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Dynamical neural fields (DNF)



Motivation for SOM and DNF - Tuning Curves
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Self-organizing maps (SOMs)
I The development of SOM as a neural model is motivated by the

topographical nature of cortical maps.
I Visual, tactile, and acoustic inputs are mapped in a topographical

manner. Visual: retinotopy (position in visual field), orientation,
spatial frequency, direction, ocular dominance, etc. Tactile:
somatotopy (position on skin,thumb and SMS) Acoustic:
tonotopy (frequency)

I Self-organizing maps (SOM) is based on competitive learning,
where output neurons compete with each other to be activated
(Kohonen, 1982)

I The output neuron that activates is called the winner-takes-all
neuron

I Lateral inhibition is one way to implement competition for map
formation (von der Malsburg 1973)

I In SOM, neurons are placed on a lattice, on which a meaningful
coordinate system for different features is created (feature map).

I The lattice thus forms a topographic map where the spatial
location on the lattice is indicative of the input features.



SOM -von der Malsburg 1973
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Willshaw - von der Malsburg SOM
A. 2D feature space and SOM layer                       B. 1D feature space and SOM layer



Network equations

Update rule of (recurrent) cortical network:

τ
dui (t)

dt
= −ui (t) +

1
N

∑
j

wij rj (t) +
1
M

∑
k

w in
ik r in

k (t)

Activation function: rj (t) = 1
1+eβ(uj (t)−α) .

Lateral weight matrix: wij ∝ ri rj

= Aw

(
e−((i−j)∗∆x)2/2σ2

− C
)

Input weight matrix: w in
ij ∝ ri r in

j



Kohonen - Shortcut
I Willshaw-von der Malsburg model: input neurons arranged in 2D

lattice, output in 2D lattice. Lateral excitation/inhibition (Mexican
hat) gives rise to soft competition. Normalized Hebbian learning.
Biological motivation.

I Kohonen model: input of any dimension, output neurons in 1D,
2D, or 3D lattice. Relaxed winner-takes-all (neighborhood).
Competetive learning rule. Computational motivation.
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A. 2-d feature space and SOM layer                      B. 1-d feature space and SOM layer
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Kohonen model

I cortical sheet activation, σ2
r width of activated area, activation fce

resembels tuning curves, radial-basis networks

rij = exp(−
∑

k

(cijk − r in
k )2/2σ2

r )

I strength connection around the winning node r∗ij , WTA rule -
winner takes all

∆cijk = εr∗ij (rin − cijk )

I ML approach (Matlab implementation):
w i (q) = w i (q − 1) + α(p(q)− w i (q)), i are lying in neighborhood
N(i)d = {j ,dij < d}



SOM Algorithm

1. Randomly initialize weight vectors wi

2. Randomly sample input vector x
3. Find Best Matching Unit (BMU)

i(x) = arg min
j
||x − wj ||

4. Update weight vectors, where h(j , i(x)) is neighborhood function
of BMU

wj = wj + εh(j , i(x))(x − wj )

5. Repeat steps 2-4



som.m

1 %% Two dimensional self-organizing feature map al la Kohonen
2 clear; nn=10; lambda=0.2; sig=2; sig2=1/(2*sigˆ2);
3 [X,Y]=meshgrid(1:nn,1:nn); ntrial=0;
4
5 % Initial centres of prefered features:
6 c1=0.5-.1*(2*rand(nn)-1);
7 c2=0.5-.1*(2*rand(nn)-1);
8
9 %% training session

10 while(true)
11 if(mod(ntrial,100)==0) % Plot grid of feature centres
12 clf; hold on; axis square; axis([0 1 0 1]);
13 plot(c1,c2,’k’); plot(c1’,c2’,’k’);
14 tstring=[int2str(ntrial) ’ examples’]; title(tstring);
15 waitforbuttonpress;
16 end
17 r_in=[rand;rand];
18 r=exp(-(c1-r_in(1)).ˆ2-(c2-r_in(2)).ˆ2);
19 [rmax,x_winner]=max(max(r)); [rmax,y_winner]=max(max(r’));
20 r=exp(-((X-x_winner).ˆ2+(Y-y_winner).ˆ2)*sig2);
21 c1=c1+lambda*r.*(r_in(1)-c1);
22 c2=c2+lambda*r.*(r_in(2)-c2);
23 ntrial=ntrial+1;
24 end



SOM simulation
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Another example

I Simulating development processes
I SOM can represent new domains, representation less

fine-grained compared to initial domain
I Early in life exposed to broad feature space (learning languages)
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Representational plasticity - Zhou and Merzenich, PNAS 2007
I rat pups raised in noisy environment← severely impaired

tonotopicity (tones representations) in primary auditory cortex -
A1

I no recovery after stimulation with sounds of different frequencies
I stimulation by discrimination task with food reward← rats were

able to recover tonotopic maps
I traditionally SOM maps are driven by data: bottom - up approach
I top-down processing explains those experimental results

(reinforcement learning)
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WEBSOM - Self-Organizing Maps for Internet Exploration
I find information on laser surgery on the cornea of eye,
http://websom.hut.fi

I best matching locations marked with circles
I sparse feature vector, each raw representing single document,

each term relative frequency of predefined entries (e.g. 50 000
words)

Kohonen, 2000, Self Organization of a Massive Document Collection, IEEE Transactions on Neural Networks

http://websom.hut.fi


Tuning Curves
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Dynamic Neural Field Theory

Field dynamics:

