I Planning for Al (B4M36PUI)

Modelling Languages, Knowledge
Engineering Tools, Domain Reformulation

Lukas Chrpa

Domain-independent
Planning Concept

Domain Model Problem Specification
(environmen t,actions) (initial state, goals)

i

Planning Engine

|

Plan

Domain-independent Planning
Concept

* A (description) language
- Describe domain model and problem specification

(usually one domain model for a class of problems)
* A planning engine
- must support the language

- should be efficient for the given domain
model

e Plans interpreting

Knowledge Engineering in
Planning

“Real” World Symbolic World

) DOMAIN MODEL
Formulation

Domain Model Language

Validation and
Maintenance

I Properties of a Domain Model

 Accuracy - There is a mapping between domain
requirements and a domain model

e Consistency - All assertions (invariants) are true

« Completeness - Solution plans correspond to real-
world solutions

 Adequacy - A domain model is expressive enough
to capture domain requirements

e Operationality — Planning engines can find solution
plans in reasonable time/memory constraints

Knowledge Engineering

Process

Domain expert

Domain knowledge

Planning expert

Domain Specification

-«

>

|

Domain Model

An iterative process — can take a long time !

Modelling Languages

PDDL [McDermott et al,

1998]

Planning Domain
Definition Language
(PDDL)

Inspired by the STRIPS
and ADL languages

Most widespread

Official language of
International Planning
Competitions (IPCs)

(define (domain blocksworld)
(:requirements :strips :typing)
(:types block)

(:predicates (on ?x - block ?y - block)
(ontable ?x - block)
(clear ?x - block)
(handempty)
(holding ?x - block)
)
(:action pick-up
:parameters (?x - block)
:precondition (and (clear ?Xx)
(ontable ?x)

(handempty))
teffect (and (not (ontable ?x))
(not (clear ?x))
(not (handempty))
(holding ?x))

I Versions of PDDL

PDDL 1.2

- Predicate centric (i.e., classical representation)

- Object types

- ADL features (e.g., conditional effects, equality)
PDDL 2.1

- Numeric Fluents

- Durative Actions
PDDL 2.2

- Timed-initial literals

- Derived Predicates

PDDL 3.0

- State-trajectory constraints (hard constraints for the planning process)
- Preferences (soft constraints for the planning process)

PDDL 3.1

- Object Fluents

I Extensions of PDDL

* PDDL+

— Continuous processes
- Exogenous events
 PPDDL

- Probabilistic action effects
- Reward fluents
« MA-PDDL

- Multi-agent planning

NDDL [Frank & Jonsson,
2002]

{

Rover rover;
InstrumentLocation location;
InstrumentState state;

Instrument (Rover r)

* NASA's response to e -

location = new InstrumentLocation();
state = new InstrumentState();

}

» Variable representation B e etion rock;

eq(10, duration);

 Timelines/activities }

Instrument::TakeSample

¢ ConStraintS between { met by(condition object.state.Placed on);
. - eg(on.rock, rock);
activities

contained by(condition object.location.Unstowed);

equals(effect object.state.Sampling sample);
eqg(sample.rock, rock);

starts(effect object.rover.mainBattery.consume tx);
eq(tx.quantity, 120); // consume battery power

https://github.com/nasa/europa/wiki/Example-Rover

Combines aspects from
NDDL and PDDL

- Actions and states
(PDDL)

- Variable
representation
(NDDL)

- Temporal
Constraints (NDDL)

 Hierarchical methods

ANML [Smith et al., 2008]

action Pickup (crew ev, object item)

{

duration := 5 ;

[start] located(ev) == located(item);
[all] possesses(ev,item) == FALSE:
->TRUE ;

[end] located(item) := POSSESSED ;

}

action Putaway (crew ev, object item,
location stowage)

{

Duration := 10 ;

[start] located(ev) == stowage ;
[all] possesses(ev, item) == TRUE:
->FALSE ;

