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Domain-independent Planning
Concept

* A (description) language
- Describe domain model and problem specification

(usually one domain model for a class of problems)
* A planning engine
- must support the language

- should be efficient for the given domain
model

e Plans interpreting



Knowledge Engineering in
Planning

“Real” World Symbolic World

) DOMAIN MODEL
Formulation

Domain Model Language

Validation and
Maintenance



I Properties of a Domain Model

 Accuracy - There is a mapping between domain
requirements and a domain model

e Consistency - All assertions (invariants) are true

« Completeness - Solution plans correspond to real-
world solutions

 Adequacy - A domain model is expressive enough
to capture domain requirements

e Operationality — Planning engines can find solution
plans in reasonable time/memory constraints



Knowledge Engineering

Process

Domain expert

Domain knowledge

Planning expert

Domain Specification

-«

>

|

Domain Model

An iterative process — can take a long time !



Modelling Languages



PDDL [McDermott et al,

1998]

Planning Domain
Definition Language
(PDDL)

Inspired by the STRIPS
and ADL languages

Most widespread

Official language of
International Planning
Competitions (IPCs)

(define (domain blocksworld)
(:requirements :strips :typing)
(:types block)

(:predicates (on ?x - block ?y - block)
(ontable ?x - block)
(clear ?x - block)
(handempty)
(holding ?x - block)
)
(:action pick-up
:parameters (?x - block)
:precondition (and (clear ?Xx)
(ontable ?x)

(handempty) )
teffect (and (not (ontable ?x))
(not (clear ?x))
(not (handempty))
(holding ?x))



I Versions of PDDL

PDDL 1.2

- Predicate centric (i.e., classical representation)

- Object types

- ADL features (e.g., conditional effects, equality)
PDDL 2.1

- Numeric Fluents

- Durative Actions
PDDL 2.2

- Timed-initial literals

- Derived Predicates

PDDL 3.0

- State-trajectory constraints (hard constraints for the planning process)
- Preferences (soft constraints for the planning process)

PDDL 3.1

- Object Fluents



I Extensions of PDDL

* PDDL+

— Continuous processes
- Exogenous events
 PPDDL

- Probabilistic action effects
- Reward fluents
« MA-PDDL

- Multi-agent planning



NDDL [Frank & Jonsson,
2002]

{

Rover rover;
InstrumentLocation location;
InstrumentState state;

Instrument (Rover r)

* NASA's response to e -

location = new InstrumentLocation();
state = new InstrumentState();

}

» Variable representation B e etion rock;

eq(10, duration);

 Timelines/activities }

Instrument::TakeSample

¢ ConStraintS between { met by(condition object.state.Placed on);
. - eg(on.rock, rock);
activities

contained by(condition object.location.Unstowed);

equals(effect object.state.Sampling sample);
eqg(sample.rock, rock);

starts(effect object.rover.mainBattery.consume tx);
eq(tx.quantity, 120); // consume battery power

https://github.com/nasa/europa/wiki/Example-Rover



Combines aspects from
NDDL and PDDL

- Actions and states
(PDDL)

- Variable
representation
(NDDL)

- Temporal
Constraints (NDDL)

 Hierarchical methods

ANML [Smith et al., 2008]

action Pickup (crew ev, object item)

{

duration := 5 ;

[start] located(ev) == located(item);
[all] possesses(ev,item) == FALSE:
->TRUE ;

[end] located(item) := POSSESSED ;

}

action Putaway (crew ev, object item,
location stowage)

{

Duration := 10 ;

[start] located(ev) == stowage ;
[all] possesses(ev, item) == TRUE:
->FALSE ;

[end] located(item):= stowage ;

}

[Boddy & Bonasso, 2010]



I RDDL [Sanner, 2011]

domain wildfire mdp {

types {

X _pos : object;
y_pos : object;
i

* became the official o
anguage Of the // Action costs and penalties

COST_CUTOUT : {non-fluent, real, default
to cut-out fuel from a cell

OrObabIIIStIC traCk Of the COST_PUTOUT : {non-fluent, real, default
to put-out a fire from a cell
- PENALTY TARGET BURN : {non-fluent, real, default = -100 }; //
PC Slnce 2011 Penalty for each target cell that is burning
PENALTY NONTARGET BURN : {non-fluent, real, default = -5 }; //
Penalty for each non-target cell that is burning

* models partial

Observability burning' (?x, ?y) = if ( put-out(?x, ?y) ) // Intervention to

put out fire?

