $\pi^{*,k}(s) = \operatorname{argmax}_{\pi} V_{\pi}^{k}(s)$

- for large (infinite) k we can approximate the value by dynamic programming
 - $V^0_{\pi}(s) = 0$

•
$$V_{\pi}^{k}(s) = \sum_{s' \in S} T(s, a, s') [R(s, a, s') + \gamma V_{\pi}^{k-1}(s')] \qquad a = \pi(s)$$

MDPs – towards finding optimal policy

- we can exploit the concept of dynamic programming to find an optimal policy
- basic algorithm for solving MDPs based on Bellman's equation
- value iteration

•
$$V^0(s) = 0 \quad \forall s \in S$$

•
$$V^{k}(s) = \max_{a \in A} \sum_{s' \in S} T(s, a, s') \left[R(s, a, s') + \gamma V^{k-1}(s') \right]$$

Q-function
$$(Q(s, a))$$

• for $k \to \infty$ values converges to optimum $V^k \to V^*$

MDPs – value iteration – convergence

- value iteration converges
 - for finite-horizon MDPs: |D| steps
 - for infinite-horizon: asymptotically
 - we can measure residual r and stop if it is small enough $(\mathbf{r} \leq \varepsilon(1-\gamma)/\gamma)$

•
$$r = \max_{s \in S} |V_{i+1}(s) - V_i(s)|$$

• convergence depends on γ

MDPs – extracting policy and policy iteration⁶

- value iteration calculates only values
- the optimal policy can be extracted by using a greedy approach
 - $\pi^k(s) = \arg\max_{a \in A} \sum_{s' \in S} T^k(s, a, s') \left[R^k(s, a, s') + \gamma V^k(s') \right]$

- alternative algorithm **policy iteration**
 - starts with an arbitrary policy
 - policy evaluation: recalculates value of states given the current policy π^k
 - policy improvement: calculates a new maximum expected utility policy π^{k+1}
 - until the strategy changes

MDPs – VI/PI – improvements

- value iteration is very simple
 - updates all states during each iteration
 - curse of dimensionality (huge state space)
 - asynchronous VI
 - select a single state to be updated in each iteration separately
 - each state must be updated infinitely often to guarantee convergence
 - lower memory requirements
- Q: Can we use some heuristics to improve the convergence?

MDPs – Heuristics

•

- initial values can be assigned better
 - we can use a heuristic function instead of 0
- Q: Can you think of any heuristic function?
 - e.g., remember FFReplan/Robust FF?
 - we can use a single run of a planner on the determinized version

• Q:What if the values V are initialized incorrectly?

MDPs – Prioritized VI

- initialize V and a priority queue q
- select state s from the top of q and perform a Bellman backup
- add all possible predecessors of s to q
- repeat until convergence
 - priorities: changes in utility, position in the graph, ...

- but, values are still updated regardless on the current values
- consider a typical probabilistic planning problem
 - finite-horizon MDP with some goal states

MDPs – Real-Time Dynamic Programming

- updates the values only on the path from the starting state to the goal
- during one iteration updates one rollout/trial:
 - start with $s = s_0$
 - evaluate all actions using Bellman's Q-functions Q(s, a)
 - select action that maximizes current value: $\arg \max_{a \in A} Q(s, a)$
 - set $V(s) \leftarrow Q(s, a)$
 - get resulting state s'
 - if s' is not goal, then $s \leftarrow s'$ and go to step 2
- can be further improved with labeling (LRTDP) to identify solved states

MDPs – Real-Time Dynamic Programming

Algorithm 4.4: LRTDP
1 LRTDP(s_0, ϵ)
2 begin
$V_l \leftarrow h$
4 while s ₀ is not labeled solved do
5 LRTDP-TRIAL(s_0, ϵ)
6 end
7 return $\pi_{s_0}^*$
8 end
9
10
11 LRTDP-TRIAL(s_0, ϵ)
12 begin
13 $visited \leftarrow empty stack$
14 $s \leftarrow s_0$
15 while s is not labeled solved do
16 push s onto visited
17 if $s \in \mathcal{G}$ then
18 break
19 end
20 $a_{best} \leftarrow \operatorname{argmin}_{a \in \mathcal{A}} Q^{V_l}(s, a)$
21 $V_l(s) \leftarrow Q^{V_l}(s, a_{best})$
22 $s \leftarrow \text{execute action } a_{best} \text{ in } s$
23 end
24 while visited \neq empty stack do
25 $s \leftarrow \text{pop the top of } visited$
26 if $\neg CHECK-SOLVED(s, \epsilon)$ then
27 break
28 end
29 end
30 end

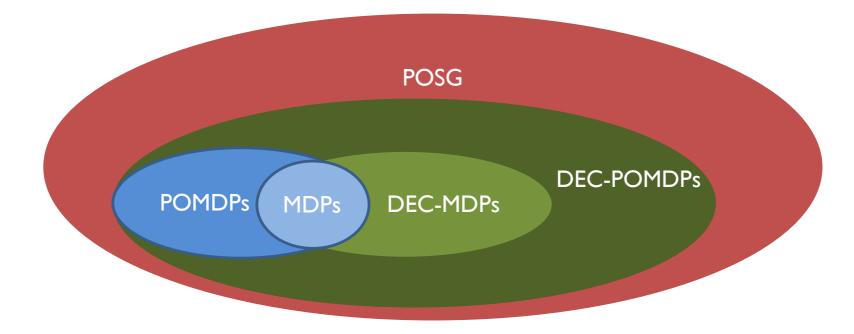
MDPs – Find and Revise

- we can further combine selective updates with heuristic search
 - starts with admissible $V(s) \ge V^*(s)$ for all states
 - select next state s' that is:
 - reachable from s_0 using current greedy policy π_V , and
 - residual $r(s') > \varepsilon$
 - update s'
 - repeat until such states exist
- many further improvements and algorithms ...

TI-Dec-M	IDP MMDP	
EDI-Dec-MDP		
Dec-MDP		EDI-CR
	Dec-POMDP	M-POMDP
ND-POMDP	fDec-POMDP	
TD-POMDP		OC-Dec-MDP
DPCL	Dec-SIMDP	RC-Dec-MDP
DPCL		
IDMG		M-RMP

Beyond MDPs

. . .



MDP (finite horizon)	P-complete
POMDP (finite horizon)	PSPACE-complete
MDP (infinite horizon)	P-complete
POMDP (infinite horizon)	undecidable
DEC-MDP (finite horizon)	NEXP-complete

Decentralized MDPs

- $\langle I, S, \{A_i\}, T, R \rangle$
 - agents finite set of agents
 - actions finite set of joint actions
 - $A = \prod_{i \in I} A_i$
 - other sets as in MDPs
 - common reward function
- if players have different reward function
 - Markov games (simultaneous move games)
- approaches to solve (TI-DEC-MDPs)
 - modification of dynamic programming
 - iterative best response

Sources and Further Reading

- Planning with Markov Decision Processes: An AI Perspective
 - Mausam, Kolobov, 2003
- Policy Iteration for Decentralized Control of Markov Decision Processes
 - Bernstein et al. 2009
- Decentralized Control of Partially Observable Markov Decision Processes
 - Amato et al. 2013