
Hierarchical Task Network

Jiří Vokřínek
A4M36PAH - 22.4.2012

Materials

• Malik Ghallab, Dana Nau, Paolo Traverso: Automated
Planning: Theory and Practice, 2004
http://projects.laas.fr/planning/

• Dana Nau's lecture slides
http://www.cs.umd.edu/~nau/planning/slides/chapter06.pdf

• Gerhard Wickler’s lecture slides (A4M36PAH 2010/2011)
http://www.inf.ed.ac.uk/teaching/courses/plan/slides/Graphp
lan-Slides.pdf

http://projects.laas.fr/planning/
http://www.cs.umd.edu/~nau/planning/slides/chapter06.pdf
http://www.inf.ed.ac.uk/teaching/courses/plan/slides/Graphplan-Slides.pdf
http://creativecommons.org/licenses/by-nc-sa/2.0/

Introduction

• Hierarchical Task Network (HTN)

– Classical planning representation – states (set of
atoms) and actions (deterministic state transition)

– Differs in approach – set of tasks instead of set of
goals

– Methods – prescriptions to decompose a task into
sub-tasks

– Non-primitive (abstract) vs. primitive tasks

– Widely used for practical applications (intuitive
representation)

Some Planning Features

• Expansion of a high level abstract plan into greater
detail where necessary.

• High level ‘chunks’ of procedural knowledge at a
human scale - typically 5-8 actions - can be
manipulated within the system.

• Ability to establish that a feasible plan exists, perhaps
for a range of assumptions about the situation, while
retaining a high level overview.

• Analysis of potential interactions as plans are
expanded or developed.

Some Planning Features

• Expansion of a high level abstract plan into greater
detail where necessary.

• High level ‘chunks’ of procedural knowledge at a
human scale - typically 5-8 actions - can be
manipulated within the system.

• Ability to establish that a feasible plan exists, perhaps
for a range of assumptions about the situation, while
retaining a high level overview.

• Analysis of potential interactions as plans are
expanded or developed.

aspects of problem solving behaviour observed
in expert humans (Gary Klein, “Sources of

Power”, MIT Press, 1998.)

Some Planning Features

• Expansion of a high level abstract plan into greater
detail where necessary.

• High level ‘chunks’ of procedural knowledge at a
human scale - typically 5-8 actions - can be
manipulated within the system.

• Ability to establish that a feasible plan exists, perhaps
for a range of assumptions about the situation, while
retaining a high level overview.

• Analysis of potential interactions as plans are
expanded or developed.

aspects of problem solving behaviour observed
in expert humans (Gary Klein, “Sources of

Power”, MIT Press, 1998.)

also describe the hierarchical and mixed
initiative approach to planning in AI

Motivation

• Example: travel to a destination that’s far away:

– Domain-independent planner:

• many combinations of vehicles and routes

Motivation

• Example: travel to a destination that’s far away:

– Domain-independent planner:

• many combinations of vehicles and routes

Example: travel from Los Angeles to Tokyo
• Google maps: 7,869 mi, 286 hours through Seattle and Hawai (by car)

Motivation

• Example: travel to a destination that’s far away:

– Domain-independent planner:

• many combinations of vehicles and routes

Example: travel from Los Angeles to Tokyo
• Google maps: 7,869 mi, 286 hours through Seattle and Hawai (by car)

Motivation

Motivation

• Example: travel to a destination that’s far away:

– Domain-independent planner:

• many combinations of vehicles and routes

Motivation

• Example: travel to a destination that’s far away:

– Domain-independent planner:

• many combinations of vehicles and routes

Motivation

• Example: travel to a destination that’s far away:

– Domain-independent planner:

• many combinations of vehicles and routes

Example: travel from Los Angeles to Tokyo
• Google maps: 7,869 mi, 286 hours through Seattle and Hawai (by car)

Motivation

• Example: travel to a destination that’s far away:

– Domain-independent planner:

• many combinations of vehicles and routes

– Experienced human: small number of “recipes”

e.g., flying:

1. buy ticket from local airport to remote airport

2. travel to local airport

3. fly to remote airport

4. travel to final destination

HTN Planning

• Problem reduction

– Tasks (activities) rather than goals

– Methods to decompose tasks into subtasks

– Enforce constraints

• E.g., taxi not good for long distances

– Backtrack if necessary

Task:

Method: taxi-travel(x,y)

get-taxi ride(x,y) pay-driver

travel(x,y)

Method: air-travel(x,y)

travel(a(y),y)
get-ticket(a(x),a(y))

travel(x,a(x))

fly(a(x),a(y))

HTN Planning

• Problem reduction

– Tasks (activities) rather than goals

– Methods to decompose tasks into subtasks

– Enforce constraints

• E.g., taxi not good for long distances

– Backtrack if necessary

Task:

Method: taxi-travel(x,y)

get-taxi ride(x,y) pay-driver

travel(x,y)

Method: air-travel(x,y)

travel(a(y),y)
get-ticket(a(x),a(y))

travel(x,a(x))

fly(a(x),a(y))

HTN Planning

travel(UMD, LAAS)

get-ticket(IAD, TLS)

travel(UMD, IAD)

fly(BWI, Toulouse)

travel(TLS, LAAS)

get-taxi

ride(TLS,Toulouse)

pay-driver

go-to-travel-web-site

find-flights(IAD,TLS)

buy-ticket(IAD,TLS)

get-taxi

ride(UMD, IAD)

pay-driver

get-ticket(BWI, TLS)

go-to-travel-web-site

find-flights(BWI,TLS)

BACKTRACK

HTN Planning

• Objective: perform a given set of tasks

• Input includes:
– Set of operators

– Set of methods: recipes for decomposing a complex task
into more primitive subtasks

• Planning process:
– Decompose non-primitive tasks recursively until primitive

tasks are reached

Simple Task Network (STN)

• A special case of HTN planning

• States and operators

– The same as in classical planning

• Task: an expression of the form t(u1,…,un)

– t is a task symbol, and each ui is a term

– Two kinds of task symbols (and tasks):

• primitive: tasks that we know how to execute directly
– task symbol is an operator name

• non-primitive: tasks that must be decomposed into
subtasks
– use methods (next slide)

Methods

• Totally ordered method: a 4-tuple
m = (name(m), task(m), precond(m), subtasks(m))

– name(m): an expression of the form n(x1,…,xn)

• x1,…,xn are parameters - variable symbols

– task(m): a nonprimitive task

– precond(m): preconditions (literals)

– subtasks(m): a sequence
of tasks t1, …, tk

travel(x,y)

buy-ticket (a(x), a(y)) travel (x, a(x)) fly (a(x), a(y)) travel (a(y), y)

long-distance(x,y)

air-travel(x,y)

Methods

air-travel(x,y)

task: travel(x,y)

precond: long-distance(x,y)

subtasks: buy-ticket(a(x), a(y)), travel(x,a(x)), fly(a(x), a(y)),

travel(a(y),y)

travel(x,y)

buy-ticket (a(x), a(y)) travel (x, a(x)) fly (a(x), a(y)) travel (a(y), y)

long-distance(x,y)

air-travel(x,y)

Methods

• Partially ordered method: a 4-tuple
m = (name(m), task(m), precond(m), subtasks(m))

– name(m): an expression of the form n(x1,…,xn)

• x1,…,xn are parameters - variable symbols

– task(m): a nonprimitive task

– precond(m): preconditions (literals)

– subtasks(m): a partially ordered
set of tasks {t1, …, tk}

travel(x,y)

buy-ticket (a(x), a(y)) travel (x, a(x)) fly (a(x), a(y)) travel (a(y), y)

long-distance(x,y)

air-travel(x,y)

Methods

air-travel(x,y)

task: travel(x,y)

precond: long-distance(x,y)

network: u1=buy-ticket(a(x),a(y)), u2= travel(x,a(x)), u3= fly(a(x),
a(y)), u4= travel(a(y),y), {(u1,u3), (u2,u3), (u3 ,u4)}

travel(x,y)

buy-ticket (a(x), a(y)) travel (x, a(x)) fly (a(x), a(y)) travel (a(y), y)

long-distance(x,y)

air-travel(x,y)

