
Markov Decision Processes

and
Probabilistic Planning

PAH 2013/2014

 main formal model

 𝑆, 𝐴, 𝐷, 𝑇, 𝑅

 states – finite set of states of the world

 actions – finite set of actions the agent can perform

 horizon – finite/infinite set of time steps (1,2,…)

 transition function

 𝑇: 𝑆 × 𝐴 × 𝑆 × 𝐷 → [0,1]

 reward function

 𝑅: 𝑆 × 𝐴 × 𝑆 × 𝐷 → ℝ

Markov Decision Processes

 history-dependent policy

 𝜋:𝐻 × 𝐴 × 𝐷 → 0,1

 for simple cases we do not need history and randomization

 Markovian assumption

 finite-horizon MDPs

 infinite-horizon MDPs with reward discount factor 0 ≤ 𝛾 < 1

 stochastic shortest path

 (… and some others)

 from now on, policy is an assignment of an action in each state and

time

MDPs – policy

 Markov policy

 𝜋: 𝑆 × 𝐷 → 𝐴

 when the policy is same in every time-step – stationary policy

 𝜋 𝑠, 𝑡 = 𝜋 𝑠, 𝑡′ ∀𝑡, 𝑡′ ∈ 𝐷; 𝑡 ≠ 𝑡′

 otherwise – nonstationary policy

 Q: for which problems is the stationary policy sufficient?

MDPs – policy (2)

 we can express an expected reward for every state and time-step

when specific policy is followed

 𝑉𝜋
𝑘 𝑠 = 𝔼 𝑡=0

𝑘 𝛾𝑡 ⋅ 𝑅𝑡(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) |𝑠0 = 𝑠, 𝑎𝑡 = 𝜋(𝑠𝑡)

 for large (infinite) 𝑘 we can approximate the value by dynamic

programming

 𝑉𝜋
0 𝑠 = 0

 𝑉𝜋
𝑘 𝑠 = 𝑡=0

𝑘 𝑇𝑡(𝑠, 𝑎, 𝑠′) 𝑅𝑡 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜋
𝑘−1 𝑠′ 𝑎 = 𝜋(𝑠)

MDPs – value of a policy

 we can exploit the concept of dynamic programming to find an

optimal policy

 basic algorithm for solving MDPs based on Bellman’s equation

 value iteration

 𝑉0 𝑠 = 0 ∀𝑠 ∈ 𝑆

 𝑉𝑘 𝑠 = max
𝑎∈𝐴
 𝑠′∈𝑆𝑇

𝑘(𝑠, 𝑎, 𝑠′) 𝑅𝑘 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘−1 𝑠′

 Q-function (Q(s,a))

 for 𝑘 → ∞ values converges to optimum 𝑉𝑘 → 𝑉∗

MDPs – towards finding optimal policy

 value iteration calculates only values

 the optimal policy can be extracted by using a greedy approach

 𝜋𝑘 𝑠 = argmax
𝑎∈𝐴
 𝑠′∈𝑆𝑇

𝑘(𝑠, 𝑎, 𝑠′) 𝑅𝑘 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘 𝑠′

 alternative algorithm – policy iteration

 starts with an arbitrary policy

 updates using the same equations

MDPs – extracting policy

 value iteration converges

 for finite-horizon MDPs: |𝐷| steps

 for infinite-horizon: asymptotically

 we can measure residual r and stop if it is small enough (≤ 𝜀)

 𝑟 = max
𝑠∈𝑆
|𝑉𝑖+1 𝑠 − 𝑉𝑖 𝑠 |

 convergence depends on 𝛾, …

MDPs – value iteration – convergence

 value iteration is very simple

 updates all states during each iteration

 curse of dimensionality (huge state space)

 asynchronous VI

 select a single state to be updated in each iteration separately

 each state must be updated infinitely often to guarantee convergence

 lower memory requirements

 Q: Can we use some heuristics to improve the convergence?

MDPs – value iteration – improvements

 initial values can be assigned better

 we can use a heuristic function instead of 0

 Q: Can you think of any admissible heuristic function?

 e.g., remember FFReplan/Robust FF?

 we can use a single run of a planner on the determinized version

 but, values are still updated regardless on the current values

 consider a typical probabilistic planning problem

 finite-horizon MDP with some goal states

MDPs – Heuristics

 updates the values only on the path from the starting state to the

goal

 during one iteration updates one rollout/trial:

 start with s = 𝑠0

 evaluate all actions using Bellman’s Q-functions 𝑄(𝑠, 𝑎)

 select action that maximizes current value: argmax 𝑎∈𝐴𝑄(𝑠, 𝑎)

 set 𝑉 𝑠 ← 𝑄 𝑠, 𝑎

 get resulting state 𝑠′

 if 𝑠′ is not goal, then 𝑠 ← 𝑠′ and go to step 2

 can be further improved with labeling (LRTDP) to identify solved

states

MDPs – Real-Time Dynamic Programming

 we can further combine selective updates with heuristic search

 starts with admissible 𝑉 𝑠 ≥ 𝑉∗(𝑠) for all states

 select next state 𝑠′ that is:

 reachable from 𝑠0 using current greedy policy 𝜋𝑉 , and

 residual 𝑟 𝑠′ > 𝜀

 update 𝑠′

 repeat until such states exist

 many further improvements and algorithms …

MDPs – Find and Revise

 Monte-Carlo sampling is a well known method for searching through

large state space

 exploiting MC in sequential decision making has first been successfully

designed in 2006 (Kocsis, Szepesvari)

 foundations in mathematical theory

 multi-armed bandit problem

 exploration/exploitation

 Upper Confidence Bounds (UCB)

MDPs – Using Monte-Carlo Methods

 using bandits in sequential decision making: MCTS

 UCB – selection function (UCB applied on trees – UCT)

MDPs – Monte-Carlo Tree Search – UCT

 UCB – selection function (UCB applied on trees – UCT)

 for each action 𝑎𝑖 applicable in 𝑠 UCB selects the one that

maximizes

𝑐
log 𝑛

𝑛𝑖
+

𝑠′∈𝑆

𝑇 𝑠, 𝑎𝑖 , 𝑠
′ [𝑅 𝑠, 𝑎𝑖 , 𝑠

′ + 𝛾𝑉 𝑠′]

 𝑛 – times the state is visited

 𝑉(𝑠) – average reward from the previous iterations

 𝑐 - exploration constant (linear to expected utility)

 exploration factor ensures to evaluate actions that are evaluated

rarely

MDPs – Monte-Carlo Tree Search – UCT

 winner of IPPC 2011 – PROST

 uses a number of improvements

 vanilla UCT is not that fast

 MCTS/UCT requires large number of iterations to converge

 large state-space does not allow this

 depth-limited rollouts

 reducing branching factor

 some actions are dominated, we can remove them

MDPs – UCT in probabilistic planning

 UCT can also benefit from heuristics

 values after expansion can be set better

 PROST uses Q-value initialization on most-probable determinization

 also random rollouts can be driven with some heuristic

 different update mechanism

 Rapid Action Value Estimation (RAVE)

 many, many others …

MDPs – UCT (2)

 UCT is far from optimal algorithm

 there exist simple examples where vanilla UCT performs extremely

bad

 number of reasons

 learning the best action is different from learning the best

(contingency) plan

 situation that occur in states does not exactly correspond to multi-

armed bandit (mathematically)

 there are modifications that improve these drawbacks

 BRUE (Feldman & Domshlak, 2013)

MDPs – Beyond UCT

