Hierarchical Task Network

Jiří Vokřínek A4M36PAH - 22.4.2012

Materials

- Malik Ghallab, Dana Nau, Paolo Traverso: Automated Planning: Theory and Practice, 2004 <u>http://projects.laas.fr/planning/</u>
- Dana Nau's lecture slides <u>http://www.cs.umd.edu/~nau/planning/slides/chapter06.pdf</u>
- Gerhard Wickler's lecture slides (A4M36PAH 2010/2011) <u>http://www.inf.ed.ac.uk/teaching/courses/plan/slides/Graphp</u> <u>lan-Slides.pdf</u>

Introduction

- Hierarchical Task Network (HTN)
 - Classical planning representation states (set of atoms) and actions (deterministic state transition)
 - Differs in approach set of *tasks* instead of set of *goals*
 - Methods prescriptions to decompose a task into sub-tasks
 - Non-primitive (abstract) vs. primitive tasks
 - Widely used for practical applications (intuitive representation)

Some Planning Features

- Expansion of a high level abstract plan into greater detail where necessary.
- High level 'chunks' of procedural knowledge at a human scale - typically 5-8 actions - can be manipulated within the system.
- Ability to establish that a feasible plan exists, perhaps for a range of assumptions about the situation, while retaining a high level overview.
- Analysis of potential interactions as plans are expanded or developed.

Some Planning Features

Expansion of a high level abstract plan into greater detail where necessary.

aspects of problem solving behaviour observed

- in expert humans (Gary Klein, "Sources of Power", MIT Press, 1998.)
- Ability to establish that a feasible plan exists, perhaps for a range of assumptions about the situation, while retaining a high level overview.
- Analysis of potential interactions as plans are expanded or developed.

Some Planning Features

 Expansion of a high level abstract plan into greater detail where necessary.

aspects of problem solving behaviour observed

- in expert humans (Gary Klein, "Sources of Power", MIT Press, 1998.)
- also describe the hierarchical and mixed initiative approach to planning in Al
- Analysis of potential interactions as plans are expanded or developed.

- Example: travel to a destination that's far away:
 - Domain-independent planner:
 - many combinations of vehicles and routes

- Example: travel to a destination that's far away:
 - Domain-independent planner:
 - many combinations of vehicles and routes

Example: travel from Los Angeles to Tokyo

• Google maps: 7,869 mi, 286 hours through Seattle and Hawai (by car)

- Example: travel to a destination that's far away:
 - Domain-independent planner:
 - many combinations of vehicles and routes

Example: travel from Los Angeles to Tokyo

• Google maps: 7,869 mi, 286 hours through Seattle and Hawai (by car)

٦	15. Slight left onto N Northlake Way	0.2 mi
	16. Sail across the Pacific Ocean Entering Hawaii	- 0.2 mi
	17. Continue straight	– 2,756 mi
		- 0.1 mi
4	31. Take the 1st left onto Kalakaua Ave	— 1.9 mi
	32. Sail across the Pacific Ocean Entering Japan	0.070i
-	22. Turn last targed 旧送275日始	- 3,879 mi
-	33. Turn leit toward 県道273方称	

- Example: travel to a destination that's far away:
 - Domain-independent planner:
 - many combinations of vehicles and routes

Example: travel from Los Angeles to Tokyo

• Google maps: 7,869 mi, 286 hours through Seattle and Hawai (by car)

٦	15. Slight left onto N Northlake Way	0.2 mi
	16. Sail across the Pacific Ocean Entering Hawaii	- 0.2 mi
	17. Continue straight	– 2,756 mi
		- 0.1 mi
4	31. Take the 1st left onto Kalakaua Ave	— 1.9 mi
	32. Sail across the Pacific Ocean Entering Japan	0.070i
-	22. Turn last targed 旧送275日始	- 3,879 mi
-	33. Turn leit toward 県道273方称	

- Example: travel to a destination that's far away:
 - Domain-independent planner:
 - many combinations of vehicles and routes
 - Experienced human: small number of "recipes"
 e.g., flying:
 - 1. buy ticket from local airport to remote airport
 - 2. travel to local airport
 - 3. fly to remote airport
 - 4. travel to final destination