[end] located(item):= stowage ;

}

[Boddy & Bonasso, 2010]

I RDDL [Sanner, 2011]

domain wildfire mdp {

types {

X _pos : object;
y_pos : object;
i

* became the official o
anguage Of the // Action costs and penalties

COST_CUTOUT : {non-fluent, real, default
to cut-out fuel from a cell

OrObabIIIStIC traCk Of the COST_PUTOUT : {non-fluent, real, default
to put-out a fire from a cell
- PENALTY TARGET BURN : {non-fluent, real, default = -100 }; //
PC Slnce 2011 Penalty for each target cell that is burning
PENALTY NONTARGET BURN : {non-fluent, real, default = -5 }; //
Penalty for each non-target cell that is burning

* models partial

Observability burning' (?x, ?y) = if (put-out(?x, ?y)) // Intervention to

put out fire?

-5 }; // Cost

-10 }; // Cost

then false
// Modification: targets can only start to burn if at

° eﬁICIent descrlptlon Of reast one neiggzoifi?~22tfi§ffuel(?x, ?y) °~ ~burning(?x, ?y)) //

Ignition of a new fire? Depends on neighbors.

PO MDPS then [if (TARGET(?x, ?y) " ~exists {?x2: x pos, ?
: y_pos} (NEIGHBOR(?x, ?y, ?x2, ?y2) "~ burning(?x2, ?y2)))

y2:
then false
else Bernoulli(1.0 / (1.0 + exp[4.5 -
(sum_{?x2: x pos, ?y2: y pos} (NEIGHBOR(?x, ?y, ?x2, ?y2) "
burning(?x2, ?y2)))]))]
else
burning(?x, ?y); // State persists

https://cs.uwaterloo.ca/~mgrzes/IPPC_2014/

Domain-independent
Planners

 Dozens of classical planners

- support typed STRIPS
- newer planners support action costs, and some ADL features
- many of them are optimal

e Several temporal planners

- support durative actions
- few support numeric fluents or timed-initial literals
- few fully support concurrency
- very few are optimal
« Several probabilistic planners
- (PO)MDP
- FOND

 Afew continuous planners

Language Expressiveness Vs.
Planning Engines

* “It is almost a law in PDDL planning that for every
language feature one adds to a domain definition, the
number of planners that can solve (or even parse) i,
and the efficiency of those planners, falls
exponentially” [anonymous reviewer]

* Motivate development of more expressive planning
engines

e Reduce the number of features in models

KE Tools for Planning Domain
Modelling

I Purpose of KE tools

* Assist in domain developing process

- Support development cycle (as in SW
engineering)

- Visualize (parts of) the model

- Verification and Validation support (e.g.
consistency check)

« Usable by non-experts (but with basic knowledge of
planning)

I GIPO [Simpson et al., 2007]

GIPO (Graphical Interface for Planning with
Objects) won the ICKEPS 2005 competition

 Based on the OCL (Object-Centred Language)
Define life histories of objects

Supports “classical” PDDL (limitedly also
"durative” actions)

Supports HTN (HyHTN planner is integrated)
[McCluskey et al., 2003]

ItSimple [Vaquero et al.,
2007;2012]

» Supports development cycle

» Exploits UML for domain modelling

* Exploits Petri Nets for dynamic analysis of state
machines (e.g. reachability analysis)

e Supports PDDL 3.1

https://code.google.com/archive/p/itsimple/

- Project webpage

http://www.youtube.com/watch?feature=player embedded&v=FGBhvBnzyvo

— Tutorial on domain modelling it ItSimple by Chris Muise

https://code.google.com/archive/p/itsimple/
http://www.youtube.com/watch?feature=player_embedded&v=FGBhvBnzyvo