-5 }; // Cost

-10 }; // Cost

then false
// Modification: targets can only start to burn if at

° eﬁICIent descrlptlon Of reast one neiggzoifi?~22tfi§ffuel(?x, ?y) °~ ~burning(?x, ?y)) //

Ignition of a new fire? Depends on neighbors.

PO MDPS then [if (TARGET(?x, ?y) " ~exists {?x2: x pos, ?
: y_pos} (NEIGHBOR(?x, ?y, ?x2, ?y2) "~ burning(?x2, ?y2)))

y2:
then false
else Bernoulli( 1.0 / (1.0 + exp[4.5 -
(sum_{?x2: x pos, ?y2: y pos} (NEIGHBOR(?x, ?y, ?x2, ?y2) "
burning(?x2, ?y2)))]) ) ]
else
burning(?x, ?y); // State persists

https://cs.uwaterloo.ca/~mgrzes/IPPC_2014/



Domain-independent
Planners

 Dozens of classical planners

- support typed STRIPS
- newer planners support action costs, and some ADL features
- many of them are optimal

e Several temporal planners

- support durative actions
- few support numeric fluents or timed-initial literals
- few fully support concurrency
- very few are optimal
« Several probabilistic planners
- (PO)MDP
- FOND

 Afew continuous planners



Language Expressiveness Vs.
Planning Engines

* “It is almost a law in PDDL planning that for every
language feature one adds to a domain definition, the
number of planners that can solve (or even parse) i,
and the efficiency of those planners, falls
exponentially” [anonymous reviewer]

* Motivate development of more expressive planning
engines

e Reduce the number of features in models



KE Tools for Planning Domain
Modelling



I Purpose of KE tools

* Assist in domain developing process

- Support development cycle (as in SW
engineering)

- Visualize (parts of) the model

- Verification and Validation support (e.g.
consistency check)

« Usable by non-experts (but with basic knowledge of
planning)



I GIPO [Simpson et al., 2007]

GIPO (Graphical Interface for Planning with
Objects) won the ICKEPS 2005 competition

 Based on the OCL (Object-Centred Language)
Define life histories of objects

Supports “classical” PDDL (limitedly also
"durative” actions)

Supports HTN (HyHTN planner is integrated)
[McCluskey et al., 2003]



ItSimple [Vaquero et al.,
2007;2012]

» Supports development cycle

» Exploits UML for domain modelling

* Exploits Petri Nets for dynamic analysis of state
machines (e.g. reachability analysis)

e Supports PDDL 3.1

https://code.google.com/archive/p/itsimple/

- Project webpage

http://www.youtube.com/watch?feature=player embedded&v=FGBhvBnzyvo

— Tutorial on domain modelling it ItSimple by Chris Muise


https://code.google.com/archive/p/itsimple/
http://www.youtube.com/watch?feature=player_embedded&v=FGBhvBnzyvo

I ItSimple - Sample Use Case

File Sett

L] @ = |Modeling| Analysis Planning ~ PDDL Translation

:: Project Explorer :: Diagrams

"’ Pgsslr:tl:;ﬁtzrgfrﬁgsm IPC3 Numeric ¢ Use Case Diagram - Satellite Domain IPC3 Strips ) | Class Diagram - Satellite Dornain IPC3 Strips |

v 4 Satellite Domnain IPC3 Strips | I: Select| % Actor © UseCase —» UseCase Association -» Dependency ¥ ZoomlIn 2.
¥ || Use Case Diagram —
% Satellite
O turn ko
< switch instrurment on
< switch instrurment of F
< calibrate instrurment q
© take image take image oy turn ko
¥ ) Class Diagram ]
» B Satellite Satellite
» B nstrument ]
B Mode |
B Direction |
» B Global
¥ || State Machine Diagram - Satellite
= satellite's power available
= Satellite's power not available
= Satellite ready to turn
= Power on
= power off
¥ & Satellice Domain
» || Object Repository
v 4 Three Satellite 6 Instrurmments 6 Directions

switch instrument off

switch instrument on




ItSimple - Sample Class
lagram

Use Case Diagram - Satellite Domain IPC3 Strips | ) | Class Diagram - Satellite Domain IPC3 Strips || State Machine Diagram - Satellite - Satellite

I; Select| B Class B Enumeration —* Class Association 4 Generalization  ® ZoomIn 2 Zoom Out 1:1

A
<<agent==
Satellite
powerfvailable : Boolean o @
0.* poinking 1 i i
Direction
turnTo(s: Satellite, dMew: Direction, dPrew: Direction) pointing
switchon(s: Satellite, i Instrument)
switchOff(s: Satellite, i: Instrument) 1
calibrate(s: Satellite, i Instrument, d: Direction) tiorTarget
takelmage(s: Satellite, i: Instrument, d: Direction, m: 'j
Mode)
<<Ubilitys==
ofBoard calibration Global
havelmage(d: Direction, m: Mode) : Boolean
onBogrd
0,.*
Inskrument ‘)

ke "
powerQn : Boolean 0. SUpports 1.