- Problem reduction
 - Tasks (activities) rather than goals
 - Methods to decompose tasks into subtasks
 - Enforce constraints
 - E.g., taxi not good for long distances
 - Backtrack if necessary

- Problem reduction
 - Tasks (activities) rather than goals
 - Methods to decompose tasks into subtasks
 - Enforce constraints
 - E.g., taxi not good for long distances
 - Backtrack if necessary

- Objective: perform a given set of tasks
- Input includes:
 - Set of operators
 - Set of methods: recipes for decomposing a complex task into more primitive subtasks
- Planning process:
 - Decompose non-primitive tasks recursively until primitive tasks are reached

Simple Task Network (STN)

- A special case of HTN planning
- States and operators
 - The same as in classical planning
- *Task*: an expression of the form $t(u_1,...,u_n)$
 - *t* is a *task symbol*, and each *u*_i is a term
 - Two kinds of task symbols (and tasks):
 - *primitive*: tasks that we know how to execute directly
 - task symbol is an operator name
 - non-primitive: tasks that must be decomposed into subtasks
 - use *methods* (next slide)

• Totally ordered method: a 4-tuple

m = (name(m), task(m), precond(m), subtasks(m))

- name(*m*): an expression of the form $n(x_1,...,x_n)$
 - x₁,...,x_n are parameters variable symbols
- task(m): a nonprimitive task

air-travel(x,y)

task:travel(x,y)precond:long-distance(x,y)subtasks:(buy-ticket(a(x), a(y)), travel(x,a(x)), fly(a(x), a(y)),
travel(a(y),y)

• Partially ordered method: a 4-tuple

m = (name(m), task(m), precond(m), subtasks(m))

- name(m): an expression of the form $n(x_1,...,x_n)$
 - x₁,...,x_n are parameters variable symbols
- task(m): a nonprimitive task

air-travel(x,y)

task:travel(x,y)precond:long-distance(x,y)network: u_1 =buy-ticket(a(x), a(y)), u_2 = travel(x, a(x)), u_3 = fly(a(x), a(y)), u_4 = travel(a(y), y), { $(u_1, u_3), (u_2, u_3), (u_3, u_4)$ }

Domains, Problems, Solutions

- STN planning domain: methods, operators
- STN planning problem: methods, operators, initial state, task list
- Total-order STN planning domain and planning problem:
 - Same as above except that all methods are totally ordered

Domains, Problems, Solutions

- STN planning domain: methods, operators
- STN planning problem: methods, operators, initial state, task list
- Total-order STN planning domain and planning problem:
 - Same as above except that all methods are totally ordered
- Solution: any executable plan that can be generated by recursively applying
 - Methods to non-primitive tasks
 - Operators to primitive tasks

Domains, Problems, Solutions

• Suppose we want to move three stacks of containers in a way that preserves the order of the containers

- *task symbols*: $T_{S} = \{t_{1},...,t_{n}\}$
 - operator names $\subsetneq T_s$: primitive tasks
 - non-primitive task symbols: T_s operator names
- **task**: $t_i(r_1,...,r_k)$
 - t_i: task symbol (primitive or non-primitive)
 - r_1, \dots, r_k : terms, objects manipulated by the task
 - ground task: are ground
- action a accomplishes ground primitive task t_i(r₁,...,r_k) in state s iff
 - name(a) = t_i and
 - *a* is applicable in *s*

- A *simple task network w* is an acyclic directed graph (*U*,*E*) in which
 - the node set $U = \{t_1, ..., t_n\}$ is a set of tasks and
 - the edges in *E* define a partial ordering of the tasks in *U*.
- A task network w is *ground/primitive* if all tasks t_u∈U are ground/primitive, otherwise it is unground/non-primitive.

