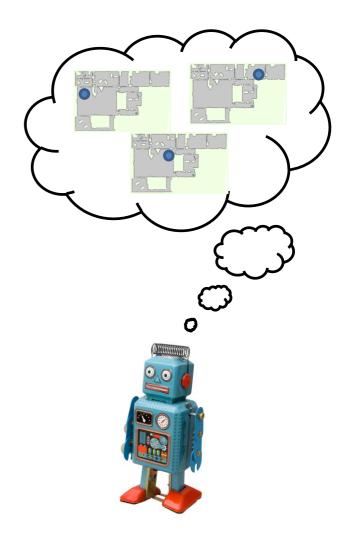


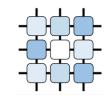
Partially Observable Markov Decision Processes

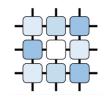
PAH 2015

Partial Observability

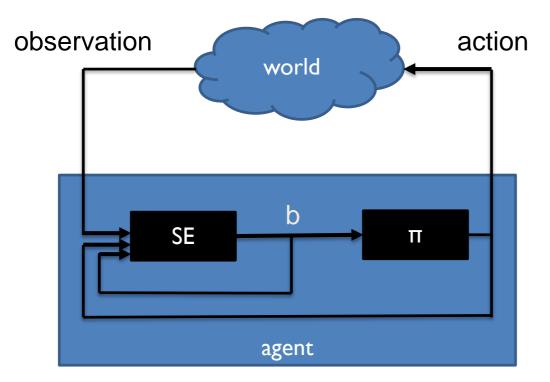
- the world is not perfect
 - actions take some time to execute
 - actions may fail or yield unexpected results
 - the environment may change due to other agents
 - the agent does not have knowledge about whole situation
 - sensors are not precise



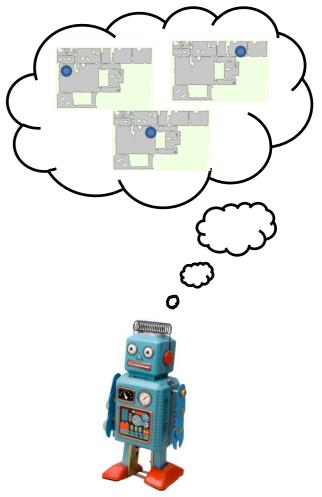


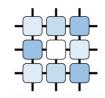


Partial Observability

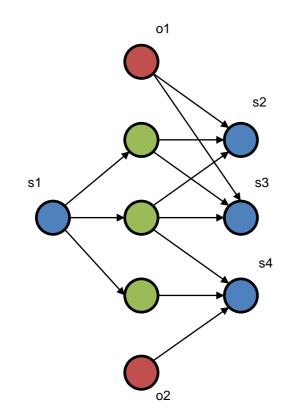


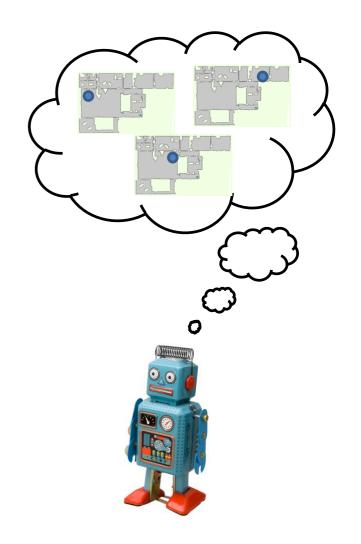
- policy (π)
- belief state (b)
- state estimator (SE), for updating belief state b' based on
 - the current observation o_t
 - the last action a_{t-1}
 - and the previous belief state b_{t-1}



