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1. Representations

Definition 1. A STRIPS planning task Π is specified by a tuple Π = 〈F ,O, sinit , sgoal , c〉,
where F = {f1, ..., fn} is a set of facts, O = {o1, ..., om} is a set of operators, and c is a
cost function mapping each operator to a non-negative real number. A state s ⊆ F is a set
of facts, sinit ⊆ F is an initial state and sgoal ⊆ F is a goal specification. An operator
o is a triple o = 〈pre(o), add(o),del(o)〉, where pre(o) ⊆ F is a set of preconditions, and
add(o) ⊆ F and del(o) ⊆ F are sets of add and delete effects, respectively. All operators are
well-formed, i.e., add(o)∩ del(o) = ∅ and pre(o)∩ add(o) = ∅. An operator o is applicable
in a state s if pre(o) ⊆ s. The resulting state of applying an applicable operator o in a
state s is the state o[s] = (s \ del(o)) ∪ add(o). A state s is a goal state iff sgoal ⊆ s.

A sequence of operators π = 〈o1, ..., on〉 is applicable in a state s0 if there are states
s1, ..., sn such that oi is applicable in si−1 and si = oi[si−1] for 1 ≤ i ≤ n. The resulting
state of this application is π[s0] = sn and the cost of the plan is c(π) =

∑
o∈π c(o). A

sequence of operators π is called a plan iff sgoal ⊆ π[sinit ], and an optimal plan is a plan
with the minimal cost over all plans.

Definition 2. An FDR planning task P is specified by a tuple P = 〈V,O, sinit , sgoal , c〉,
where V is a finite set of variables. Each variable V ∈ V has a finite domain DV . A
(partial) state s is a (partial) variable assignement over V. We write vars(s) for the set
of variables defined in s and s[V ] for the value of V in s. The notation s[V ] = ⊥ means
that V 6∈ vars(s). A partial state s is consistent with a partial state s′ if s[V ] = s′[V ]
for all V ∈ vars(s′). We say that atom V = v is true in a (partial) state s iff s[V ] = v.
By c we denote a cost function mapping each operator to a non-negative real number. An
operator o ∈ O is a pair o = 〈pre(o), eff(o)〉, where precondition pre(o) and effect eff(o)
are partial assignements over V. We require that V = v cannot be both a precondition and
an effect. The (complete) state sinit is the initial state of the task and the partial state
sgoal describes its goal.

An operator o is applicable in a state s if s is consistent with pre(o). The resulting
state of applying an applicabe operator o in the state s is the state res(o, s) with

res(o, s) =

{
eff(o)[V ] if V ∈ vars(eff(o)),

s[V ] otherwise.

A sequence of operators π = 〈o1, ..., on〉 is applicable in a state s0 if there are states
s1, ..., sn such that oi is applicable in si−1 and si = res(oi, si−1) for 1 ≤ i ≤ n. The resulting
state of this application is res(π, s0) = sn and the cost of the plan is c(π) =

∑
o∈π c(o).
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Figure 1: Example problem.

A sequence of operators π is called a plan iff res(π, sinit) is consistent with sgoal , and an
optimal plan is a plan with the minimal cost over all plans.

Exercises
Ex. 1.1 — Model the problem from Fig. 1 in STRIPS.

Ex. 1.2 — Model the problem from Fig. 1 in FDR.

2. hmax Heuristic

Definition 3. Given a STRIPS planning task Π = 〈F ,O, sinit , sgoal , c〉, Π+ = 〈F ,O+, sinit ,
sgoal , c〉 denotes a relaxed STRIPS planning task, where O+ = {o+

i = 〈pre(oi), add(oi), ∅〉
| oi ∈ O}.

Definition 4. Let Π = 〈F ,O, sinit , sgoal , c〉 denote a STRIPS planning task. The heuristic
function hadd(s) gives an estimate of the distance from s to a node that satisfies the goal
sgoal as hadd(s) = Σf∈sgoal ∆0(s, f), where:

∆0(s, o) = Σf∈pre(o)∆0(s, f), ∀o ∈ O,

and

∆0(s, f) =


0 if f ∈ s,
∞ if ∀o ∈ O : f 6∈ add(o),

min{c(o) + ∆0(s, o) | o ∈ O, f ∈ add(o)} otherwise.

