

Technical Report

Fresnel Reflection

Fresnel Reflection Technical Report

TR-00534-001_v01 i
July 9, 2002

Abstract

When light strikes a material boundary, Fresnel reflection describes how much light
reflects at that boundary versus how much refracts and transmits. Fresnel reflection
occurs commonly in nature and is thus important for realistic real-time graphics.
This paper describes how to implement Fresnel reflection efficiently on DirectX 8.1
hardware such as NVIDIA’s GeForce 3. It provides the source for vertex and pixel
shaders implementing various approximations, shows the resulting screenshots, and
briefly discusses how to choose the most appropriate approximation.

Matthias Wloka
mwloka@nvidia.com

NVIDIA Corporation
2701 San Tomas Expressway
Santa Clara, CA 95050

June 21, 2002

Fresnel Reflection Technical Report

TR-00534-001_v01 ii
July 9, 2002

Table of Contents

Introduction ..4
Fresnel’s Formula ..5
Rendering with Fresnel’s Formula...8

Per-Vertex... 8
Per-Pixel ..10

Results...14
Appendix: Indices of Refraction Table ..16

Fresnel Reflection Technical Report

TR-00534-001_v01 iii
July 9, 2002

List of Figures

Figure 1. A ray of light traveling through material i and striking denser material t. 5
Figure 2. The graphs for R (black, center), R⊥ (green, top), and R║ (blue, bottom). 6
Figure 3. Fresnel's formula for a variety of indices of refraction. .. 7
Figure 4. Fresnel reflection and its approximations for indices of refraction of water and

diamond... 9
Figure 5. Cg shader fragment implementing Fresnel’s formula per-vertex............................. 9
Figure 6. Vertex shader assembly implementing Fresnel’s formula per-vertex.10
Figure 7. Screenshot of per-vertex Fresnel reflection. ..10
Figure 8. Cg shader fragment implementing Fresnel’s formula per-pixel through register-

combiner math...11
Figure 9. Pixel shader assembly implementing Fresnel’s formula per-pixel through register-

combiner math...11
Figure 10. Cg shader fragment implementing Fresnel’s formula per-pixel through a texture

lookup...12
Figure 11. Pixel shader assembly implementing Fresnel’s formula per-pixel through texture

lookup...12
Figure 12. Screenshot of Fresnel reflection using per-pixel register-combiner math................13
Figure 13. Screenshot of Fresnel reflection using per-pixel texture lookups.13
Figure 14. Screenshot of the test scene without Fresnel reflection..14
Figure 15. Screenshot approximating Fresnel reflection through 1-cos(θ)..............................15

TR-00534-001_v01 4
July 9, 2002

Introduction

When light strikes a material boundary, for example, crossing from air into glass,
only some of the light transmits into the new material; some light reflects at the
boundary. The name for this effect is Fresnel reflection. Fresnel reflection is most
visible when viewing semi-transparent material such as water, window-glass, skin, or
car-paint. Fresnel reflection also occurs when viewing opaque materials such as
metal or paper.

The commonness of Fresnel reflection makes it important for real-time rendering.
This paper explores how to render Fresnel reflection on DirectX 8.1 graphics
hardware (GeForce 3 and later).

The discussion of Fresnel reflection here restricts itself to single-material
boundaries, specifically, single boundaries of less dense to more dense materials.
Thus, correct rendering of windowpanes requires more work, since light hitting a
window typically traverses two boundaries: air-glass upon entering and glass-air on
exiting. This paper covers the correct rendering of a lake, for example, since a lake
presents only a single, less-to-more dense boundary (air-water), as long as the viewer
is above water. If the viewer is underwater, the material boundary is more-to-less
dense (water-air) and this paper no longer applies. The reader may want to consult
an optics textbook for ideas on how to render these cases (see Eugene Hecht,
"Optics,” Addison-Wesley, 1987, pp 94-104).

TR-00534-001_v01 5
July 9, 2002

Fresnel’s Formula

Figure 1 depicts the scenario that this paper covers if material i’s index of refraction
ni is less than material t’s index of refraction nt. The angle θ ranges from zero, when
the ray of light is normal to the surface, to θ = π/2, when the ray of light is incident
to the surface.

Figure 1. A ray of light traveling through material i and striking denser material
t.