τ
∂u(x, t)
∂t

= −u(x, t) +

∫
y

w(x,y)r(y, t)dy + Iext(x, t)

r(x, t) = g(u(x, t)),

Continuous version of equations above with discretization:

x → i∆x and
∫

dx → ∆x
∑

Main assumption: Short-distance excitation and long-distance
inhabitation



Learning in cortical sheet - Lateral weight kernel

r(x − xp) = e(x−xp)2/2σ2
r

|x − xp| = min(|x − xp|,2π − |x − xp|)

wE(|x − y |) =

∫ 2π

0
r(x − xp)r(y − xp)dxp

wE(|x − y |) = Awe−(x−y)2/4σr
2

w(|x − y |) = Awe−(x−y)2/4σr
2
− C)

wij ∝ ri rj = Aw

(
e−((i−j)∗∆x)2/2σ2

− C
)

(1)

Can be learned from Gaussian response curves of individual nodes
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Self-sustained activity packet
I growing activity: C << E , whole map is active, undesirable
I decaying activity: C >> E , decaying after removal of external

input
I memory activity: stability even when external input is removed !
I simulation: string external stimulus: nodes 40-50, excitatory

weights to nearby nodes, active nodes: activity packets, buble or
bump← continuos attractor neural networks← working memory,
Aw = 4,C = 0.5
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dnf.m

1 %% Dynamic Neural Field Model (1D)
2 clear; clf; hold on;
3 nn = 100; dx=2*pi/nn; sig = 2*pi/10; C=0.5;
4
5 %% Training weight matrix
6 for loc=1:nn;
7 i=(1:nn)’; dis= min(abs(i-loc),nn-abs(i-loc));
8 pat(:,loc)=exp(-(dis*dx).ˆ2/(2*sigˆ2));
9 end

10 w=pat*pat’; w=w/w(1,1); w=4*(w-C);
11 %% Update with localised input
12 tall = []; rall = [];
13 I_ext=zeros(nn,1); I_ext(nn/2-floor(nn/10):nn/2+floor(nn/10))=1;
14 [t,u]=ode45(’rnn_ode’,[0 10],zeros(1,nn),[],nn,dx,w,I_ext);
15 r=1./(1+exp(-u)); tall=[tall;t]; rall=[rall;r];
16 %% Update without input
17 I_ext=zeros(nn,1);
18 [t,u]=ode45(’rnn_ode’,[10 20],u(size(u,1),:),[],nn,dx,w,I_ext);
19 r=1./(1+exp(-u)); tall=[tall;t]; rall=[rall;r];
20 %% Plotting results
21 surf(tall’,1:nn,rall’,’linestyle’,’none’); view(0,90);



rnn ode.m

1 function udot=rnn_ode(t,u,flag,nn,dx,w,I_ext)
2 % odefile for recurrent network
3 tau_inv = 1.; % inverse of membrane time constant
4 r=1./(1+exp(-u));
5 sum=w*r*dx;
6 udot=tau_inv*(-u+sum+I_ext);
7 return

Update rule of (recurrent) cortical network:

τ
dui(t)

dt
= −ui(t) +

1
N

∑
j

wij rj(t) +
1
M

∑
k

w in
ik r in

k (t)

Activation function: rj(t) = 1

1+eβ(uj (t)−α) .



DNF example - Chelazzi, Nature, 1993



DNF example - Chelazzi, Nature, 1993, Matlab code

T. Trappenberg, Decision making and population decoding with strongly inhibitory neural field models, Psychology Press, London,2008



Working memory by ongoing firing - sustained DNF buble

I F- fixation period (0.75s), C-cue period (0.5s), D - delay period
(3-6 s), R - response period (0.5s)→ reward



Directional delay period activity

S. Funahashi, C.J. Bruce and P.S. Goldman-Rakic, Mnemonic coding of visual space in the monkeys dorsolateral prefrontal cortex, J
Neurophysiol 61:331349, 1989



Place cells

I Place cells are neurons in the hippocampus that exhibit a high
rate of firing whenever an animal is in a specific location
(pyramidal cells in CA1,CA4)

I On initial exposure to a new environment, place fields become
established within minutes. The place fields of cells tend to be
stable over repeated exposures to the same environment.

I Remapping - In a different environment, however, a cell may
have a completely different place field or no place field at all



Place cells - 16 mins experiment

I colored circular region is an overhead view of a 76 cm diameter
cylinder, each small square region (pixel) is about 2.5 cm
squared, firing rate→ total number of spikes fired in the pixel
divided by the total time spent in the pixel.

I hungry rat ran around for 16 min chasing small food pellets, the
black line indicates the rat’s path and the red dots the locations at
which action potentials were fired, action potentials were fired all
along the second path even though the rat turned and ran out of
the field in the direction opposite to its entry; this is an indication
that the firing is not directionally selective.

I http://www.youtube.com/watch?v=PGHRDcPKio8

http://www.youtube.com/watch?v=PGHRDcPKio8


Place cells - is there any topography ?

I no specific topography found with respect to neuron’s maximal
response to a particular place

I rearranging plot - neurons firing maximally in response to
adjacent location→ plot neurons adjacent to each other

I direction head cells→ recurrent AAN simulation, high
dimensionality - (i) before learning - equal weights for all nodes
(ii) training- each node assigned (Gaussian profile) to preferred
direction where fires maximally, competitive Hebb’s rule (iii)
strongly connected nodes adjacent to each other

I dimensionality was reduced to 1D model, networks
self-organized to reflect the dimensionality of feature space
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Topographica - general simulator for cortical maps
http://topographica.org/

http://topographica.org/
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