Automated Action Planning

Classical Planning for Non-Classical Planning Formalisms

Carmel Domshlak

OPP oo
A J el

EVROFSK! UNIE

Carmel Domshlak Automated Action Planning 1/ 44

Automated Action Planning

— Classical Planning for Non-Classical Planning Formalisms

Overview
Replanning
Contingent (Stochastic) Planning

Expressiveness and Compilation
Examples

Soft Goals and Net-Benefit Planning

Conformant Planning
Belief space
Ko
Kt m

Carmel Domshlak Automated Action Planning

2/ 44

Overview

Beyond Classical Planning

Richer models people are working on

N O AN

Temporal Planning (action have duration)

Metric Planning (continuous variables)

Planning with Preferences

Planning with Resource Constraints

Net-benefit Planning (maximize net value of goals achieved)
Generalized Planning (complex control structures, such as loops)
Multi-agent Planning

Planning Under Uncertainty:

8.1 Conformant Planning

8.2 Contingent Planning

8.3 Markov Decision Processes (MDPs)

8.4 Partially Observable MDPs

8.5 Conformant Probabilistic Planning (Fully Unobservable POMDPs)

Carmel Domshlak Automated Action Planning 3/ 44

Overview

How many courses on planning do we need?

Key Insights:

© Classical planning offers a wealth of ideas for generating good
solutions, fast.

® Importing these ideas to each of the above non-classical formalisms is
difficult, and often simply does not work.
Yet:

© Goal oriented sequencing of actions is a fundamental computational
problem at the heart of all planning problems.

© Classical planners have reached a certain performance level that
makes them attractive for addressing this problem.

So...

Carmel Domshlak Automated Action Planning 4 /44

Overview

Two Strategies

1. Top-down:
Develop native solvers for more general class of models

+: generality
—: complexity

2. Bottom-up: Extend the scope of 'classical’ solvers

+: efficiency
—: generality

We now explore the second approach

Carmel Domshlak Automated Action Planning

5/ 44

Overview

Using Classical Planners within Non-Classical Planners

Two Key Techniques:

1. Replanning: the classical problem is an optimistic view of the original
problem

2. Compilation: the classical problem is equivalent to the original
problem
(possibly under certain reasonable conditions)

Carmel Domshlak Automated Action Planning 6 /44

Replanning

Replanning

An online method for solving planning problems with some uncertainty

1. Make some assumptions — get a simpler model

2. Solve simpler model

3. Execute until your observation contradict your assumptions
4

. Repeat (Replan)

An established technique:

» Underlies many closed loop controllers

» Used in motion planning under uncertainty

Carmel Domshlak Automated Action Planning 7/ 44

Expressiveness and Compilation

Motivation: Why Analyzing the Expressive Power?

» Expressive power is the motivation for designing new planning
languages

~» Often there is the question: Syntactic sugar or essential feature?

v

Compiling away or change planning algorithm?
» If a feature can be compiled away, then it is apparently only syntactic
sugar.

» However, a compilation can lead to much larger planning domain
descriptions or to much longer plans.

~> This means the planning algorithm will probably choke, i.e., it cannot
be considered as a compilation

Carmel Domshlak Automated Action Planning 14 / 44

Expressiveness and Compilation Examples

Example: DNF Preconditions

» Assume we have DNF preconditions in STRIPS operators

» This can be compiled away as follows

» Split each operator with a DNF precondition ¢; V...V ¢, into n
operators with the same effects and ¢; as preconditions

~ If there exists a plan for the original planning task there is one for the
new planning task and vice versa

l

The planning task has almost the same size

l

The shortest plans have the same size

Carmel Domshlak Automated Action Planning 15 / 44

Expressiveness and Compilation Examples

Example: Conditional effects

v

Can we compile away conditional effects to STRIPS?

v

Example operator: (a,b>d A —c > e)

v

Can be translated into four operators:
(anbAc,d)y,(anbA-c,dNe),...

» Plan existence and plan size are identical
» Exponential blowup of domain description!
— Can this be avoided?