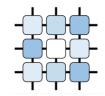


Partial Observability

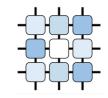




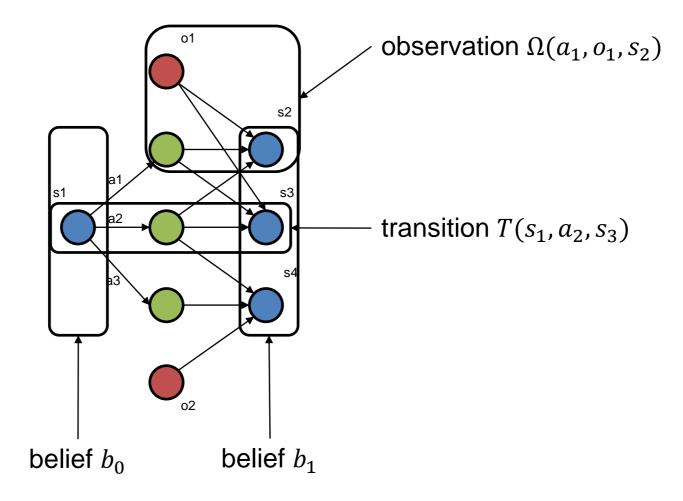
Partially Observable MDPs



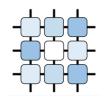
- main formal model for scenarios with uncertain observations
- $\langle S, A, D, O, b_0, T, \Omega, R, \gamma \rangle$
 - states finite set of states of the world
 - actions finite set of actions the agent can perform
 - time steps
 - observations finite set of possible observations
 - initial belief function $b_0: S \rightarrow [0,1]$
 - transition function $T: S \times A \times S \rightarrow [0,1]$
 - observation probability $\Omega: A \times O \times S \rightarrow [0,1]$
 - reward function $R: S \times A \to \mathbb{R}$
 - discount factor $0 \le \gamma < 1$

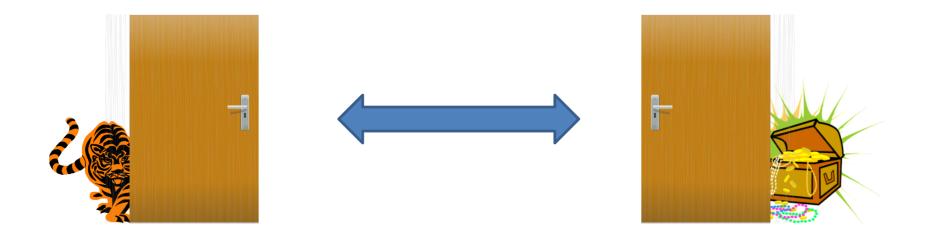


Partially Observable MDPs - probabilities



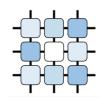
The Tiger Problem

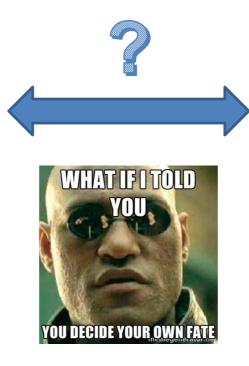




- states = {tiger-left, tiger-right}
- actions = {listen, open-left, open-right}
 - transitions: no change (listen), restart (open-right, open-left)
- observations = {hear-tiger-left (TL), hear-tiger-right (TR)}
- rewards: surprised by tiger, found treasure, listening

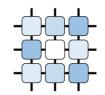
The Tiger Problem





- states = {tiger-left, tiger-right}
- actions = {listen, open-left, open-right}
 - transitions: no change (listen), restart (open-right, open-left)
- observations = {hear-tiger-left (TL), hear-tiger-right (TR)}
- rewards: surprised by tiger, found treasure, listening

The Tiger Problem (transition prob.)

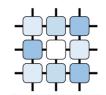




listen >	tiger-left	tiger-right
tiger-left	1.0	0.0
tiger-right	0.0	1.0

open-left/right \rightarrow	tiger-left	tiger-right
tiger-left	0.5	0.5
tiger-right	0.5	0.5

The Tiger Problem (observation prob.)