- Ordering: t_u≺t_v in w=(U,E) iff there is a path from t_u to t_v
- STN *w* is totally ordered iff *E* defines a total order on *U*
 - *w* is a sequence of tasks: $\langle t_1, ..., t_n \rangle$
- Let $w = \langle t_1, ..., t_n \rangle$ be a totally ordered, ground, primitive STN. Then the plan $\pi(w)$ is defined as: $-\pi(w) = \langle a_1, ..., a_n \rangle$ where $a_i = t_i$; $1 \le i \le n$

- STN Methods
 - Let M_s be a set of method symbols. An STN method is a 4tuple m=(name(m),task(m),precond(m),network(m)) where:
 - name(*m*):
 - the name of the method
 - syntactic expression of the form $n(x_1,...,x_k)$
 - » $n \in M_s$: unique method symbol
 - » $x_1, ..., x_k$: all the variable symbols that occur in m;
 - task(*m*): a non-primitive task;
 - precond(*m*): set of literals called the method's preconditions;
 - network(*m*): task network (*U*,*E*) containing the set of *subtasks U* of *m*

Decomposition Tree: DWR Example


```
take-and-put(c, k, l_1, l_2, p_1, p_2, x_1, x_2):
   task: move-topmost-container(p_1, p_2)
   precond: top(c, p_1), on(c, x_1), ; true if p_1 is not empty
             attached(p_1, l_1), belong(k, l_1), ; bind l_1 and k
             attached(p_2, l_2), top(x_2, p_2); bind l_2 and x_2
   subtasks: (take(k, l_1, c, x_1, p_1), put(k, l_2, c, x_2, p_2))
recursive-move(p, q, c, x):
   task:
             move-stack(p,q)
   precond: top(c, p), on(c, x); true if p is not empty
   subtasks: (move-topmost-container(p,q), move-stack(p,q))
             ;; the second subtask recursively moves the rest of the stack
do-nothing(p,q)
   task:
             move-stack(p,q)
   precond: top(pallet, p); true if p is empty
   subtasks: () ; no subtasks, because we are done
move-each-twice()
             move-all-stacks()
   task:
   precond: ; no preconditions
   subtasks: ; move each stack twice:
             (move-stack(p1a,p1b), move-stack(p1b,p1c),
              move-stack(p2a,p2b), move-stack(p2b,p2c),
              move-stack(p3a,p3b), move-stack(p3b,p3c))
```

Total-Order Formulation

loc1

```
take-and-put(c, k, l_1, l_2, p_1, p_2, x_1, x_2):
              move-topmost-container(p_1, p_2)
   task:
   precond: top(c, p_1), on(c, x_1), ; true if p_1 is not empty
              attached(p_1, l_1), belong(k, l_1), ; bind l_1 and k
              attached(p_2, l_2), top(x_2, p_2); bind l_2 and x_2
   subtasks: (take(k, l_1, c, x_1, p_1), put(k, l_2, c, x_2, p_2))
recursive-move(p, q, c, x):
   task:
              move-stack(p, q)
   precond: top(c, p), on(c, x); true if p is not empty
   subtasks: (move-topmost-container(p,q), move-stack(p,q))
              ;; the second subtask recursively moves the rest of the stack
do-nothing(p,q)
   task:
              move-stack(p,q)
   precond: top(pallet, p); true if p is empty
   subtasks: () ; no subtasks, because we are done
move-each-twice()
   task:
              move-all-stacks()
   precond: ; no preconditions
   network: ; move each stack twice:
              u_1 = move-stack(p1a,p1b), u_2 = move-stack(p1b,p1c),
              u_3 = move-stack(p2a,p2b), u_4 = move-stack(p2b,p2c),
              u_5 = move-stack(p3a,p3b), u_6 = move-stack(p3b,p3c),
              \{(u_1, u_2), (u_3, u_4), (u_5, u_6)\}
```