Fresnel’s formula describes how much light reflects at the material boundary. The
amount of reflection depends on the angle of incidence θ, the polarization of the
light, the ratio of indices of refraction nt/ni, and since the index of refraction
depends on wavelength, the light’s wavelength. The formula is:

Equation 1. R(θ) = ½ (R⊥(θ) + R║(θ))

R⊥ and R║ describe the reflectance for light polarized perpendicular to the plane of
incidence and parallel to it, respectively:

Equation 2. θt = arcsin(ni/nt sin(θ))

Equation 3. R⊥(θ) = sin2(θ - θt) / sin2(θ + θt)

material i

(with index of refraction ni)

refracted light

reflected light
surface normal

light ray

angle θ

material t
(with index of refraction nt)

Fresnel Reflection Technical Report

TR-00534-001_v01 6
July 9, 2002

Equation 4. R║(θ) = tan2(θ - θt) / tan2(θ + θt)

Since R⊥ and R║ are undefined for θ = 0, the following limit applies:

Equation 5. R⊥(0) = R║(0) = (ni - nt)2/(ni + nt)2

Figure 2 plots Fresnel’s formula (Equation 1) as well as its two components R⊥ and
R║ (Equations 3 and 4). Figure 3 shows a family of curves for various indices of
refraction.

0.25 0.5 0.75 1 1.25 1.5

0.2

0.4

0.6

0.8

1

angle θ

R(θ)

Figure 2. The graphs for R (black, center), R⊥ (green, top), and
R║ (blue, bottom).

Fresnel Reflection Technical Report

TR-00534-001_v01 7
July 9, 2002

0.25 0.5 0.75 1 1.25 1.5

0.2

0.4

0.6

0.8

1
I I c c e
W W a a t t e e r r
P P l l e e x x i i g g l l a a s s
Q Q u u a a r r t t z z
D D e e n n s s e e F F l l i i n n t t g g l l aassss
Z Z i i r r c c o o n n
D D i i a a m m o o n n d d

R(θ)

angle θ

Figure 3. Fresnel's formula for a variety of indices of refraction.

Substituting Equations 2 through 4 into Equation 1 yields:

Equation 6. R(θ) = ½ (sin2(θ-θt) / sin2(θ+θt)) (1 + cos2(θ+θt) / cos2(θ-θt))

Defining c and g as:

Equation 7. c = cos(θ) ni/nt

Equation 8. g = sqrt(1 + c2 - (ni/nt)2)

and substituting them into Equation 6 simplifies the formula to:

Equation 9. R(θ) = ½ ((g-c)/(g+c))2
 (1 + [(c(g+c)-(ni/nt)2)/(c(g-c)+ (ni/nt)2)]2)

TR-00534-001_v01 8
July 9, 2002

Rendering
with Fresnel’s Formula

For DirectX 8.1 hardware, computing Fresnel’s formula is possible on either a per-
vertex or a per-pixel basis. The choice largely depends on whether a model’s surface
normals are specified per-vertex or per-pixel. If specified per-pixel, then Fresnel’s
formula needs to be computed per-pixel. If specified per-vertex, computing
Fresnel’s formula per-vertex is sufficient. Computing the formula per-pixel is only
insignificantly more accurate than using the interpolated per-vertex quantities
(assuming reasonable tessellation). The following pages have screenshots and more
details.

Choosing to compute Fresnel’s formula per-pixel, even though normals are
specified per-vertex, may make sense, if an application is heavily vertex-processing
bound. In that case, offloading per-vertex work to a per-pixel level rebalances the
rendering pipeline and increases overall rendering throughput.

These approximations greatly improve rendering efficiency:

 Assume all light is non-polarized.
 Assume all light is of the same wavelength.

Neither one of these assumptions is generally true. For example, skylight is strongly
polarized, and reflected light is generally multi-colored. These are good
approximations nonetheless, since their effect on Fresnel’s formula is small. This
paper assumes these approximations.

Per-Vertex
While encoding Equation 9 as a DirectX 8.1 vertex-shader is possible, it is also
highly inefficient due to the required number of instructions. Approximating
Equation 9 through

Equation 10. R(θ) ≈ Ra(θ) = R(0) + (1-R(0)) (1-cos(θ))5

yields good results: it introduces less error than the above non-polarized light
approximation. Figure 4 compares Equation 9 to its approximation (Equation 10),
as well as to a more simplistic approximation through 1-cos(θ).