I ItSimple - Sample Use Case

File Sett

L] @ = |Modeling| Analysis Planning ~ PDDL Translation

:: Project Explorer :: Diagrams

"’ Pgsslr:tl:;ﬁtzrgfrﬁgsm IPC3 Numeric ¢ Use Case Diagram - Satellite Domain IPC3 Strips) | Class Diagram - Satellite Dornain IPC3 Strips |

v 4 Satellite Domnain IPC3 Strips | I: Select| % Actor © UseCase —» UseCase Association -» Dependency ¥ ZoomlIn 2.
¥ || Use Case Diagram —
% Satellite
O turn ko
< switch instrurment on
< switch instrurment of F
< calibrate instrurment q
© take image take image oy turn ko
¥) Class Diagram]
» B Satellite Satellite
» B nstrument]
B Mode |
B Direction |
» B Global
¥ || State Machine Diagram - Satellite
= satellite's power available
= Satellite's power not available
= Satellite ready to turn
= Power on
= power off
¥ & Satellice Domain
» || Object Repository
v 4 Three Satellite 6 Instrurmments 6 Directions

switch instrument off

switch instrument on

ItSimple - Sample Class
lagram

Use Case Diagram - Satellite Domain IPC3 Strips |) | Class Diagram - Satellite Domain IPC3 Strips || State Machine Diagram - Satellite - Satellite

I; Select| B Class B Enumeration —* Class Association 4 Generalization ® ZoomIn 2 Zoom Out 1:1

A
<<agent==
Satellite
powerfvailable : Boolean o @
0.* poinking 1 i i
Direction
turnTo(s: Satellite, dMew: Direction, dPrew: Direction) pointing
switchon(s: Satellite, i Instrument)
switchOff(s: Satellite, i: Instrument) 1
calibrate(s: Satellite, i Instrument, d: Direction) tiorTarget
takelmage(s: Satellite, i: Instrument, d: Direction, m: 'j
Mode)
<<Ubilitys==
ofBoard calibration Global
havelmage(d: Direction, m: Mode) : Boolean
onBogrd
0,.*
Inskrument ‘)

ke "
powerQn : Boolean 0. SUpports 1.

calibrated : Boolean

Maode

supports

ItSimple - Sample State
Machine (Satellite)

I: Select | @ Initial State = State @ FinalState — Action Association J® ZoomIn 2 Zoom Qut 1:1

takelrmagels: Satellite, it Instrurnent, d: Direction, m: Mode) .
switchOFFs: Satellite, i) Instrurment) \/
{/_ Pawer on _\', |'/- power oFF _\',
hpo‘-&;‘er@n =true \i.po*&;‘er@n = False J

switchOnis: Satellite, i) Instrurment)

calibratels: Satellite, i Instrurment, d: Direction)

ItSimple - Sample State
Machine (Instrument)

I: Select | @ Initial State = State @ FinalState — Action Association J® ZoomIn 2 Zoom Qut 1:1

turmTols: Satellice, dilew: Direction, dPrew: Directioni[...]/...

{satellite ready ko turn_\1

®
s
calibrate(s: Satelliceddastrument, d: Direction)[...]/...
swibchOn(s: Satellite, i@ Instrumentl[. /..
4 Sakellite's power available Satellite's power not availahle-\\
.4} s.powerhvailable = true s.powerfvailable = false
> swibchOFF(s: Satellite, i@ Instrurmentl[,..] I /]\

|
takelrnage(s: Satellice, i Instrurnent, d: Direction, m: Model[,]4.