Partial-Order Formulation

Solving Total-Order STN Planning Problems

```
\mathsf{TFD}(s, \langle t_1, \ldots, t_k \rangle, O, M)
    if k = 0 then return () (i.e., the empty plan)
    if t_1 is primitive then
         active \leftarrow \{(a, \sigma) \mid a \text{ is a ground instance of an operator in } O,
                             \sigma is a substitution such that a is relevant for \sigma(t_1),
                             and a is applicable to s}
         if active = \emptyset then return failure
                                                                                    state s; task list T = (|\mathbf{t}_1|, \mathbf{t}_2, ...)
          nondeterministically choose any (a, \sigma) \in active
                                                                                                      action a
         \pi \leftarrow \mathsf{TFD}(\gamma(s, a), \sigma(\langle t_2, \ldots, t_k \rangle), O, M)
         if \pi = failure then return failure
                                                                                    state \gamma(s,a); task list T=(t<sub>2</sub>,...)
         else return a.\pi
    else if t_1 is nonprimitive then
         active \leftarrow \{m \mid m \text{ is a ground instance of a method in } M,
                             \sigma is a substitution such that m is relevant for \sigma(t_1),
                             and m is applicable to s}
                                                                                             task list T=(\mathbf{t}_1,\mathbf{t}_2,...)
         if active = \emptyset then return failure
                                                                                       method instance m
          nondeterministically choose any (m, \sigma) \in active
          w \leftarrow \text{subtasks}(m). \sigma(\langle t_2, \ldots, t_k \rangle)
                                                                                       task list T=(|u_1,...,u_k|, t_2,...)
          return TFD(s, w, O, M)
```

Comparison to F/B Search

 In state-space planning, must choose whether to search forward or backward

$$s_0 \rightarrow op_1 \rightarrow s_1 \rightarrow op_2 \rightarrow s_2 \rightarrow \dots \rightarrow S_{i-1} \rightarrow op_i \rightarrow \dots$$

• In HTN planning, there are *two* choices to make about direction:

•

- forward or backward - up or down TFD goes down and forward $s_0 - op_1 + s_1 - op_2 + s_2 + \dots + S_{i-1} - op_i + \dots$

Comparison to F/B Search

- Like a forward search, it generates actions in the same order in which they'll be executed
- Whenever we want to plan the next task -
 - We've already planned everything that comes before it
 - Thus, we know the current state of the world

Limitation of Ordered-Task Planning

- Can't interleave subtasks of different tasks
- Sometimes this makes things awkward
 - Need to write methods that reason get-both(p,q)
 globally instead of locally

Partially Ordered Methods

With partially ordered methods, the subtasks can be interleaved

- Fits many planning domains better
- Requires a more complicated planning algorithm

PFD(s, w, O, M)if $w = \emptyset$ then return the empty plan nondeterministically choose any $u \in w$ that has no predecessors in w if t_u is a primitive task then active $\leftarrow \{(a, \sigma) \mid a \text{ is a ground instance of an operator in } O,$ σ is a substitution such that name(a) = $\sigma(t_u)$, and *a* is applicable to *s*} $\pi = \{a_1, \dots, a_k\}; w = \{|\mathbf{t}_1|, t_2, t_3 \dots\}$ if *active* = \emptyset then return failure operator instance *a* nondeterministically choose any $(a, \sigma) \in active$ $\pi \leftarrow \mathsf{PFD}(\gamma(s, a), \sigma(w - \{u\}), O, M)$ $\pi = \{a_1, \ldots, a_k, [a]\}; w' = \{t_2, t_3, \ldots\}$ if π = failure then return failure else return $a. \pi$ else active $\leftarrow \{(m, \sigma) \mid m \text{ is a ground instance of a method in } M,$ σ is a substitution such that name $(m) = \sigma(t_u)$, and *m* is applicable to *s*} $w = \{ |\mathbf{t}_1|, t_2, \dots \}$ if *active* = \emptyset then return failure method instance *m* nondeterministically choose any $(m, \sigma) \in active$ nondeterministically choose any task network $w' \in \delta(w, u, m, \sigma)$ return(PFD(s, w', O, M) $w' = \{ |\mathbf{t}_{11}, \dots, \mathbf{t}_{1k}|, t_2, \dots \}$