Fresnel Reflection Technical Report

TR-00534-001_v01 9
July 9, 2002

0.25 0.5 0.75 1 1.25 1.5

0.2

0.4

0.6

0.8

1

RR ((θ)) ffoorr ww aatteerr
RR aa((θ)) ffoorr ww aatteerr

RR ((θ)) ffoorr dd iiaamm oonndd
RR aa((θ)) ffoorr dd iiaamm oonndd

11--ccooss((θ)

angle θ

Figure 4. Fresnel reflection and its approximations for indices of refraction of
water and diamond.

Figure 5 lists a HLSL/Cg code fragment that implements Equation 10. Supplying
R(0) to the shader instead of the refraction-index ratio, avoids computing the
constant R(0) on the fly and therefore shortens and optimizes the shader. Figure 6
shows the vs.1.0 assembly for the same vertex-shader fragment. Figure 7 shows a
result of using this vertex shader approximation.

float fresnel(float3 light, float3 normal, float R0)
{
 // Note: compute R0 on the CPU and provide as a
 // constant; it is more efficient than computing R0 in
 // the vertex shader. R0 is:
 // float const R0 = pow(1.0-refractionIndexRatio, 2.0)
 // / pow(1.0+refractionIndexRatio, 2.0);

 // light and normal are assumed to be normalized
 return R0 + (1.0-R0) * pow(1.0-dot(light, normal), 5.0);
}

Figure 5. HLSL/Cg shader fragment implementing Fresnel’s formula per-vertex.

Fresnel Reflection Technical Report

TR-00534-001_v01 10
July 9, 2002

; c[0] contains [R(0), 1-R(0), 0, 1]
; r0 contains normalized surface normal
; r1 contains normalized direction from light

vs.1.0

dp3 r0.w, r0, r1
add r0.w, c[0].w, -r0.w
mul r1.w, r0.w, r0.w // squared
mul r1.w, r1.w, r1.w // quartic
mul r1.w, r1.w, r0.w // quintic
mad oD0.a, r1.w, c[0].y, c[0].x

Figure 6. Vertex shader assembly implementing Fresnel’s formula
per-vertex.

Figure 7. Screenshot of per-vertex Fresnel reflection.

Per-Pixel
The same polynomial approximation used per-vertex (see Equation 10) also applies
to computing Fresnel’s formula per-pixel. Figure 8 shows a HLSL/Cg pixel shader
that implements this per-pixel approximation. Figure 9 lists the corresponding ps.1.1
assembly code and Figure 12 shows a screenshot of the effect.

Using a texture to encode Fresnel’s formula is another way to compute it per-pixel.
The pixel shader computes N•L = cos(θ) and passes the result as a texture
coordinate for a dependent read on a texture encoding R(arcos(x)). Figure 10 shows
a HLSL/Cg pixel shader implementing this technique. Figure 11 lists corresponding
ps.1.3 assembly code and Figure 13 shows a resulting screenshot.

Fresnel Reflection Technical Report

TR-00534-001_v01 11
July 9, 2002

This last approach is the most accurate. Only texture resolution introduces potential
computation errors. Visually comparing the two pixel-shader solutions shows little
difference. Therefore, choosing between these two solutions depends more on a
particular shader having texture stages or register combiners available for
implementing Fresnel’s formula.

float fresnel(float3 light, float3 normal, float R0)
{
 float const cosAngle = 1-saturate(dot3(light, normal));

 float result = cosAngle * cosAngle;
 result = result * result;
 result = result * cosAngle;
 result = saturate(mad(result, 1-saturate(R0), R0));

 return result;
}

Figure 8. HLSL/Cg shader fragment implementing Fresnel’s formula per-pixel
through register-combiner math.

ps.1.1

def c0, 1.0, 0.0, 0.0, R(0)

tex t0 // normal map
texm3x3pad t1, t0 // reflect eye-vector around
texm3x3pad t2, t0 // normal in t0 and use result
texm3x3vspec t3, t0 // to look up reflection color

// dot eye-vector with per-pixel normal from t0
dp3_sat r1.rgba, v0_bx2, t0

// run Fresnel approx. on it: R0 + (1-R0) (1-cos(q))^5
mul r0.a, 1-r1.a, 1-r1.a // squared
mul r0.a, r0.a, r0.a // quartic
mul r0.a, r0.a, 1-r1.a // quintic
mad r0.a, r0.a, 1-c0.a, c0.a // r0.a is Fresnel factor
lrp r0, r0.a, t3, v1 // blend based on Fresnel

Figure 9. Pixel shader assembly implementing Fresnel’s formula per-pixel
through register-combiner math.