I Some other KE Frameworks

EUROPA [Barreiro et al., 2012]

- Framework supporting NDDL and ANML
JABBAH [Gonzalez-Ferrer et al., 2009]

- Supports HTN
KEWI [Wickler et al., 2014]

— Object Centred (including inheritance)

- Web Application (supports collaboration)
VIZ [Vodrazka & Chrpa, 2010]

- A*light-weight” KE tool

I Planning.Domains

* “A Collection of Tools for Working with Planning
Domains” [Muise]

* Web application
* Rich editor (syntax highlighting, autocomplete, etc.)
* Plug-in support

* Repository of all domains and problems from the IPCs

Planning.Domains - Sample
Domain (Satellite)

<= ¢ @ ® planning.domains - @ 1 pddl domians - £+l

PDDL Editor ki File - ®Session ~ @Import # Solve ®Torchlight /Plugins @Help planning.domains

1 (define (domain satellite)

unamedr.pdd] 2 (:requirements :equality :strips)
3- (:predicates
domain.pddl 4 (on_board 71 7s) (supports ?i ?m) (pointing 7s ?d) (power_avail 7s) (power_on 7i) (calibrated ?1i) (have_image 7d 7m) (calibration_target 7i 7d)(satellite ?x) (direction 7x) (instrument 7x) (mode 7x)
5= (:action turn_to
6 :parameters (?s ?d_new ?d_prev)
Analysis (I) 7 :precondition
8 (and (satellite ?s) (direction ?d_new) (direction ?d_prev) (pointing ?s ?d_prev))
n 9 reffect
PDI_Ph]EI'pddl 10 (and (pointing ?s 7d_new) (not (pointing 7s 7d_prev))))
11
Analysis (2) 12~ (:action switch_on
5 13 :parameters (71 7s)
14 :precondition
Plan [IJ 15 (and (instrument 71) (satellite 7s) (on_board 71 7s) (power_avail 75))
16 reffect
17 (and (power_on 71i) (not (calibrated 7i)) (not (power_availl 7s))))
18
19~ (:action switch_off
20 :parameters (?1 ?s)
21 :precondition
22 (and (instrument 71) (satellite 7s) (on_board ?1 7s) (power_on 71i))
23 reffect
24 (and (power_avail 7s) (not (power_on 71))))
25
26 - (:action calibrate
27 :parameters (?s 71 7d)
28 :precondition
29 (and (satellite 7s) (instrument 71) (direction ?d)} (on_board 7?1 7s) (calibration_target ?i 7d) (pointing ?s ?d) (power_on 7i})
EL effect
3 (calibrated 1))
32
33~ (:action take_image
34 :parameters { ?s ?d ?1 m)
35 :precondition
36 (and (satellite ?s) (direction ?d) (instrument ?1) (mode 7m) (calibrated ?i) (on_board ?i ?s) (supports ?1 ?m) (power_on ?1) (pointing 7s 7d) (power_on 71))
37 effect
38 (have_image 7d n))
39
4w)

Planning.Domains - Sample
Plan (Satellite domain)

«=> C @ (@ editor.planning.domains/# - @ W pddl domi:

PDDL Editor ki File - ®Session ~ @Import 4 Solve ®Torchlight / Plugins @ Help

unamedrpddl

Found Plan (output)

domain.pddl
. (turn_to satelliteo groundstation2 phenomenon6) s e
Analysis (1) :parameters (satellite@ phenomenon4 groundstation2)
(switch_on instrumento satelliteo) :precondition
por-pfilerpddl (e))
(calibrate satelliteo instrumento groundstation2) [CaEETITEEgSa cel i tes)
x : ' (direction phenomenond)
Analyms [ZJ . . (direction groundstation2)
(turn_to satelliteo phenomenon4 groundstationz2) (pointing satellited groundstation2)
Plan (1) .)
(take_image satelliteo phenomenon4 instrumento thermographo) :effect
(and
(turn_to satelliteo star5 phenomenong) :pointmg satellited phenomenond)
) no
) . (pointing satellite® groundstation2)
(take_image satelliteo stars instrumento thermographo))
)

(turn_to satelliteo phenomenon6 stars))

(take_image satelliteo phenomenon6 instrumento thermographo)

Planning.Domains - Analysis
(by TorchLight)