PFD(s, w, O, M)if $w = \emptyset$ then return the empty plan nondeterministically choose any $u \in w$ that has no predecessors in w if t_u is a primitive task then active $\leftarrow \{(a, \sigma) \mid a \text{ is a ground instance of an operator in } O,$ σ is a substitution such that name(a) = $\sigma(t_u)$, and *a* is applicable to *s*} $\pi = \{a_1, \dots, a_k\}; w = \{|\mathbf{t}_1|, t_2, t_3 \dots\}$ if *active* = \emptyset then return failure operator instance *a* nondeterministically choose any $(a, \sigma) \in active$ $\pi \leftarrow \mathsf{PFD}(\gamma(s, a), \sigma(w - \{u\}), O, M)$ $\pi = \{a_1, \ldots, a_k, [a]\}; w' = \{t_2, t_3, \ldots\}$ if π = failure then return failure else return $a. \pi$ else active $\leftarrow \{(m, \sigma) \mid m \text{ is a ground instance of a method in } M,$ σ is a substitution such that name $(m) = \sigma(t_u)$, and *m* is applicable to *s*} $w = \{ |\mathbf{t}_1|, t_2, \dots \}$ if *active* = \emptyset then return failure method instance *m* nondeterministically choose any $(m, \sigma) \in active$ nondeterministically choose any task network $w' \in \delta(w, u, m, \sigma)$ return(PFD(s, w', O, M) $w' = \{ |\mathbf{t}_{11}, \dots, \mathbf{t}_{1k}|, t_2, \dots \}$

PFD(s, w, O, M)if $w = \emptyset$ then return the empty plan nondeterministically choose any $u \in w$ that has no predecessors in w if t_u is a pri $\delta(w, u, m, \sigma)$ has a complicated definition in the book. Here's what active it means: • We nondeterministically selected t_1 as the task to begin first if active • i.e., do t_1 's first subtask before the first subtask of every $t_i \neq t_1$ nondete •Insert ordering constraints to ensure that this happens $\pi \leftarrow \mathsf{P}$ if $\pi =$ failure then return failure $\pi = \{a_1, \ldots, a_k, |\boldsymbol{a}|\}; w' = \{t_2, t_3, \ldots\}$ else return $a. \pi$ else active $\leftarrow \{(m, \sigma) \mid m \text{ is a ground instance of a method in } M,$ σ is a substitution such that name(m) = $\sigma(t_u)$, and *m* is applicable to *s*} $w = \{ |\mathbf{t}_1|, t_2, \dots \}$ if *active* = \emptyset then return failure method instance *m* nondeterministically choose any $(m, \sigma) \in active$ nondeterministically choose any task network $w' \in \delta(w, u, m, \sigma)$ return(PFD(s, w', O, M)

Comparison to Classical Planning

STN planning is strictly more expressive than classical planning

- Any classical planning problem can be translated into an orderedtask-planning problem in polynomial time
- Several ways to do this. One is roughly as follows:
 - For each goal or precondition e, create a task t_e
 - For each operator o and effect e, create a method $m_{o,e}$
 - Task: *t_e*
 - Subtasks: t_{c1}, t_{c2}, ..., t_{cn}, o, where c₁, c₂, ..., c_n are the preconditions of o
 - Partial-ordering constraints: each t_{ci} precedes o

Comparison to Classical Planning

• Some STN planning problems aren't expressible in classical planning

method1

b

- Example:
 - Two STN methods:
 - No arguments
 - No preconditions

- Two operators, a and b
 - Again, no arguments and no preconditions
- Initial state is empty, initial task is t
- Set of solutions is $\{a^nb^n \mid n > 0\}$
- No classical planning problem has this set of solutions
 - The state-transition system is a finite-state automaton
 - No finite-state automaton can recognize $\{a^nb^n \mid n > 0\}$
- Can even express undecidable problems using STNs

Example

Simple travel-planning domain *method* travel-by-foot precond: $distance(x, y) \leq 2$ State-variable formulation travel(a, x, y)task: Planning problem: subtasks: walk(a, x, y)– I'm at home, I have \$20 method travel-by-taxi Want to go to a park 8 miles task: travel(a, x, y)away precond: $cash(a) \ge 1.5 + 0.5 \times distance(x, y)$ subtasks: (call-taxi(a, x), ride(a, x, y), pay-driver(a, x, y))operator walk precond: location(a) = xeffects: $location(a) \leftarrow y$ operator call-taxi(a, x) $- s_0 = \{ location(me) = home, \}$ effects: $location(taxi) \leftarrow x$ cash(me) = 20,operator ride-taxi (a, x)distance(home,park) = 8} precond: location(taxi) = x, location(a) = x $location(taxi) \leftarrow y, location(a) \leftarrow y$ effects: $- t_0 = travel(me,home,park)$ operator pay-driver(a, x, y)precond: $cash(a) \ge 1.5 + 0.5 \times distance(x, y)$ $cash(a) \leftarrow cash(a) - 1.5 - 0.5 \times distance(x, y)$ effects:

- STN planning constraints:
 - ordering constraints: maintained in network
 - preconditions:
 - enforced by planning procedure
 - must know state to test for applicability
 - must perform forward search
- HTN planning can be even more general
 - Can have constraints associated with tasks and methods
 - Things that must be true before, during, or afterwards
 - Some algorithms use causal links and threats like those in PSP

Methods in STN

- Let M_s be a set of method symbols. An STN method is a 4-tuple
 - m=(name(m),task(m),precond(m),network(m)) where:
 - name(m):
 - the name of the method
 - syntactic expression of the form $n(x_1,...,x_k)$
 - − $n \in M_s$: unique method symbol
 - x_1, \dots, x_k : all the variable symbols that occur in m;
 - task(m): a non-primitive task;
 - precond(m): set of literals called the method's preconditions;
 - network(m): task network (U,E) containing the set of subtasks U of m

Methods in HTN

- Let M_s be a set of method symbols. An *HTN method* is a 4-tuple
 - m=(name(m),task(m),subtasks(m),constr(m)) where:
 - name(m):
 - the name of the method
 - syntactic expression of the form $n(x_1,...,x_k)$
 - − $n \in M_s$: unique method symbol
 - x_1, \dots, x_k : all the variable symbols that occur in m;
 - task(m): a non-primitive task;
 - (subtasks(m),constr(m)): a task network.

STN Methods: DWR Example (1)

- move topmost: take followed by put action
- take-and-put(c,k,l,p_o,p_d,x_o,x_d)
 - task: move-topmost(p_o, p_d)
 - precond: top(c,p_o), on(c,x_o), attached(p_o,l), belong(k,l), attached(p_d,l), top(x_d,p_d)
 - subtasks: $(take(k,l,c,x_o,p_o),put(k,l,c,x_d,p_d))$

HTN Methods: DWR Example (1)

- move topmost: take followed by put action
- take-and-put(c,k,l,p_o,p_d,x_o,x_d)
 - task: move-topmost(p_o, p_d)
 - network:
 - subtasks: { t_1 =take(k,l,c, x_o , p_o), t_2 =put(k,l,c, x_d , p_d)}
 - constraints: {t₁≺t₂, before({t₁}, top(c,p_o)), before({t₁}, on(c,x_o)), before({t₁}, attached(p_o,/)), before({t₁}, belong(k,/)), before({t₂}, attached(p_d,/)), before({t₂}, top(x_d,p_d))}

STN Methods: DWR Example (2)

- move stack: repeatedly move the topmost container until the stack is empty
- recursive-move(p_o, p_d, c, x_o)
 - task: move-stack(p_o, p_d)
 - precond: $top(c,p_o)$, $on(c,x_o)$
 - subtasks: (move-topmost(p_o, p_d), move-stack(p_o, p_d))
- no-move(p_o, p_d)
 - task: move-stack(p_o, p_d)
 - precond: top(pallet,p_o)
 - subtasks: $\langle \rangle$

HTN Methods: DWR Example (2)

- move stack: repeatedly move the topmost container until the stack is empty
- recursive-move(p_o, p_d, c, x_o)
 - task: move-stack(p_o, p_d)
 - network:
 - subtasks: { t_1 =move-topmost(p_o, p_d), t_2 =move-stack(p_o, p_d)}
 - constraints: $\{t_1 \prec t_2, \text{ before}(\{t_1\}, \text{top}(c, p_o)), \text{ before}(\{t_1\}, \text{on}(c, x_o))\}$
- move-one(p_o, p_d, c)
 - task: move-stack(p_o, p_d)
 - network:
 - subtasks: {t₁=move-topmost(p_o,p_d)}
 - constraints: {before({t₁}, top(c,p_o)), before({t₁}, on(c,pallet))}

Application Example

 I-globe – a distributed HTN planner and simulator for disaster relief scenarios

Application Example