Fresnel Reflection Technical Report

TR-00534-001_v01 12
July 9, 2002

fragout main(vpconn IN,
 uniform samplerCUBE EnvironmentMap,
 uniform sampler2D NormalMap,
 uniform sampler2D FresnelFunc)
{
 fragout OUT;

 float3 environColor = texCUBE(EnvironmentMap).xyz;
 float4 normal = 2*(tex2D(NormalMap)-0.5);
 float fresnelValue = saturate(tex2D_dp3x2(FresnelFunc,
 IN.TexCoord2,
 normal).w);

 float3 litColor = IN.Color.xyz + IN.Specular.xyz;

 OUT.col.xyz = lerp(litColor, environColor, fresnelValue);
 return OUT;
}

Figure 10. HLSL/Cg shader fragment implementing Fresnel’s formula per-pixel
through a texture lookup.

ps.1.3

tex t0 // model color-map
tex t1 // reflection color
tex t2 // normal map
texdp3 t3, t2 // Fresnel look-up function R(arcos(x))

// t3.a is Fresnel: blend between no and full reflection
mad t0, t0, v0, v1
lrp r0.rgb, t3.a, t1, t0

Figure 11. Pixel shader assembly implementing Fresnel’s formula per-pixel
through texture lookup.

Fresnel Reflection Technical Report

TR-00534-001_v01 13
July 9, 2002

Figure 12. Screenshot of Fresnel reflection using per-pixel register-combiner
math.

Figure 13. Screenshot of Fresnel reflection using per-pixel texture lookups.

TR-00534-001_v01 14
July 9, 2002

Results

Figures 14 and 15 show screenshots of the same scene without Fresnel reflection
and with the simplistic 1-cos(θ) approximation, respectively. The effect “Fresnel
Reflection” generated these screenshots. It is available for download from:
http://developer.nvidia.com/view.asp?PAGE=nvsdk.

This effect implementation is invaluable for evaluating visual differences between
the various approximations described here. In particular, it should clarify that adding
Fresnel-based reflection adds important visual detail. Furthermore, the simplistic 1-
cos(θ) approximation is visually unacceptable. Better approximations are available at
little to no added performance expense. Finally, the per-vertex and per-pixel
approximations are visually distinguishable only through A/B-style comparisons.

Figure 14. Screenshot of the test scene without Fresnel reflection.

Fresnel Reflection Technical Report

TR-00534-001_v01 15
July 9, 2002

Figure 15. Screenshot approximating Fresnel reflection through 1-cos(θ).

TR-00534-001_v01 16
July 9, 2002

Appendix:
Indices of Refraction Table

Table 1. Selected indices of refraction.

Material Index of Refraction
Vacuum 1.0 (min. index of refraction)

Air 1.000293

Ice 1.31

Water 1.333333

Ethyl Alcohol 1.36

Fluorite 1.43

Poppy Seed Oil 1.469

Olive Oil 1.47

Linseed Oil 1.478

Plexiglas 1.51

Immersion Oil 1.515

Crown Glass 1.52

Quartz 1.54

Salt 1.54

Light Flint Glass 1.58

Dense Flint Glass 1.66

Tourmaline 1.62

Garnet 1.73-1.89

Zircon 1.923

Cubic Zirconia 2.14-2.20

Diamond 2.417

Rutile 2.907

Gallium Phosphide 3.5 (max. index of refraction)

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”)
ARE BEING PROVIDED “AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED,
STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS
ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation
assumes no responsibility for the consequences of use of such information or for any
infringement of patents or other rights of third parties that may result from its use. No license is
granted by implication or otherwise under any patent or patent rights of NVIDIA Corporation.
Specifications mentioned in this publication are subject to change without notice. This
publication supersedes and replaces all information previously supplied. NVIDIA Corporation
products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, and GeForce are trademarks of NVIDIA Corporation. Microsoft,
Windows, the Windows logo, and DirectX are registered trademarks of Microsoft Corporation.

OpenGL is a trademark of SGI. Other company and product names may be trademarks of the
respective companies with which they are associated.

Copyright

Copyright NVIDIA Corporation 2002