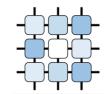


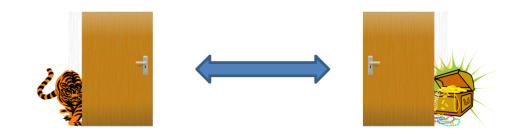


listen >	hearTL	hearTR
tiger-left	0.85	0.15
tiger-right	0.15	0.85

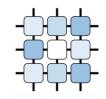
open-left/right \rightarrow	hearTL	hear TR
tiger-left	0.5	0.5
tiger-right	0.5	0.5

The Tiger Problem (immediate reward)





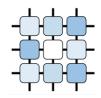
reward	tiger-left	tiger-right	
listen	-1	-1	
open-left	-100	+10	
open-right	+10	-100	

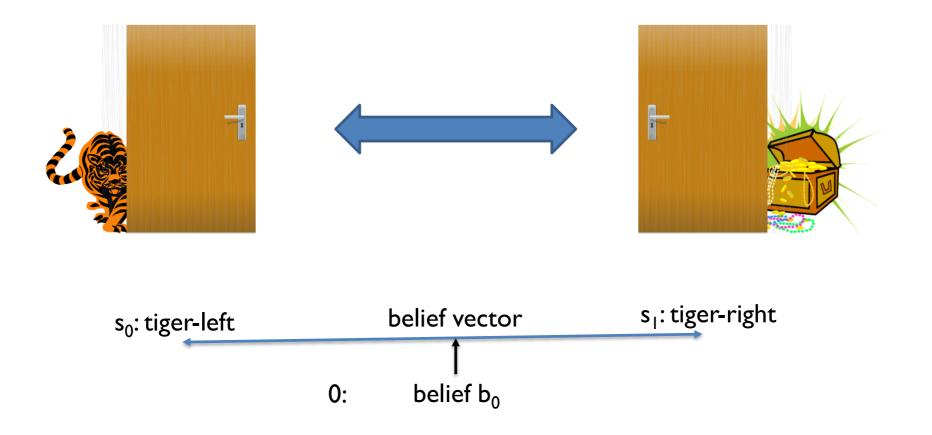


Partially Observable MDPs - beliefs

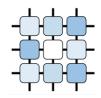
- beliefs represent a probability distribution over states
- beliefs are uniquely identified by the history
 - b_1 probability distribution over states after playing one action
 - $b_t \leftarrow \Pr(s_t | b_0, a_0, o_1, \dots, o_{t-1}, a_{t-1}, o_t)$
- we can exploit dynamic programming (define transformation of beliefs)
 - $b_t(s') = \mu \Omega(a, o, s') \sum_{s \in S} T(s, a, s') b_{t-1}(s)$
 - where
 - *o* is the last observation
 - *a* is the last action
 - μ is the normalizing constant

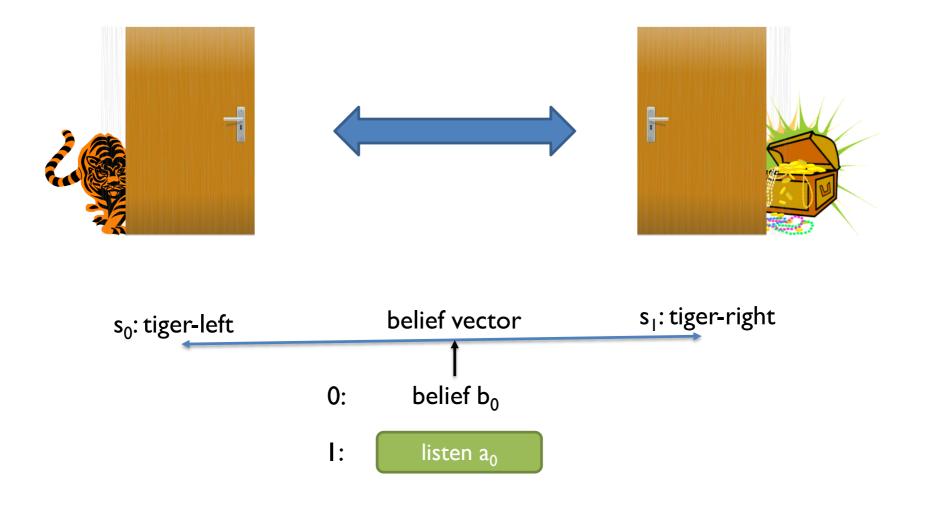
The Tiger Problem (belief update)



