
Automated Action Planning
Classical Planning for Non-Classical Planning Formalisms

Carmel Domshlak

Carmel Domshlak Automated Action Planning 1 / 44



Automated Action Planning
— Classical Planning for Non-Classical Planning Formalisms

Overview

Replanning

Contingent (Stochastic) Planning

Expressiveness and Compilation
Examples

Soft Goals and Net-Benefit Planning

Conformant Planning
Belief space
K0

KT ,M

Carmel Domshlak Automated Action Planning 2 / 44



Overview

Beyond Classical Planning

Richer models people are working on

1. Temporal Planning (action have duration)

2. Metric Planning (continuous variables)

3. Planning with Preferences

4. Planning with Resource Constraints

5. Net-benefit Planning (maximize net value of goals achieved)

6. Generalized Planning (complex control structures, such as loops)

7. Multi-agent Planning

8. Planning Under Uncertainty:

8.1 Conformant Planning
8.2 Contingent Planning
8.3 Markov Decision Processes (MDPs)
8.4 Partially Observable MDPs
8.5 Conformant Probabilistic Planning (Fully Unobservable POMDPs)

Carmel Domshlak Automated Action Planning 3 / 44



Overview

How many courses on planning do we need?

Key Insights:

, Classical planning offers a wealth of ideas for generating good
solutions, fast.

/ Importing these ideas to each of the above non-classical formalisms is
difficult, and often simply does not work.

Yet:

, Goal oriented sequencing of actions is a fundamental computational
problem at the heart of all planning problems.

, Classical planners have reached a certain performance level that
makes them attractive for addressing this problem.

So...

Carmel Domshlak Automated Action Planning 4 / 44



Overview

Two Strategies

1. Top-down:
Develop native solvers for more general class of models

+: generality
−: complexity

2. Bottom-up: Extend the scope of ’classical’ solvers

+: efficiency
−: generality

We now explore the second approach

Carmel Domshlak Automated Action Planning 5 / 44



Overview

Using Classical Planners within Non-Classical Planners

Two Key Techniques:

1. Replanning: the classical problem is an optimistic view of the original
problem

2. Compilation: the classical problem is equivalent to the original
problem
(possibly under certain reasonable conditions)

Carmel Domshlak Automated Action Planning 6 / 44



Replanning

Replanning

An online method for solving planning problems with some uncertainty

1. Make some assumptions → get a simpler model

2. Solve simpler model

3. Execute until your observation contradict your assumptions

4. Repeat (Replan)

An established technique:

I Underlies many closed loop controllers

I Used in motion planning under uncertainty

Carmel Domshlak Automated Action Planning 7 / 44



Expressiveness and Compilation

Motivation: Why Analyzing the Expressive Power?

I Expressive power is the motivation for designing new planning
languages

; Often there is the question: Syntactic sugar or essential feature?

I Compiling away or change planning algorithm?

I If a feature can be compiled away, then it is apparently only syntactic
sugar.

I However, a compilation can lead to much larger planning domain
descriptions or to much longer plans.

; This means the planning algorithm will probably choke, i.e., it cannot
be considered as a compilation

Carmel Domshlak Automated Action Planning 14 / 44



Expressiveness and Compilation Examples

Example: DNF Preconditions

I Assume we have DNF preconditions in STRIPS operators

I This can be compiled away as follows

I Split each operator with a DNF precondition c1 ∨ . . . ∨ cn into n
operators with the same effects and ci as preconditions

; If there exists a plan for the original planning task there is one for the
new planning task and vice versa

→ The planning task has almost the same size

→ The shortest plans have the same size

Carmel Domshlak Automated Action Planning 15 / 44



Expressiveness and Compilation Examples

Example: Conditional effects

I Can we compile away conditional effects to STRIPS?

I Example operator: 〈a, b B d ∧ ¬c B e〉
I Can be translated into four operators:
〈a ∧ b ∧ c , d〉, 〈a ∧ b ∧ ¬c , d ∧ e〉, . . .

I Plan existence and plan size are identical

I Exponential blowup of domain description!

→ Can this be avoided?