calibrated : Boolean

Maode

supports




ItSimple - Sample State
Machine (Satellite)

I: Select | @ Initial State = State @ FinalState — Action Association  J® ZoomIn 2 Zoom Qut 1:1

takelrmagels: Satellite, it Instrurnent, d: Direction, m: Mode) .
switchOFFs: Satellite, i) Instrurment) \/
{/_ Pawer on _\', |'/- power oFF _\',
hpo‘-&;‘er@n =true \i.po*&;‘er@n = False J

switchOnis: Satellite, i) Instrurment)

calibratels: Satellite, i Instrurment, d: Direction)



ItSimple - Sample State
Machine (Instrument)

I: Select | @ Initial State = State @ FinalState — Action Association  J® ZoomIn 2 Zoom Qut 1:1

turmTols: Satellice, dilew: Direction, dPrew: Directioni[...]/...

{satellite ready ko turn_\1

®
s
calibrate(s: Satelliceddastrument, d: Direction)[...]/...
swibchOn(s: Satellite, i@ Instrumentl[. /..
4 Sakellite's power available Satellite's power not availahle-\\
.4} s.powerhvailable = true s.powerfvailable = false
> swibchOFF(s: Satellite, i@ Instrurmentl[,..] I /]\

|
takelrnage(s: Satellice, i Instrurnent, d: Direction, m: Model[,]4.



I Some other KE Frameworks

EUROPA [Barreiro et al., 2012]

- Framework supporting NDDL and ANML
JABBAH [Gonzalez-Ferrer et al., 2009]

- Supports HTN
KEWI [Wickler et al., 2014]

— Object Centred (including inheritance)

- Web Application (supports collaboration)
VIZ [Vodrazka & Chrpa, 2010]

- A*light-weight” KE tool



I Planning.Domains

* “A Collection of Tools for Working with Planning
Domains” [Muise]

* Web application
* Rich editor (syntax highlighting, autocomplete, etc.)
* Plug-in support

* Repository of all domains and problems from the IPCs



Planning.Domains - Sample
Domain (Satellite)

<= ¢ @ ® planning.domains - @ 1 pddl domians - £+l

PDDL Editor ki File - ®Session ~ @Import # Solve ®Torchlight /Plugins @Help planning.domains

1 (define (domain satellite)

unamedr.pdd] 2 (:requirements :equality :strips)
3- (:predicates
domain.pddl 4 (on_board 71 7s) (supports ?i ?m) (pointing 7s ?d) (power_avail 7s) (power_on 7i) (calibrated ?1i) (have_image 7d 7m) (calibration_target 7i 7d)(satellite ?x) (direction 7x) (instrument 7x) (mode 7x)
5= (:action turn_to
6 :parameters ( ?s ?d_new ?d_prev)
Analysis (I) 7  :precondition
8 (and (satellite ?s) (direction ?d_new) (direction ?d_prev) (pointing ?s ?d_prev))
n 9 reffect
PDI_Ph]EI'pddl 10 (and (pointing ?s 7d_new) (not (pointing 7s 7d_prev))))
11
Analysis (2) 12~ (:action switch_on
5 13 :parameters ( 71 7s)
14 :precondition
Plan [IJ 15 (and (instrument 71) (satellite 7s) (on_board 71 7s) (power_avail 75))
16 reffect
17 (and (power_on 71i) (not (calibrated 7i)) (not (power_availl 7s))))
18
19~ (:action switch_off
20 :parameters ( ?1 ?s)
21 :precondition
22 (and (instrument 71) (satellite 7s) (on_board ?1 7s) (power_on 71i))
23 reffect
24 (and (power_avail 7s) (not (power_on 71))))
25
26 - (:action calibrate
27 :parameters ( ?s 71 7d)
28 :precondition
29 (and (satellite 7s) (instrument 71) (direction ?d)} (on_board 7?1 7s) (calibration_target ?i 7d) (pointing ?s ?d) (power_on 7i})
EL effect
3 (calibrated 1))
32
33~ (:action take_image
34 :parameters { ?s ?d ?1 m)
35 :precondition
36 (and (satellite ?s) (direction ?d) (instrument ?1) (mode 7m) (calibrated ?i) (on_board ?i ?s) (supports ?1 ?m) (power_on ?1) (pointing 7s 7d) (power_on 71))
37 effect
38 (have_image 7d n))
39
4w )