Definition 5. Let Π = 〈F ,O, sinit , sgoal , c〉 denote a STRIPS planning task. The heuristic
function hmax(s) gives an estimate of the distance from s to a node that satisfies the goal
sgoal as hmax(s) = maxf∈sgoal ∆1(s, f), where:

∆1(s, o) = max
f∈pre(o)

∆1(s, f), ∀o ∈ O,
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and

∆1(s, f) =


0 if f ∈ s,
∞ if ∀o ∈ O : f 6∈ add(o),

min{c(o) + ∆1(s, o) | o ∈ O, f ∈ add(o)} otherwise.

Algorithm 1: Algorithm for computing hmax(s).

Input: Π = 〈F ,O, sinit , sgoal , c〉, state s
Output: hmax(s)

1 for each f ∈ s do ∆1(s, f)← 0;
2 for each f ∈ F \ s do ∆1(s, f)←∞;
3 for each o ∈ O do U(o)← |pre(o)|;
4 C ← ∅;
5 while sgoal 6⊆ C do
6 c← arg minf∈F\C ∆1(s, f);

7 C ← C ∪ {c};
8 for each o ∈ O, c ∈ pre(o) do
9 U(o)← U(o)− 1;

10 if U(o) = 0 then
11 for each f ∈ add(o) do
12 ∆1(s, f)← min{∆1(s, f), c(o) + ∆1(s, c)};
13 end

14 end

15 end

16 end
17 hmax(s) = maxf∈sgoal ∆1(s, f);

Exercises

Ex. 2.1 — Modify Algorithm 1 to compute hadd instead of hmax.

Ex. 2.2 — Compute hmax(sinit), hadd(sinit), h+(sinit), and h?(sinit) for the following prob-
lem Π = 〈F ,O, sinit , sgoal , c〉:
F = {a, b, c, d, e, f, g}

O =

pre add del c

o1 {a} {c, d} {a} 1
o2 {a, b} {e} ∅ 1
o3 {b, e} {d, f} {a, e} 1
o4 {b} {a} ∅ 1
o5 {d, e} {g} {e} 1

sinit = {a, b}, sgoal = {f, g}
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3. LM-Cut Heuristic

Definition 6. A disjunctive operator landmark L ⊆ O is a set of operators such that
every plan contains at least one operator from L.

Definition 7. Let Π = 〈F ,O, sinit , sgoal , c〉 denote a planning task, let ∆1 denote the
function from Definition 5 for Π, and let supp(o) = arg maxf∈pre(o) ∆1(f) denote a function
mapping each operator to its supporter.

A justification graph G = (N,E) is a directed labeled multigraph with a set of nodes
N = {nf | f ∈ F} and a set of edges E = {(ns, nt, o) | o ∈ O, s = supp(o), t ∈ add(o)},
where the triple (a, b, l) denotes an edge from a to b with the label l.

An s-t-cut C(G, s, t) = (N0, N? ∪ N b) is a partitioning of nodes from the justification
graph G = (N,E) such that N? contains all nodes from which t can be reached with a
zero-cost path, N0 contains all nodes reachable from s without passing through any node
from N?, and N b = N \ (N0 ∪N?).

Algorithm 2: Algorithm for computing hlm-cut(s).

Input: Π = 〈F ,O, sinit , sgoal , c〉, state s
Output: hlm-cut(s)

1 hlm-cut(s)← 0;
2 Π1 = 〈F ′ = F ∪ {I,G},O′ = O ∪ {oinit , ogoal}, s′init = {I}, s′goal = {G}, c1〉, where

pre(oinit) = {I}, add(oinit) = sinit , del(oinit) = ∅, pre(ogoal ) = sgoal ,
add(ogoal ) = {G}, del(ogoal ) = ∅, c1(oinit) = 0, c1(ogoal ) = 0, and c1(o) = c(o) for all
o ∈ O;

3 i← 1;
4 while hmax(Πi, s

′
init) 6= 0 do

5 Construct a justification graph Gi from Πi;

6 Construct an s-t-cut Ci(Gi, nI , nG) = (N0
i , N

?
i ∪N b

i );
7 Create a landmark Li as a set of labels of edges that cross the cut Ci, i.e., they

lead from N0
i to N?

i ;
8 mi ← mino∈Li ci(o);

9 hlm-cut(s)← hlm-cut(s) +mi;
10 Set Πi+1 = 〈F ′,O′, s′init , s′goal , ci+1〉, where ci+1(o) = ci(o)−mi if o ∈ Li, and

ci+1(o) = ci(o) otherwise;
11 i← i+ 1;

12 end

Exercises

Ex. 3.1 — Modify Algorithm 1 to compute hmax and to find supporters from Definition 7
at the same time.