Carmel Domshlak Automated Action Planning 16 / 44



Soft Goals and Net-Benefit Planning

FDR Planning with Soft Goals

I Planning with soft goals aimed at plans π that maximize utility

u(π) =
∑

p∈appπ(I )

u(p) −
∑
a∈π

cost(a)

I Best plans achieve best tradeoff between action costs and rewards
; Note: ”do nothing” is always a valid plan.
→ Suggests conceptual difference?

I Model used in recent planning competitions; net-benefit track 2008
IPC

I Yet soft goals do not add expressive power; they can be compiled away

Carmel Domshlak Automated Action Planning 17 / 44



Soft Goals and Net-Benefit Planning

FDR Planning with Soft Goals

I For each soft goal p, create new hard goal p′ initially false, and two
new actions:

I collect(p) with precondition p, effect p′ and cost 0, and
I forgo(p) with an empty precondition, effect p′ and cost u(p)

I Plans π maximize u(π) iff minimize cost(π) =
∑

a∈π cost(a) in
resulting problem

I Any helpful in practice?

I Compilation yields better results that native soft goal planners in
2008 IPC [KG07]

IPC-2008 Net-Benefit Track Compiled Problems

Domain Gamer HSP*
P Mips-XXL Gamer HSP*

F HSP*
0 Mips-XXL

crewplanning(30) 4 16 8 - 8 21 8
elevators (30) 11 5 4 18 8 8 3

openstacks (30) 7 5 2 6 4 6 1
pegsol (30) 24 0 23 22 26 14 22

transport (30) 12 12 9 - 15 15 9
woodworking (30) 13 11 9 - 23 22 7

total 71 49 55 84 86 50

Carmel Domshlak Automated Action Planning 18 / 44



Temporal Planning –
Compilation to Classical Planning

Antońın Komenda
slides based on Crikey 3 slides

February 27, 2017



Planning with Time

I classical planning has instantaneous actions (no explicit
duration)

I preconditions→action→effects

I temporal planning has actions with durations (from PDDL2.1)

I start conditions→action start→start effects
I duration of the action, over all condition (invariant)
I end preconditions→action end→end effects



Durative Actions in PDDL

(:durative-action LOAD-TRUCK
:parameters (?obj - obj ?truck - truck ?loc - location)
:duration (= ?duration 2)
:condition (and

(over all (at ?truck ?loc))
(at start (at ?obj ?loc)) )

:effect (and
(at start (not (at ?obj ?loc)))
(at end (in ?obj ?truck))

)
)



Action Compilation

I compilation of the durative actions to STRIPS

I solve the STRIPS problem

I reconstruct the temporal plan?



Action Compression

I firstly used in TGP planner
I the TGP compilation removes the distinction of start and end

parts of durative actions
I preconditions = start condition ∧ end condition ∧ over all

condition
I effects = start effects ∧ end effects

I is this enough? is temporal planning syntactic sugar?



Required Concurrency

I No.

I TGP compilation is unsound and incomplete



The Match Problem

I Consider:
I An engineer must mend a fuse in a dark cellar
I To do this he will require light, which can be provided by a

match
I He can perform two actions: light a match and mend a fuse

I durative actions: LIGHT MATCH 8s, MEND FUSE 5s

I LIGHT MATCH needs an unused match u at the beginning
and lights l the match over all

I LIGHT MATCH uses the match ¬u and lights the match l at
the beginning

I LIGHT MATCH blows out the light ¬l and not use it u at the
end

I MEND FUSE needs light l over all duration (and free hands f )

I MEND FUSE mends the fuse m at the end (hands are not
free ¬f at the beginning, but are free at the end f )



LPGP Compilation (on Example)

I LIGHT MATCH START pre:u, eff:¬u, l , z
(new atom z – action started)

I LIGHT MATCH INV pre:z , l , eff: i
(new atom i – inv. checked)

I LIGHT MATCH END pre: z , i , eff: ¬l ,¬z ,¬i
I Problems:

I we need to ensure that all actions that are started have ended
I invariants can be violated



CRIKEY!

I Solution: Crikey! planner

I using Simple Temporal Networks (STN)

I condition whether all actions ended in goal
I keeps scheduling constraints

I at each state builds STN
I uses Floyd-Warshall to check negative temporal cycles, if such

exist the STN is inconsistent
I prune stated with inconsistent STNs