Domains, Problems, Solutions

• STN planning domain: methods, operators

• STN planning problem: methods, operators, initial
state, task list

• Total-order STN planning domain and planning
problem:

– Same as above except that
all methods are totally ordered

Domains, Problems, Solutions

• STN planning domain: methods, operators

• STN planning problem: methods, operators, initial
state, task list

• Total-order STN planning domain and planning
problem:

– Same as above except that
all methods are totally ordered

• Solution: any executable plan that can be generated
by recursively applying

– Methods to non-primitive tasks

– Operators to primitive tasks

Domains, Problems, Solutions

nonprimitive task

precond

method instance

s0 precond effects precond effectss1 s2

primitive taskprimitive task

operator instance operator instance

DWR Stack Moving Example

• Suppose we want to move three stacks of containers
in a way that preserves the order of the containers

DWR Stack Moving Example

• task symbols: TS = {t1,…,tn}
– operator names ⊊ TS: primitive tasks
– non-primitive task symbols: TS - operator names

• task: ti(r1,…,rk)
– ti: task symbol (primitive or non-primitive)
– r1,…,rk: terms, objects manipulated by the task
– ground task: are ground

• action a accomplishes ground primitive task
ti(r1,…,rk) in state s iff
– name(a) = ti and
– a is applicable in s

DWR Stack Moving Example

• A simple task network w is an acyclic directed graph
(U,E) in which
– the node set U = {t1,…,tn} is a set of tasks and

– the edges in E define a partial ordering of the tasks in U.

• A task network w is ground/primitive if all tasks tu∈U
are ground/primitive, otherwise it is unground/non-
primitive.

DWR Stack Moving Example

• Ordering: tu≺tv in w=(U,E) iff there is a path from tu

to tv

• STN w is totally ordered iff E defines a total order on
U

– w is a sequence of tasks: 〈t1,…,tn〉

• Let w = 〈t1,…,tn〉 be a totally ordered, ground,
primitive STN. Then the plan π(w) is defined as:
– π(w) = 〈a1,…,an〉 where ai = ti; 1 ≤ i ≤ n

DWR Stack Moving Example

• STN Methods
– Let MS be a set of method symbols. An STN method is a 4-

tuple m=(name(m),task(m),precond(m),network(m)) where:
• name(m):

– the name of the method

– syntactic expression of the form n(x1,…,xk)

» n∈MS: unique method symbol

» x1,…,xk: all the variable symbols that occur in m;

• task(m): a non-primitive task;

• precond(m): set of literals called the method’s preconditions;

• network(m): task network (U,E) containing the set of subtasks U of m

Decomposition Tree: DWR Example

move-stack(p1,q)

move-stack(p1,p2)move-topmost(p1,p2)

recursive-move(p1,p2,c1,c2)

take(crane,loc,c1,c2,p1) put(crane,loc,c1,pallet,p2) move-stack(p1,p2)move-topmost(p1,p2)

take(crane,loc,c2,c3,p1) put(crane,loc,c2,c1,p2) move-stack(p1,p2)move-topmost(p1,p2)

take(crane,loc,c3,pallet,p1) put(crane,loc,c3,c2,p2) 〈〉

recursive-move(p1,p2,c2,c3)take-and-put(…)

no-move(p1,p2)

recursive-move(p1,p2,c3,pallet)take-and-put(…)

take-and-put(…)

Total-Order
Formulation

Partial-Order
Formulation

Solving Total-Order STN Planning
Problems

state s; task list T=(t1 ,t2,…)

action a

state (s,a) ; task list T=(t2, …)

task list T=(u1,…,uk ,t2,…)

task list T=(t1 ,t2,…)

method instance m

Comparison to F/B Search

• In state-space planning, must choose whether to search
forward or backward

• In HTN planning, there are two choices to make about direction:

– forward or backward

– up or down

• TFD goes
down and
forward

s0 s1 s2 … …op1 op2 opiSi–1

s0 s1 s2 …

task tm …

…

task tn

op1 op2 opiSi–1

task t0

s0 s1 s2 …

task tm …

…

task tn

op1 op2 opiSi–1

task t0

Comparison to F/B Search

• Like a backward search,
TFD is goal-directed
– Goals

correspond
to tasks

• Like a forward search, it generates actions
in the same order in which they’ll be executed