Ex. 3.2 — Compute hlm-cut(sinit) for the following problem Π = 〈F ,O, sinit , sgoal , c〉:
F = {s, t, q1, q2, q3}
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O =

pre add del c

o1 {s} {q1, q2} ∅ 1
o2 {s} {q1, q3} ∅ 1
o3 {s} {q2, q3} ∅ 1
fin {q1, q2, q3} {t} ∅ 0

sinit = {s}, sgoal = {t}

Ex. 3.3 — Compute hmax(sinit), hlm-cut(sinit), h+(sinit), and h?(sinit) for the following
problem Π = 〈F ,O, sinit , sgoal , c〉:
F = {a, b, c, d, e, i, g}

O =

pre add del c

o1 {i} {a, b} ∅ 2
o2 {i} {b, c} ∅ 3
o3 {a, c} {d} {c} 1
o4 {b, d} {e} {b} 3
o5 {a, c, e} {g} {c, d} 1
o6 {a} {e} {a, c} 5

sinit = {i}, sgoal = {g}

Ex. 3.4 — Decide dominance for the following cases: hmax < hadd, hmax < hlm-cut, hmax

< h+, hlm-cut 4 h+, hlm-cut < hmax.

4. Merge And Shrink Heuristic

Definition 8. A transition system is a tuple T = 〈S,L, T, I,G〉, where S is a finite set
of states, L is a finite set of labels, each label has cost c(l) ∈ R+

0 , T ⊆ S × L × S is a
transition relation, I ⊆ S is a set of initial states, and G ⊆ S is a set of goal states.

Definition 9. Given an FDR planning task P = 〈V,O, sinit , sgoal , c〉, T (P ) = 〈S,L, T, I,G〉
denote a transition system of P , where S is a set of states over V, L = O, T =
{(s, o, t) | res(o, s) = t}, I = {sinit}, and G = {s | s ∈ S, s is consistent with sgoal}.

Definition 10. Let T 1 = 〈S1, L, T 1, I1, G1〉 and T 2 = 〈S2, L, T 2, I2, G2〉 denote two tran-
sition systems with the same set of labels, and let α : S1 7→ S2. We say that S2 is
an abstraction of S1 with abstraction function α if for every s ∈ I1 it holds that
α(s) ∈ I2 and for every s ∈ G1 it holds that α(s) ∈ G2 and for every (s, l, t) ∈ T 1 it holds
that (α(s), l, α(t)) ∈ T 2.

Definition 11. Let P denote an FDR planning task, let A denote an abstraction of a
transition system T (P ) = 〈S,L, T, I,G〉 with the abstraction function α. The abstraction
heuristic induced by A and α is the function hA,α(s) = h?(A, α(s)) for all s ∈ S.

Definition 12. Given two transition systems T 1 = 〈S1, L, T 1, I1, G1〉 and T 2 = 〈S2, L, T 2,
I2, G2〉 with the same set of labels, the synchronized product T 1⊗T 2 = T is a transition
system T = 〈S,L, T, I,G〉, where S = S1 × S2, T = {((s1, s2), l, (t1, t2)) | (s1, l, s2) ∈
T 1, (s2, l, t2) ∈ T 2}, I = I1 × I2, and G = G1 ×G2.
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Algorithm 3: Algorithm for computing merge-and-shrink.