PDDL Editor ki File + #®3Session ~ @Import # Solve ®Torchlight Plugins @ Help planning.domains

unamed1.pddl

Torchlight Output (readme)

domain.pddl

Analysis (1) TorchLight: parsing domain file
domain 'SATELLITE' defined
poI-pfiler.pddl a0 I,

TorchLight: parsing problem file

L problem 'STRIPS-SAT-X-1' defined
Analysis(2)

done.
Plan (1)
TorchLight: running Fast-Downward translator to generate variables ... done
TorchLight: creating SG and DTG structures ... done.
TorchLight: static examination of SG and DTG structures ... done.
S AR = = s e e e s e e e e e e e e e e e e e e
=== META - TN R A N = = == e e e e e e e e e e s e e e e e s e
Input domain : testing/domain.1516635316636.pddl
Input problem instance : testing/prob.1516635316636.pdd1
Number of sample states : 1000

---DOMAIN TRANSITION GRAPHS (DTG-t: DTG transition)------------o-omomooomnnnnooo
Perc vars all DTG-t invertible : 20

Perc vars all DTG-t no side-eff : 80 /* all no side effects */

Perc vars all DTG-t irr side-eff: 80 /* all side effect deletes irrelevant */

Perc well-behaved leaf vars : 180 /* support graph leaf vars satisfying global TorchLight criterion */
Perc well-behaved nonleaf vars : 66 /* support graph nonleaf vars satisfying global TorchLight criterion */
Perc DTG-t invertible 83

Perc DTG-t no side-ef T : 96 /* no side effects */

Perc DTG-t irr side-eff : 96 /* all side effect deletes irrelevant */

Perc DTG-t self-irr side-eff : 88 /* all side effect deletes irrelevant, except for own precond */

Perc DTG-t irr own-delete : 16 /* start value of transition is irrelevant */

---GUARANTEED GLOBAL ANALYSIS (USES GLOBAL DEPENDENCY GRAPHS gDG)-----------------

Perc successful gDG 5 @ /* = 180 ==> provably no local minima under h+ */
h+ exit distance bound : -1, -1.8@, -1 /* min, mean, max over successful gDGs (-1 if perc successful gDG = @); perc successful gDG = 180 ==> max is a provable
Perc gDG cyclic H @ /* perc gDG cannot be successful because cyclic */

Perc gDG t@ not Ok H @ /* perc gDG cannot be successful because deletes of t8 harmful */

Domain Control Knowledge and
Model Reformulation

Domain Control Knowledge
(DCK)

Captures useful domain-specific information

Provides “guidance” for planning engines

Complement “raw” domain model specification

Two main categories of DCK

- Planner-specific (e.g. TALPlanner, Roller)
- Planner-independent (this talk !)

I Planner-independent DCK

Domain and Problem

il DCK
specification

\

Enhanced Domain
and Problem specification

v

Generic Planning Engine

v

Enhanced Plan

#

Plan

I Obtaining DCK

o Automatically
- training based
-online

 Manually

I Macro-operators (Macros)

* Primitive operators can be assembled into one single
operator — macro-operator (macro)

« Assemblage of operators 0, and 0 into O, ;:
- pre(o;)) = pre(o;)U(pre(o) —add(0))
— del(o,)) = (del(0,) — add(o;))udel(0))
~ add(o,)= (add(o,) — del(0))Uadd(o))

* Widely studied (e.g. Macro-FF, Wizard, MUM,
BLOMA)

Macros - example

& unstack(B,A) I ;

2

B putdown(B)

2

unstack-putdown(B,A)
| =
B

A A B
unstack(X,Y) = pudown(X) =
{ {on(X,Y),clear(X),handempty} //prec { {holding(X)} //prec
{on(X,Y),clear(X),handempty} //neg eff {holding(X)} //neg eff
{holding(X),clear(Y)} } //pos eff {ontable(X),on(X),clear(X),handempty} } //pos eff

unstack-putdown(X,Y) =

{ {on(X,Y),clear(X),handempty} //prec
{on(X,Y),holding(X),} //neg eff
{clear(X),clear(Y),ontable(X),handempty} } //pos eff

Macros - Benefits and
Shortcomings

Macros can be understood as 'short-cuts' in the search
space

Solution plans can be much shorter

Introducing macros can increase branching factor
considerably !