• Whenever we want to plan the next task
– We’ve already planned everything that comes before it

– Thus, we know the current state of the world

Limitation of Ordered-Task
Planning

• TFD requires totally ordered
methods

• Can’t interleave subtasks of different tasks

• Sometimes this makes things awkward
– Need to write methods that reason

globally instead of locally

goto(b)

pickup(p) pickup(q)

get-both(p,q)

pickup-both(p,q)

walk(a,b)

goto(a)

walk(b,a)

get(p) get(q)

get-both(p,q)

pickup(p)walk(a,b) walk(b,a) pickup(p)walk(a,b) walk(b,a)

Partially Ordered Methods

• With partially ordered methods, the subtasks can be
interleaved

• Fits many planning domains better

• Requires a more complicated planning algorithm

walk(a,b) pickup(p)

get(p)

stay-at(b) pickup(q)

get(q)

get-both(p,q)

walk(b,a) stay-at(a)

Algorithm for Partial-Order STNs

π={a1 …, ak, a }; w' ={t2, t3, …}

w={ t1 ,t2,…}

method instance m

w' ={ t11,…,t1k ,t2,…}

π={a1,…, ak}; w={ t1 ,t2, t3…}

operator instance a

Algorithm for Partial-Order STNs

π={a1 …, ak, a }; w' ={t2, t3, …}

w={ t1 ,t2,…}

method instance m

w' ={ t11,…,t1k ,t2,…}

π={a1,…, ak}; w={ t1 ,t2, t3…}

operator instance a

 Intuitively, w is a partially ordered set of tasks {t1, t2, …}

 But w may contain a task more than once

» e.g., travel from UMD to LAAS twice

 The mathematical definition of a set doesn’t allow this

 Define w as a partially ordered set of task nodes {u1, u2, …}

 Each task node u corresponds to a task tu

 In my explanations, I’ll talk about t and ignore u

Algorithm for Partial-Order STNs

π={a1 …, ak, a }; w' ={t2, t3, …}

w={ t1 ,t2,…}

method instance m

w' ={ t11,…,t1k ,t2,…}

π={a1,…, ak}; w={ t1 ,t2, t3…}

operator instance a

Algorithm for Partial-Order STNs

π={a1 …, ak, a }; w' ={t2, t3, …}

w={ t1 ,t2,…}

method instance m

w' ={ t11,…,t1k ,t2,…}

π={a1,…, ak}; w={ t1 ,t2, t3…}

operator instance a

(w, u, m,) has a complicated definition in the book. Here’s what

it means:

We nondeterministically selected t1 as the task to begin first

• i.e., do t1’s first subtask before the first subtask of every ti ≠ t1

Insert ordering constraints to ensure that this happens

Comparison to Classical Planning

STN planning is strictly more expressive than classical planning

• Any classical planning problem can be translated into an ordered-
task-planning problem in polynomial time

• Several ways to do this. One is roughly as follows:

– For each goal or precondition e, create a task te

– For each operator o and effect e, create a method mo,e

• Task: te

• Subtasks: tc1, tc2, …, tcn, o, where c1, c2, …, cn are the
preconditions of o

• Partial-ordering constraints: each tci precedes o

Comparison to Classical Planning

• Some STN planning problems aren’t expressible in classical planning

• Example:

– Two STN methods:

• No arguments

• No preconditions

– Two operators, a and b

• Again, no arguments and no preconditions

– Initial state is empty, initial task is t

– Set of solutions is {anbn | n > 0}

– No classical planning problem has this set of solutions

• The state-transition system is a finite-state automaton

• No finite-state automaton can recognize {anbn | n > 0}

• Can even express undecidable problems using STNs

method1

bta

t

method2

ba

t

–

(a, x)

Example
• Simple travel-planning domain

– State-variable formulation

• Planning problem:

– I’m at home, I have $20

– Want to go to a park 8 miles
away

– s0 = {location(me) = home,
cash(me) = 20,
distance(home,park) = 8}

– t0 = travel(me,home,park)