Input: P = 〈V,O, sinit , sgoal , c〉
Output: Abstraction M

1 A ← Set of (atomic) abstractions (αi, Ti) of T (P );
2 while |A| > 1 do
3 A1 = (α1, T1), A2 = (α2, T2)← Select two abstractions from A;
4 Shrink A1 and/or A2 until they are “small enough”;
5 A ← (A \ {A1, A2}) ∪ (A1 ⊗A2) // Merge

6 end
7 M← The only element of A;

Exercises

Ex. 4.1 — Compute the synchronized product of T 1 = 〈S1, L, T 1, I1, G1〉 and T 2 =
〈S2, L, T 2, I2, G2〉, where L = {a, b, c, d, e}, S1 = {A,B,C,D}, T 1 = {(A, a,B), (B, b, C),
(C, c,A), (A, d,A), (A, e,D)}, I1 = {A,B}, G1 = {A,C}, S2 = {X,Y, Z}, T 2 = {(X, a, Y ),
(X, a, Z), (Y, b, Z), (Z, c, Y ), (Z, d, Y ), (Z, e, Z)}, I2 = {X}, and G2 = {X}.

Ex. 4.2 — Study merge and shrink strategies proposed by Helmert, Haslum, and Hoff-
mann (2007) and compute hm&s(sinit) for the problem in Fig. 1 (Ex. 1.2).

5. LP-Based Heuristics

Definition 13. Let P = 〈V,O, sinit , sgoal , c〉 denote an FDR planning task. The do-
main transition graph for a variable V ∈ V is a tuple AV = (NV , LV , TV ), where
NV = {nv | v ∈ DV } ∪ {n⊥} is a set of nodes, LV = {o | o ∈ O, V ∈ vars(pre(o)) ∪
vars(eff(o))} is a set of labels, and TV ⊆ NV × LV × NV is a set of transitions TV =
{(nu, o, nv) | o ∈ LV , V ∈ vars(eff(o)),pre(o)[V ] = u, eff(o)[V ] = v} ∪ {(nv, o, nv) | o ∈
LV , V 6∈ vars(eff(o)),pre(o)[V ] = v}.

Definition 14. Let P = 〈V,O, sinit , sgoal , c〉 denote an FDR planning task, AV = (NV , LV , TV )
a domain transition graph for each variable V ∈ V, and s a state reachable from sinit . Given
the following linear program with real-valued variables xo for each operator o ∈ O:

minimize
∑
o∈O

c(o)xo

subject to LBV,v ≤
∑

(v′,o,v)∈TV

xo −
∑

(v,o,v′)∈TV

xo ∀V ∈ V,∀v ∈ DV ,

where

LBV,v =


0 if V ∈ vars(sgoal ) and sgoal [V ] = v and s[V ] = v,
1 if V ∈ vars(sgoal ) and sgoal [V ] = v and s[V ] 6= v,
−1 if (V 6∈ vars(sgoal ) or sgoal [V ] 6= v) and s[V ] = v,

0 if (V 6∈ vars(sgoal ) or sgoal [V ] 6= v) and s[V ] 6= v,
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then the value of the flow heuristic hflow(s) for the state s is

hflow(s) =

{ ⌈∑
o∈O c(o)xo

⌉
if the solution is feasible,

∞ if the solution is not feasible.

(Bonet, 2013; Bonet & van den Briel, 2014)

Definition 15. Let P = 〈V,O, sinit , sgoal , c〉 denote an FDR planning task and s a state
reachable from sinit . Given the following linear program with real-valued variables PV,v for
each variable V ∈ V and each value v ∈ DV , and real-valued variables MV for each variable
V ∈ V:

maximize
∑
V ∈V

PV,s[V ]

subject to PV,v ≤MV ∀V ∈ V,∀v ∈ DV∑
V ∈V

maxpot(V, sgoal ) ≤ 0∑
V ∈vars(eff(o))

(maxpot(V,pre(o))− PV,eff(o)[V ]) ≤ cost(o) ∀o ∈ O,

where

maxpot(V, p) =

{
PV,p[V ] if V ∈ vars(p),

MV otherwise .

then the value of the potential heuristic hpot(s) for the state s is

hpot(s) =

{ ⌈∑
V ∈V PV,s[V ]

⌉
if the solution is feasible,

∞ if the solution is not feasible.

(Pommerening, Helmert, Röger, & Seipp, 2015; Seipp, Pommerening, & Helmert, 2015)

Exercises

Ex. 5.1 — Compute the hflow(sinit) and hpot(sinit) for the problem from Fig. 1.

Ex. 5.2 — How can be flow heuristic improved with landmarks (e.g., from the LM-Cut
heuristic)?

Ex. 5.3 — How can we modify objective of the LP for the potential heuristic so we still
obtain admissible estimate for all reachable states?
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