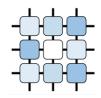


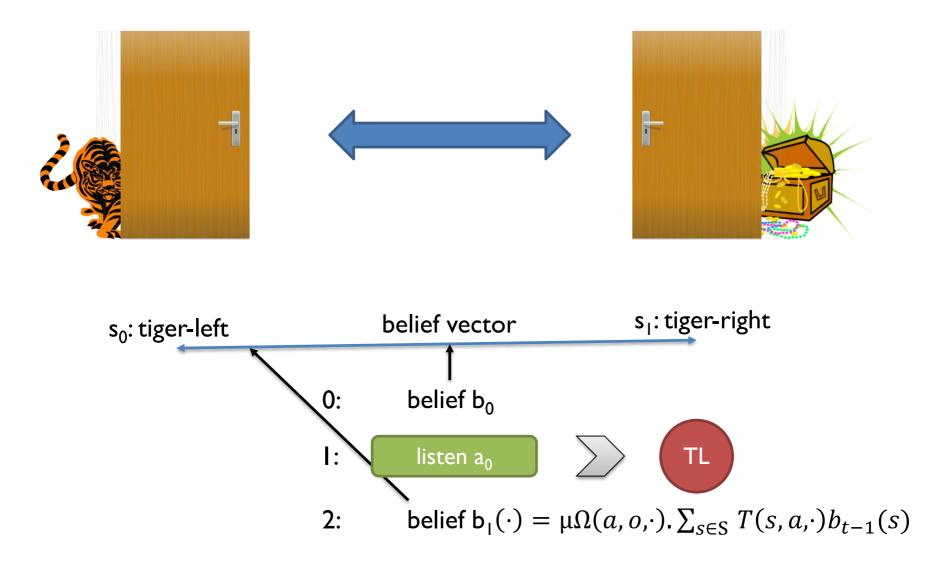
The Tiger Problem (belief update)

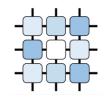




The Tiger Problem (belief update)



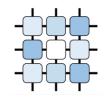




Partially Observable MDPs - values

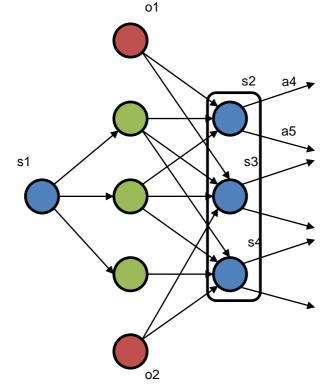
- beliefs determine new values
 - $V(b) = \max_{a \in A} [R(b, a) + \gamma \sum_{b' \in B} T(b, a, b')V(b')]$
- what we have done ...
 - we have transformed a POMDP to a continuous state MDP
 - belief state is a simplex
 - |S| 1 dimensions

- in theory we can use all the algorithms for MDPs (value iteration)
 - but B is infinite

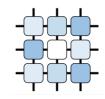


Solving Continuous State MDPs

- in value iteration we take max of actions
- the belief space can be partitioned depending on the fact, which action is the best one

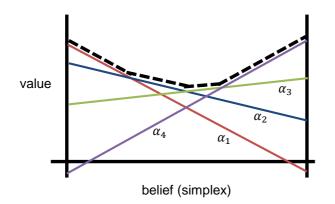


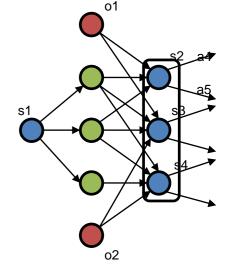
s2	s3	s4	V(a4)	V(a5)
0.2	0.1	0.7	3	2
0.7	0.1	0.2	I	7