There might be high memory requirements for planners

“A short-cut Is the longest
way between two points”

Outer Entanglements [Chrpa
& McCluskey 2012]

» Outer entanglements are relations between planning
operators and initial or goal predicates

* Entanglement by init — allows only such instances of
an operator requiring an initial predicate

 Entanglement by goal - allows only such instances
of an operator achieving goal predicates

Unstack(X,Y) = Stack(X,Y) =
(Iear(X),handempty} //prec ({holdlng(),.clear(Y)} //prec
{on(X,Y),clear(X),handempty} //neg eff {halding(X),clear(Y)} //neg eff

{holding(X),clear(Y)}) //pos eff ‘m) lear(X),handempty}) //pos eff

entangled
by init

entangled
by goal

@c,s) | on(
on(B,A) }——

A C |—

init goal

allowed: Unstack(C,B), Unstack(B,A) allowed: Stack(A,B), Stack(B,C)

Outer Entanglements -
benefits and shortcomings

* Outer Entanglements restrict the number of
Instantiated operators

» Outer Entanglements (significantly) reduces memory
requirements

 The method for extracting outer entanglements does
not ensure completeness

ICombining Macros and Outer
Entanglements

« MUM [Chrpa et al., 2014]

- Outer entanglements can reduce branching factor
the macros introduce

- Applying outer entanglements only on macros does
not compromise completeness

- Outer entanglements provide heuristics in the
macro learning process

e OMA [Chrpa et al., 2015] — an online version of MUM

Transition-based DCK [Chrpa
& Bartak, 2016]

Inspired by Finite State Automata

Define “grammar” of solution plans

“*Schematical” representation is easier to understand
by non-experts in planning

» Can be incorporated in planning domain models

Transition-based DCK - formal
specification
. Aquadruple (S,0,T;s) where

- S iIs a set of DCK states
— SOES IS the Initial DCK state

- O Is a set of planning operators
- T Is a set of transitions

* Each transition is in the form (s,0,C,s’) where
- §,S'eS, 00

— C Is a set of constraints where each is in the form

e p,—p —p must or must not be in the current planning state
* Q. p—p must be an open goal in the current planning state

Specifying Transition-based
DCK - an example

 An empty truck (can carry at most one package)
should move only to locations where some package is
waiting to be delivered

» After a package that has to be delivered is loaded into
the truck, the truck moves to package's goal location
where the package is then unloaded

Drive; at(?p ?to), g: at(?p ?dest), ?to != ?dest

Load; g: at(?p ?dest), ?dest = 71 Drive; in(?p ?t), g: at(?p ?to)

Unload; g: at(?p ?1)

I Impact of DCK

 Macros and Entanglements have considerable
Impact on performance in some cases

e Transition-based DCK in some cases
“determinize” the planning process

e Changes in the domain model might require
considerable changes in DCK

Impact of DCK on the KE
process

* |n practice, separating the “raw” domain model and
DCK Is easier to maintain

» Extend existing KE tools (e.g. itSimple,
Planning.Domains) by supporting automatic/manual
DCK acquisition

* Understanding in which cases planners fail and how
DCK can alleviate such an issue

- Even changing the order of operators and
predicates in their preconditions/effects have a
significant impact on planners' performance !

I Conclusions

» KE process in planning is still “black art”
- No guidelines/methodologies
— Little support of KE tools
- Effective DCK acquisition support

A little to nothing has been done in non-classical
planning

* Addressing these issues will significantly

strengthen the position of domain-independent
planning in other Al areas

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