Planning.Domains - Sample
Plan (Satellite domain)

«=> C @ (@ editor.planning.domains/# - @ W pddl domi:

PDDL Editor ki File - ®Session ~ @Import 4 Solve ®Torchlight / Plugins @ Help

unamedrpddl

Found Plan (output)

domain.pddl
. (turn_to satelliteo groundstation2 phenomenon6) s e
Analysis (1) :parameters (satellite@ phenomenon4 groundstation2)
(switch_on instrumento satelliteo) :precondition
por-pfilerpddl (e ) )
(calibrate satelliteo instrumento groundstation2) [CaEETITEEgSa cel i tes)
x : ' (direction phenomenond)
Analyms [ZJ . . (direction groundstation2)
(turn_to satelliteo phenomenon4 groundstationz2) (pointing satellited groundstation2)
Plan (1) . )
(take_image satelliteo phenomenon4 instrumento thermographo) :effect
(and
(turn_to satelliteo star5 phenomenong) :pointmg satellited phenomenond)
) no
) . (pointing satellite® groundstation2)
(take_image satelliteo stars instrumento thermographo) )
)

(turn_to satelliteo phenomenon6 stars) )

(take_image satelliteo phenomenon6 instrumento thermographo)



Planning.Domains - Analysis
(by TorchLight)

PDDL Editor ki File + #®3Session ~ @Import # Solve ®Torchlight Plugins @ Help planning.domains

unamed1.pddl

Torchlight Output (readme)

domain.pddl

Analysis (1) TorchLight: parsing domain file
domain 'SATELLITE' defined
poI-pfiler.pddl a0 I,

TorchLight: parsing problem file

L problem 'STRIPS-SAT-X-1' defined
Analysis(2)

done.
Plan (1)
TorchLight: running Fast-Downward translator to generate variables ... done
TorchLight: creating SG and DTG structures ... done.
TorchLight: static examination of SG and DTG structures ... done.
S AR = = s e e e s e e e e e e e e e e e e e e
=== META - TN R A N = = == e e e e e e e e e e s e e e e e s e
Input domain : testing/domain.1516635316636.pddl
Input problem instance : testing/prob.1516635316636.pdd1
Number of sample states : 1000

---DOMAIN TRANSITION GRAPHS (DTG-t: DTG transition)------------o-omomooomnnnnooo
Perc vars all DTG-t invertible : 20

Perc vars all DTG-t no side-eff : 80 /* all no side effects */

Perc vars all DTG-t irr side-eff: 80 /* all side effect deletes irrelevant */

Perc well-behaved leaf vars : 180 /* support graph leaf vars satisfying global TorchLight criterion */
Perc well-behaved nonleaf vars : 66 /* support graph nonleaf vars satisfying global TorchLight criterion */
Perc DTG-t invertible 83

Perc DTG-t no side-ef T : 96 /* no side effects */

Perc DTG-t irr side-eff : 96 /* all side effect deletes irrelevant */

Perc DTG-t self-irr side-eff : 88 /* all side effect deletes irrelevant, except for own precond */

Perc DTG-t irr own-delete : 16 /* start value of transition is irrelevant */

---GUARANTEED GLOBAL ANALYSIS (USES GLOBAL DEPENDENCY GRAPHS gDG)-----------------

Perc successful gDG 5 @ /* = 180 ==> provably no local minima under h+ */
h+ exit distance bound : -1, -1.8@, -1 /* min, mean, max over successful gDGs (-1 if perc successful gDG = @); perc successful gDG = 180 ==> max is a provable
Perc gDG cyclic H @ /* perc gDG cannot be successful because cyclic */

Perc gDG t@ not Ok H @ /* perc gDG cannot be successful because deletes of t8 harmful */



Domain Control Knowledge and
Model Reformulation



Domain Control Knowledge
(DCK)

Captures useful domain-specific information

Provides “guidance” for planning engines

Complement “raw” domain model specification

Two main categories of DCK

- Planner-specific (e.g. TALPlanner, Roller)
- Planner-independent (this talk !)



