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 main formal model 

 𝑆, 𝐴, 𝐷, 𝑇, 𝑅

 states – finite set of states of the world

 actions – finite set of actions the agent can perform

 horizon – finite/infinite set of time steps (1,2,… )

 transition function

 𝑇: 𝑆 × 𝐴 × 𝑆 → 0,1 ; 𝑠′∈𝑆 𝑇 𝑠, 𝑎, 𝑠
′ = 1

 reward function

 𝑅: 𝑆 × 𝐴 × 𝑆 → ℝ

 typically bounded

.

Markov Decision Processes



 history-dependent policy

 𝜋:𝐻 × 𝐴 → 0,1 ; 𝑎∈𝐴𝜋(ℎ, 𝑎) = 1

 for simple cases we do not need history and randomization

 Markovian assumption

 finite-horizon MDPs

 infinite-horizon MDPs with reward discount factor 0 ≤ 𝛾 < 1

 stochastic shortest path

 (… and some others)

 from now on, policy is an assignment of an action in each state and 

time

.

MDPs – policy



 𝜋: 𝑆 → 𝐴

 stationary policy

 when the policy is same every time state s is visited

 otherwise – nonstationary policy

 positional policy

 deterministic and stationary policy

 Q: for which problems is the stationary policy sufficient?

MDPs – policy (2)



 we can express an expected reward for every state and time-step 

when specific policy is followed

 𝑉𝜋
𝑘 𝑠 = 𝔼  𝑡=0

𝑘 𝛾𝑡 ⋅ 𝑅(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) |𝑠0 = 𝑠, 𝑎𝑡 = 𝜋(𝑠𝑡)

 optimal policy : 𝜋∗,𝑘 𝑠 = argmax
𝜋
𝑉𝜋
𝑘(𝑠)

 for large (infinite) 𝑘 we can approximate the value by dynamic 

programming

 𝑉𝜋
0 𝑠 = 0

 𝑉𝜋
𝑘 𝑠 =  𝑠′∈𝑆𝑇(𝑠, 𝑎, 𝑠

′) 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜋
𝑘−1 𝑠′ 𝑎 = 𝜋 𝑠

.

MDPs – value of a policy



 we can exploit the concept of dynamic programming to find an 

optimal policy

 basic algorithm for solving MDPs based on Bellman’s equation

 value iteration

 𝑉0 𝑠 = 0 ∀𝑠 ∈ 𝑆

 𝑉𝑘 𝑠 = max
𝑎∈𝐴

 𝑠′∈𝑆𝑇(𝑠, 𝑎, 𝑠
′) 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘−1 𝑠′

 Q-function (𝑄(𝑠, 𝑎))

 for 𝑘 → ∞ values converges to optimum 𝑉𝑘 → 𝑉∗

MDPs – towards finding optimal policy



 value iteration converges

 for finite-horizon MDPs: |𝐷| steps

 for infinite-horizon: asymptotically 

 we can measure residual r and stop if it is small enough               

(r ≤ 𝜀(1 − 𝛾)/𝛾)

 𝑟 = max
𝑠∈𝑆

|𝑉𝑖+1 𝑠 − 𝑉𝑖 𝑠 |

 convergence depends on 𝛾

.

MDPs – value iteration – convergence



 value iteration calculates only values

 the optimal policy can be extracted by using a greedy approach

 𝜋𝑘 𝑠 = argmax
𝑎∈𝐴

 𝑠′∈𝑆𝑇
𝑘(𝑠, 𝑎, 𝑠′) 𝑅𝑘 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘 𝑠′

 alternative algorithm – policy iteration

 starts with an arbitrary policy

 policy evaluation: recalculates value of states given the current 

policy 𝜋𝑘

 policy improvement: calculates a new maximum expected utility 

policy 𝜋𝑘+1

 until the strategy changes

.

MDPs – extracting policy and policy iteration



 value iteration is very simple

 updates all states during each iteration 

 curse of dimensionality (huge state space)

 asynchronous VI

 select a single state to be updated in each iteration separately

 each state must be updated infinitely often to guarantee convergence

 lower memory requirements

 Q: Can we use some heuristics to improve the convergence?

MDPs –VI/PI – improvements



 initial values can be assigned better

 we can use a heuristic function instead of 0

 Q: Can you think of any heuristic function?

 e.g., remember FFReplan/Robust FF? 

 we can use a single run of a planner on the determinized version

 Q: What if the values V are initialized incorrectly?

.

MDPs – Heuristics



 initialize 𝑉 and a priority queue 𝑞

 select state 𝑠 from the top of 𝑞 and perform a Bellman backup

 add all possible predecessors of 𝑠 to 𝑞

 repeat until convergence

 priorities: changes in utility, position in the graph, …

 but, values are still updated regardless on the current values

 consider a typical probabilistic planning problem

 finite-horizon MDP with some goal states

.

MDPs – Prioritized VI



 updates the values only on the path from the starting state to the 

goal

 during one iteration updates one rollout/trial:

 start with s = 𝑠0

 evaluate all actions using Bellman’s Q-functions 𝑄(𝑠, 𝑎)

 select action that maximizes current value: argmax 𝑎∈𝐴𝑄(𝑠, 𝑎)

 set 𝑉 𝑠 ← 𝑄 𝑠, 𝑎

 get resulting state 𝑠′

 if 𝑠′ is not goal, then 𝑠 ← 𝑠′ and go to step 2

 can be further improved with labeling (LRTDP) to identify solved 

states

MDPs – Real-Time Dynamic Programming



MDPs – Real-Time Dynamic Programming



 we can further combine selective updates with heuristic search

 starts with admissible 𝑉 𝑠 ≥ 𝑉∗(𝑠) for all states

 select next state 𝑠′ that is:

 reachable from 𝑠0 using current greedy policy 𝜋𝑉 , and

 residual 𝑟 𝑠′ > 𝜀

 update 𝑠′

 repeat until such states exist

 many further improvements and algorithms …

MDPs – Find and Revise



Variants of MDPs



POSG

POMDPs

Beyond MDPs

DEC-MDPsMDPs

MDP (finite horizon) P-complete

POMDP (finite horizon) PSPACE-complete

MDP (infinite horizon) P-complete

POMDP (infinite horizon) undecidable

DEC-MDP (finite horizon) NEXP-complete

…

DEC-POMDPs



Decentralized MDPs

 𝐼, 𝑆, {𝐴𝑖}, 𝑇, 𝑅

 agents – finite set of agents 

 actions – finite set of joint actions

 𝐴 =  𝑖∈𝐼𝐴𝑖

 other sets as in MDPs

 common reward function

 if players have different reward function

 Markov games (simultaneous move games)

 approaches to solve (TI-DEC-MDPs)

 modification of dynamic programming

 iterative best response

.



Sources and Further Reading

 Planning with Markov Decision Processes: An AI Perspective

 Mausam, Kolobov, 2003

 Policy Iteration for Decentralized Control of Markov Decision 

Processes

 Bernstein et al. 2009

 Decentralized Control of Partially Observable Markov Decision 

Processes

 Amato et al. 2013


