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 main formal model 

 𝑆, 𝐴, 𝐷, 𝑇, 𝑅

 states – finite set of states of the world

 actions – finite set of actions the agent can perform

 horizon – finite/infinite set of time steps (1,2,… )

 transition function

 𝑇: 𝑆 × 𝐴 × 𝑆 × 𝐷 → [0,1]

 reward function

 𝑅: 𝑆 × 𝐴 × 𝑆 × 𝐷 → ℝ

Markov Decision Processes



 history-dependent policy

 𝜋:𝐻 × 𝐴 × 𝐷 → 0,1

 for simple cases we do not need history and randomization

 Markovian assumption

 finite-horizon MDPs

 infinite-horizon MDPs with reward discount factor 0 ≤ 𝛾 < 1

 stochastic shortest path

 (… and some others)

 from now on, policy is an assignment of an action in each state and 

time

MDPs – policy



 Markov policy

 𝜋: 𝑆 × 𝐷 → 𝐴

 when the policy is same in every time-step – stationary policy

 𝜋 𝑠, 𝑡 = 𝜋 𝑠, 𝑡′ ∀𝑡, 𝑡′ ∈ 𝐷; 𝑡 ≠ 𝑡′

 otherwise – nonstationary policy

 Q: for which problems is the stationary policy sufficient?

MDPs – policy (2)



 we can express an expected reward for every state and time-step 

when specific policy is followed

 𝑉𝜋
𝑘 𝑠 = 𝔼  𝑡=0

𝑘 𝛾𝑡 ⋅ 𝑅𝑡(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) |𝑠0 = 𝑠, 𝑎𝑡 = 𝜋(𝑠𝑡)

 for large (infinite) 𝑘 we can approximate the value by dynamic 

programming

 𝑉𝜋
0 𝑠 = 0

 𝑉𝜋
𝑘 𝑠 =  𝑡=0

𝑘 𝑇𝑡(𝑠, 𝑎, 𝑠′) 𝑅𝑡 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜋
𝑘−1 𝑠′ 𝑎 = 𝜋(𝑠)

MDPs – value of a policy



 we can exploit the concept of dynamic programming to find an 

optimal policy

 basic algorithm for solving MDPs based on Bellman’s equation

 value iteration

 𝑉0 𝑠 = 0 ∀𝑠 ∈ 𝑆

 𝑉𝑘 𝑠 = max
𝑎∈𝐴
 𝑠′∈𝑆𝑇

𝑘(𝑠, 𝑎, 𝑠′) 𝑅𝑘 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘−1 𝑠′

 Q-function (Q(s,a))

 for 𝑘 → ∞ values converges to optimum 𝑉𝑘 → 𝑉∗

MDPs – towards finding optimal policy



 value iteration calculates only values

 the optimal policy can be extracted by using a greedy approach

 𝜋𝑘 𝑠 = argmax
𝑎∈𝐴
 𝑠′∈𝑆𝑇

𝑘(𝑠, 𝑎, 𝑠′) 𝑅𝑘 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘 𝑠′

 alternative algorithm – policy iteration

 starts with an arbitrary policy

 updates using the same equations

MDPs – extracting policy



 value iteration converges

 for finite-horizon MDPs: |𝐷| steps

 for infinite-horizon: asymptotically 

 we can measure residual r and stop if it is small enough (≤ 𝜀)

 𝑟 = max
𝑠∈𝑆
|𝑉𝑖+1 𝑠 − 𝑉𝑖 𝑠 |

 convergence depends on 𝛾, … 

MDPs – value iteration – convergence



 value iteration is very simple

 updates all states during each iteration 

 curse of dimensionality (huge state space)

 asynchronous VI

 select a single state to be updated in each iteration separately

 each state must be updated infinitely often to guarantee convergence

 lower memory requirements

 Q: Can we use some heuristics to improve the convergence?

MDPs – value iteration – improvements



 initial values can be assigned better

 we can use a heuristic function instead of 0

 Q: Can you think of any admissible heuristic function?

 e.g., remember FFReplan/Robust FF? 

 we can use a single run of a planner on the determinized version

 but, values are still updated regardless on the current values

 consider a typical probabilistic planning problem

 finite-horizon MDP with some goal states

MDPs – Heuristics



 updates the values only on the path from the starting state to the 

goal

 during one iteration updates one rollout/trial:

 start with s = 𝑠0

 evaluate all actions using Bellman’s Q-functions 𝑄(𝑠, 𝑎)

 select action that maximizes current value: argmax 𝑎∈𝐴𝑄(𝑠, 𝑎)

 set 𝑉 𝑠 ← 𝑄 𝑠, 𝑎

 get resulting state 𝑠′

 if 𝑠′ is not goal, then 𝑠 ← 𝑠′ and go to step 2

 can be further improved with labeling (LRTDP) to identify solved 

states

MDPs – Real-Time Dynamic Programming



 we can further combine selective updates with heuristic search

 starts with admissible 𝑉 𝑠 ≥ 𝑉∗(𝑠) for all states

 select next state 𝑠′ that is:

 reachable from 𝑠0 using current greedy policy 𝜋𝑉 , and

 residual 𝑟 𝑠′ > 𝜀

 update 𝑠′

 repeat until such states exist

 many further improvements and algorithms …

MDPs – Find and Revise



 Monte-Carlo sampling is a well known method for searching through 

large state space

 exploiting MC in sequential decision making has first been successfully 

designed in 2006 (Kocsis, Szepesvari)

 foundations in mathematical theory

 multi-armed bandit problem

 exploration/exploitation

 Upper Confidence Bounds (UCB)

MDPs – Using Monte-Carlo Methods



 using bandits in sequential decision making: MCTS

 UCB – selection function (UCB applied on trees – UCT)

MDPs – Monte-Carlo Tree Search – UCT



 UCB – selection function (UCB applied on trees – UCT)

 for each action 𝑎𝑖 applicable in 𝑠 UCB selects the one that 

maximizes

𝑐
log 𝑛

𝑛𝑖
+  

𝑠′∈𝑆

𝑇 𝑠, 𝑎𝑖 , 𝑠
′ [𝑅 𝑠, 𝑎𝑖 , 𝑠

′ + 𝛾𝑉 𝑠′ ]

 𝑛 – times the state is visited

 𝑉(𝑠) – average reward from the previous iterations

 𝑐 - exploration constant (linear to expected utility)

 exploration factor ensures to evaluate actions that are evaluated 

rarely

MDPs – Monte-Carlo Tree Search – UCT



 winner of IPPC 2011 – PROST

 uses a number of improvements

 vanilla UCT is not that fast

 MCTS/UCT requires large number of iterations to converge

 large state-space does not allow this 

 depth-limited rollouts

 reducing branching factor

 some actions are dominated, we can remove them

MDPs – UCT in probabilistic planning



 UCT can also benefit from heuristics

 values after expansion can be set better

 PROST uses Q-value initialization on most-probable determinization

 also random rollouts can be driven with some heuristic

 different update mechanism

 Rapid Action Value Estimation (RAVE)

 many, many others …

MDPs – UCT (2)



 UCT is far from optimal algorithm

 there exist simple examples where vanilla UCT performs extremely 

bad

 number of reasons

 learning the best action is different from learning the best 

(contingency) plan

 situation that occur in states does not exactly correspond to multi-

armed bandit (mathematically)

 there are modifications that improve these drawbacks

 BRUE (Feldman & Domshlak, 2013)

MDPs – Beyond UCT