Precond: distance(home,park) ≤ 2 Precond: cash(me) ≥ 1.50 + 0.50*distance(home,park)

Initial task: travel(me,home,park)

Precondition succeeds

travel-by-foot travel-by-taxi

Precondition fails

Decomposition into subtasks

home park

Example, Continued

location(me)=home,

location(taxi)=home,

cash(me)=20,

distance(home,park)=8

Initial

state

location(me)=home,

cash(me)=20,

distance(home,park)=8

call-taxi(me,home) ride(me,home,park) pay-driver(me,home,park)

Precond: …

Effects: …

Precond: …

Effects: …

Precond: …

Effects: …

location(me)=park,

location(taxi)=park,

cash(me)=20,

distance(home,park)=8 location(me)=park,

location(taxi)=park,

cash(me)=14.50,

distance(home,park)=8

Final

state

s1 s2 s3s0

HTN Planning

• STN planning constraints:
– ordering constraints: maintained in network

– preconditions:
• enforced by planning procedure

• must know state to test for applicability

• must perform forward search

• HTN planning can be even more general

– Can have constraints associated with tasks and methods
• Things that must be true before, during, or afterwards

– Some algorithms use causal links and threats like those in
PSP

Methods in STN

• Let MS be a set of method symbols. An STN method is
a 4-tuple
m=(name(m),task(m),precond(m),network(m)) where:
– name(m):

• the name of the method

• syntactic expression of the form n(x1,…,xk)
– n∈MS: unique method symbol

– x1,…,xk: all the variable symbols that occur in m;

– task(m): a non-primitive task;

– precond(m): set of literals called the method’s
preconditions;

– network(m): task network (U,E) containing the set of
subtasks U of m

Methods in HTN

• Let MS be a set of method symbols. An HTN method
is a 4-tuple
m=(name(m),task(m),subtasks(m),constr(m)) where:
– name(m):

• the name of the method

• syntactic expression of the form n(x1,…,xk)
– n∈MS: unique method symbol

– x1,…,xk: all the variable symbols that occur in m;

– task(m): a non-primitive task;

– (subtasks(m),constr(m)): a task network.

STN Methods: DWR Example (1)

• move topmost: take followed by put action

• take-and-put(c,k,l,po,pd,xo,xd)

– task: move-topmost(po,pd)

– precond: top(c,po), on(c,xo), attached(po,l),
belong(k,l), attached(pd,l), top(xd,pd)

– subtasks: 〈take(k,l,c,xo,po),put(k,l,c,xd,pd)〉

HTN Methods: DWR Example (1)

• move topmost: take followed by put action

• take-and-put(c,k,l,po,pd,xo,xd)
– task: move-topmost(po,pd)

– network:
• subtasks: {t1=take(k,l,c,xo,po), t2=put(k,l,c,xd,pd)}

• constraints: {t1≺t2, before({t1}, top(c,po)),
before({t1}, on(c,xo)), before({t1}, attached(po,l)),
before({t1}, belong(k,l)), before({t2}, attached(pd,l)),
before({t2}, top(xd,pd))}

STN Methods: DWR Example (2)

• move stack: repeatedly move the topmost container
until the stack is empty

• recursive-move(po,pd,c,xo)
– task: move-stack(po,pd)

– precond: top(c,po), on(c,xo)

– subtasks: 〈move-topmost(po,pd), move-stack(po,pd)〉

• no-move(po,pd)
– task: move-stack(po,pd)

– precond: top(pallet,po)

– subtasks: 〈〉

HTN Methods: DWR Example (2)

• move stack: repeatedly move the topmost container
until the stack is empty

• recursive-move(po,pd,c,xo)
– task: move-stack(po,pd)
– network:

• subtasks: {t1=move-topmost(po,pd), t2=move-stack(po,pd)}
• constraints: {t1≺t2, before({t1}, top(c,po)), before({t1}, on(c,xo))}

• move-one(po,pd,c)
– task: move-stack(po,pd)
– network:

• subtasks: {t1=move-topmost(po,pd)}
• constraints: {before({t1}, top(c,po)), before({t1}, on(c,pallet))}

Application Example

• I-globe – a distributed HTN planner and
simulator for disaster relief scenarios

Application Example