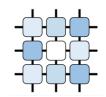
Solving Continuous State MDPs

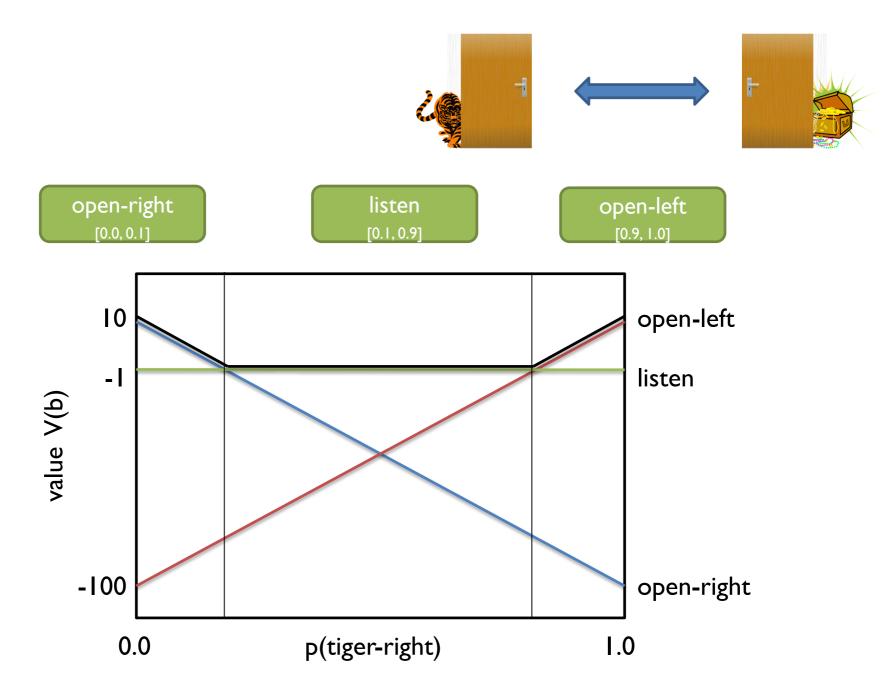
- values can be compactly represented as a finite set of α vectors; $V = \{\alpha_0, \dots, \alpha_m\}$
 - α vector is an |S| dimensional hyper-plane
 - a linear function representing utility values after selecting some fixed action
 - defines the value function over a bounded region of the belief
 - $V(b) = \max_{\alpha \in V} \sum_{s \in S} \alpha(s) b(s)$
 - V is a piece-wise linear convex function





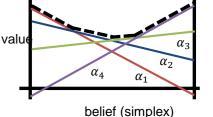
The Tiger Problem (I-step opt. policy)

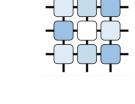




- Q: Can we modify value iteration algorithm to work with α • functions?
- exact value iteration for POMDPs
 - $V^{t}(b) = \max_{a \in A} [\sum_{s \in S} R(s, a)b(s) +$
 - + $\gamma \sum_{o \in O} \max_{\alpha' \in V^{t-1}} \sum_{s \in S} \sum_{s' \in S} T(s, a, s') \Omega(o, s', a) \alpha'(s') b(s)$]
- the above formula compute values (we need α -vectors)
 - $\alpha^{a,*}(s) = R(s,a)$
 - $\alpha_i^{a,o}(s) = \gamma \sum_{s' \in S} T(s, a, s') \Omega(o, s', a) \alpha_i'(s')$
 - $V^a = \alpha^{a,*} \oplus \alpha^{a,o_1} \oplus \alpha^{a,o_2} \oplus \cdots$
 - $V = \bigcup_{a \in A} V^a$