I Planner-independent DCK

Domain and Problem

il DCK
specification

\

Enhanced Domain
and Problem specification

v

Generic Planning Engine

v

Enhanced Plan

#

Plan




I Obtaining DCK

o Automatically
- training based
-online

 Manually



I Macro-operators (Macros)

* Primitive operators can be assembled into one single
operator — macro-operator (macro)

« Assemblage of operators 0, and 0 into O, ;:
- pre(o;)) = pre(o;)U(pre(o) —add(0))
— del(o,)) = (del(0,) — add(o;))udel(0))
~ add(o, )= (add(o,) — del(0))Uadd(o))

* Widely studied (e.g. Macro-FF, Wizard, MUM,
BLOMA)



Macros - example

& unstack(B,A) I ;

2

B putdown(B)

2

unstack-putdown(B,A)
| =
B

A A B
unstack(X,Y) = pudown(X) =
{ {on(X,Y),clear(X),handempty} //prec { {holding(X)} //prec
{on(X,Y),clear(X),handempty} //neg eff {holding(X)} //neg eff
{holding(X),clear(Y)} } //pos eff {ontable(X),on(X),clear(X),handempty} } //pos eff

unstack-putdown(X,Y) =

{ {on(X,Y),clear(X),handempty} //prec
{on(X,Y),holding(X),} //neg eff
{clear(X),clear(Y),ontable(X),handempty} } //pos eff



Macros - Benefits and
Shortcomings

Macros can be understood as 'short-cuts' in the search
space

Solution plans can be much shorter

Introducing macros can increase branching factor
considerably !

There might be high memory requirements for planners

“A short-cut Is the longest
way between two points”



Outer Entanglements [Chrpa
& McCluskey 2012]

» Outer entanglements are relations between planning
operators and initial or goal predicates

* Entanglement by init — allows only such instances of
an operator requiring an initial predicate

 Entanglement by goal - allows only such instances
of an operator achieving goal predicates



Unstack(X,Y) = Stack(X,Y) =
( Iear(X),handempty} //prec ( {holdlng( ),.clear(Y)} //prec
{on(X,Y),clear(X),handempty} //neg eff {halding(X),clear(Y)} //neg eff

{holding(X),clear(Y)} ) //pos eff ‘m) lear(X),handempty} ) //pos eff

entangled
by init

entangled
by goal

@c,s) | on(
on(B,A) }——

A C |—

init goal

allowed: Unstack(C,B), Unstack(B,A) allowed: Stack(A,B), Stack(B,C)



Outer Entanglements -
benefits and shortcomings

* Outer Entanglements restrict the number of
Instantiated operators

» Outer Entanglements (significantly) reduces memory
requirements

 The method for extracting outer entanglements does
not ensure completeness



ICombining Macros and Outer
Entanglements

« MUM [Chrpa et al., 2014]

- Outer entanglements can reduce branching factor
the macros introduce

- Applying outer entanglements only on macros does
not compromise completeness

- Outer entanglements provide heuristics in the
macro learning process

e OMA [Chrpa et al., 2015] — an online version of MUM



Transition-based DCK [Chrpa
& Bartak, 2016]

Inspired by Finite State Automata

Define “grammar” of solution plans

“*Schematical” representation is easier to understand
by non-experts in planning

» Can be incorporated in planning domain models



Transition-based DCK - formal
specification
. Aquadruple (S,0,T;s ) where

- S iIs a set of DCK states
— SOES IS the Initial DCK state

- O Is a set of planning operators
- T Is a set of transitions

* Each transition is in the form (s,0,C,s’) where
- §,S'eS, 00

— C Is a set of constraints where each is in the form

e p,—p —p must or must not be in the current planning state
* Q. p—p must be an open goal in the current planning state



Specifying Transition-based
DCK - an example

 An empty truck (can carry at most one package)
should move only to locations where some package is
waiting to be delivered

» After a package that has to be delivered is loaded into
the truck, the truck moves to package's goal location
where the package is then unloaded

Drive; at(?p ?to), g: at(?p ?dest), ?to != ?dest

Load; g: at(?p ?dest), ?dest = 71 Drive; in(?p ?t), g: at(?p ?to)

Unload; g: at(?p ?1)



I Impact of DCK

 Macros and Entanglements have considerable
Impact on performance in some cases

e Transition-based DCK in some cases
“determinize” the planning process

e Changes in the domain model might require
considerable changes in DCK



Impact of DCK on the KE
process

* |n practice, separating the “raw” domain model and
DCK Is easier to maintain

» Extend existing KE tools (e.g. itSimple,
Planning.Domains) by supporting automatic/manual
DCK acquisition

* Understanding in which cases planners fail and how
DCK can alleviate such an issue

- Even changing the order of operators and
predicates in their preconditions/effects have a
significant impact on planners' performance !



I Conclusions

» KE process in planning is still “black art”
- No guidelines/methodologies
— Little support of KE tools
- Effective DCK acquisition support

A little to nothing has been done in non-classical
planning

* Addressing these issues will significantly

strengthen the position of domain-independent
planning in other Al areas
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