Carmel Domshlak Automated Action Planning 16 / 44

Soft Goals and Net-Benefit Planning

FDR Planning with Soft Goals

» Planning with soft goals aimed at plans 7 that maximize utility

u(m)=>_ ulp) - > cost(a)

p€appr (1) aem

» Best plans achieve best tradeoff between action costs and rewards
~> Note: "do nothing” is always a valid plan.
— Suggests conceptual difference?

» Model used in recent planning competitions; net-benefit track 2008
IPC

> Yet soft goals do not add expressive power; they can be compiled away

Carmel Domshlak Automated Action Planning 17 / 44

Soft Goals and Net-Benefit Planning

FDR Planning with Soft Goals

» For each soft goal p, create new hard goal p’ initially false, and two
new actions:
» collect(p) with precondition p, effect p’ and cost 0, and
» forgo(p) with an empty precondition, effect p’ and cost u(p)
» Plans m maximize u(w) iff minimize cost(w) = Y. . _cost(a) in
resulting problem

acm

» Any helpful in practice?

» Compilation yields better results that native soft goal planners in
2008 IPC

IPC-2008 Net-Benefit Track Compiled Problems

Domain Gamer HSPL Mips-XXL | Gamer HSPp HSPy Mips-XXL
crewplanning(30) 4 16 8 - 8 21 8
elevators (30) 11 5 4 18 8 8 3
openstacks (30) 7 5 2 6 4 6 1
pegsol (30) 24 0 23 22 26 14 22
transport (30) 12 12 9 - 15 15 9
woodworking (30) 13 11 9 - 23 22 7
total 71 49 55 84 86 50

Carmel Domshlak Automated Action Planning 18 / 44

Temporal Planning —
Compilation to Classical Planning

Antonin Komenda
slides based on Crikey 3 slides

February 27, 2017

Planning with Time

» classical planning has instantaneous actions (no explicit
duration)

» preconditions—action—effects
» temporal planning has actions with durations (from PDDL2.1)

» start conditions—action start—start effects
» duration of the action, over all condition (invariant)
» end preconditions—action end—end effects

Durative Actions in PDDL

(:durative-action LOAD-TRUCK
:parameters (?obj - obj ?truck - truck ?loc - location)
:duration (= ?duration 2)
:condition (and

(over all (at ?truck ?loc))
(at start (at ?obj ?loc)))
-effect (and
(at start (not (at ?obj ?loc)))
(at end (in ?obj ?truck))
)
)

Action Compilation

» compilation of the durative actions to STRIPS
» solve the STRIPS problem

» reconstruct the temporal plan?

Action Compression

» firstly used in TGP planner

» the TGP compilation removes the distinction of start and end
parts of durative actions

» preconditions = start condition A end condition A over all
condition
» effects = start effects A end effects

» is this enough? is temporal planning syntactic sugar?

Required Concurrency

» No.

» TGP compilation is unsound and incomplete

The Match Problem

v

Consider:

» An engineer must mend a fuse in a dark cellar

» To do this he will require light, which can be provided by a
match

» He can perform two actions: light a match and mend a fuse

durative actions: LIGHT_MATCH 8s, MEND_FUSE 5s
LIGHT_MATCH needs an unused match v at the beginning
and lights / the match over all

LIGHT _MATCH uses the match —u and lights the match / at
the beginning

LIGHT _MATCH blows out the light —/ and not use it v at the
end

MEND_FUSE needs light / over all duration (and free hands f)

MEND_FUSE mends the fuse m at the end (hands are not
free —f at the beginning, but are free at the end f)

LPGP Compilation (on Example)

v

LIGHT _MATCH_START pre:u, eff:—u, /, z
(new atom z — action started)

LIGHT _MATCH_INV pre:z, I, eff: i
(new atom i — inv. checked)

LIGHT_MATCH_END pre: z,i, eff: =/, =z, i
Problems:

v

v

v

» we need to ensure that all actions that are started have ended
» invariants can be violated

CRIKEY!

v

Solution: Crikey! planner

v

using Simple Temporal Networks (STN)

v

condition whether all actions ended in goal

v

keeps scheduling constraints

> at each state builds STN

» uses Floyd-Warshall to check negative temporal cycles, if such
exist the STN is inconsistent

» prune stated with inconsistent STNs