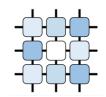
Solving Continuous State MDPs

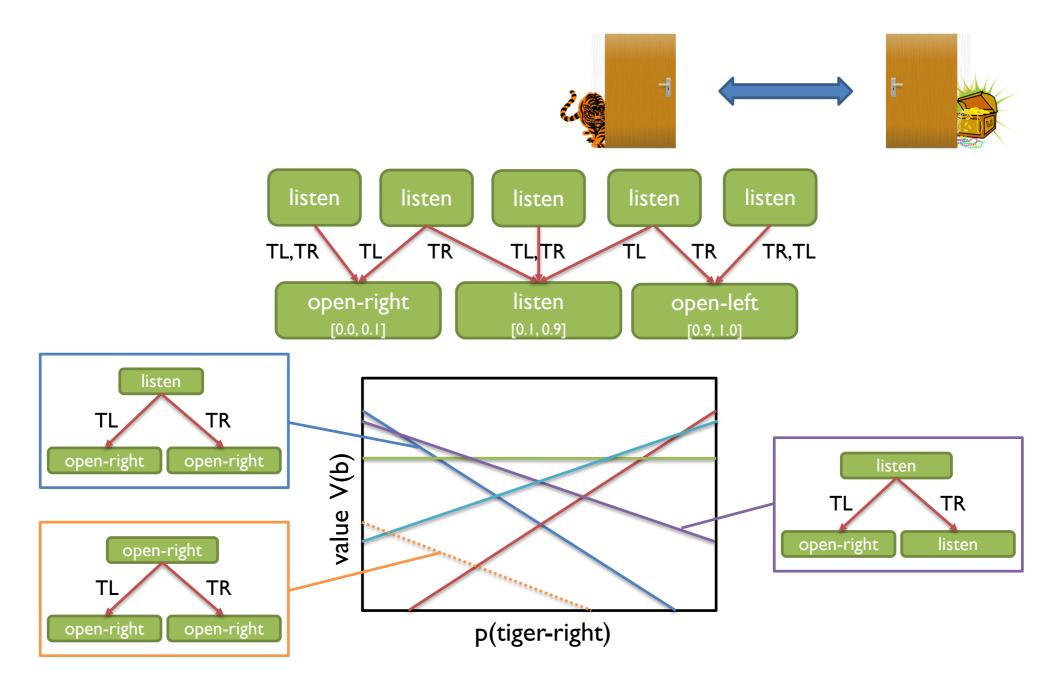




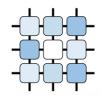
 $\forall \alpha'_i \in V'$

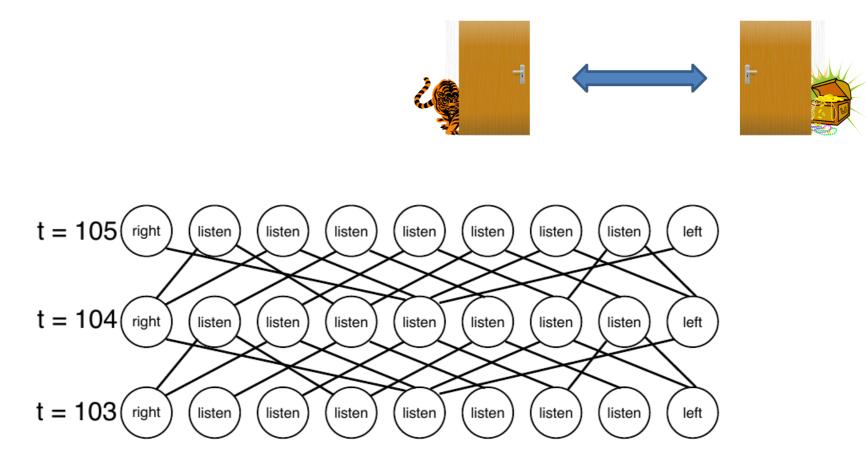
The Tiger Problem (2-step opt. policy)





The Tiger Problem (opt. policy)





After enough iterations The Tiger Problem solution converges to a **stationary policy** (not in general!).