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Data Structures for Computer Graphics

Ray Shooting and its Applications I+II

Lectured by Vlastimil Havran
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Ray Shooting Algorithm (RSA)

Task: Given a ray, find out    

the first object intersected.

Input: a scene and a ray

Output: the object CA B

D

C

ray

E
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Ray ShootingRay Shooting

Find nearest intersection along a ray

Problem Q S A

Ray shooting ray {objects} point

Hidden Surface 

Removal

{rays} {objects} {points}

Visibility culling {rays} {objects} {objects}

Photon maps point {points} {points}

Ray maps point {rays} {rays}

Irradiance 

caching

point {spheres} {spheres}
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• Ray shooting versus ray tracing

• Applications of ray shooting

• Performance model/studies

• Ray shooting with kd-trees

• Octrees, uniform grids, recursive grids

• Bounding volume hierarchies

• Offline ray shooting

• Special algorithms

Ray Shooting
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Ray Tracing 

versus

Ray Shooting

• Ray shooting – only a single ray

• Ray tracing in computer graphics can be:

– Ray shooting (only a single ray)

– Ray casting – only primary rays from camera

– Recursive ray tracing

– Distribution ray tracing and others
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Ray Casting and Ray TracingRay Casting and Ray Tracing

• Cast ray for each pixel

• Step 1: spatial data structure (XYZ)

– Preprocess

– Trees ~ quick sort

– Grid ~ distribution sort

• Step 2: search for 

nearest intersection

– Min selection with 

early termination
viewport
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(Recursive Backward) Ray Tracing(Recursive Backward) Ray Tracing
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Path TracingPath Tracing
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Photon MappingPhoton Mapping
Phase I: photon shooting Phase II: gathering
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Other Ray Shooting ApplicationsOther Ray Shooting Applications

• Simple collision detection: a player is approximated by a 
sphere, collision is approximated by tens of rays

• Visibility preprocessing

• Radio waves propagation

– Prediction of radio wave propagation

– Optimization of radio wave propagation: where to put 
antennas/ transmitters in a city to maximize its utilization 
(mobile phones, television, radio waves etc.)

• Optical design: lenses, telescopes, camera  objectives 
(different kinds of distortion, attenuation, reflection)

• Vehicle design for army: minimize the impact of bullet 
penetration (ballistic analysis) (US army research labs)

• Artificial body garment fitting for games
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Radio Signal PropagationRadio Signal Propagation

• Interactive Realistic Simulation of Wireless Networks, RT07

• CTU-FEL - K13117 - Department of Electromagnetic Field, 
http://www.feld.cvut.cz/vv/tymy/radiovlny.html
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Bullet Ray Vision 

– virtually shooting bullets

Bullet Ray Vision 

– virtually shooting bullets
Images from Bullet Ray Vision by Buttler and Stephens, RT2007
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Some Complexity Issues

Computational Geometry

– aims mainly at worst-case complexity

– restriction to certain class of object shape                   

(polygons, triangles)

– unacceptable memory requirements, further in slides

O(log N) query time  induces Ω(N4) space

Computer Graphics

– aims at average-case complexity

– practical feasibility and robustness

– implementation issues important for performance



14

Some Complexity Results

Lower bound for worst-case complexity: 1997/98 

Laszlo Szirmay-Kalos + Gabor Marton – lower bound for   

space complexity is Ω(N4) for O(log N) search

Applicability of Computational Geometry 

techniques in CG for ray tracing 

– CGE techniques are not general

– limited to small number of primitives

– no real implementations available 
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Complexity: Why is it so difficult ?Complexity: Why is it so difficult ?

• We do have non-point data !

• For each of four lines we find two lines which intersect all of 
them

• Triangles bounded by lines

• How many rays are then formed by N lines: the number of 
combinations is        K = N! / (4! * (N-4)!) ) = Ω(N4)

- the number of different ray-object sequences 

• A data structure based on trees has to distinguish at least 
Ω(N4) possible cases

• This needs Ω(N4) space + preprocessing and the search in a 
tree is computed in O(log N)
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Computer Graphics 

Techniques Overview

Techniques developed: aimed at practical 

applications, no complexity guarantees, use 

many “tricks”, the analysis difficult or infeasible

Basic techniques: bounding volumes, spatial     

subdivision, ray classification

Basic techniques: bounding volumes, spatial     

subdivision, ray classification

Augmented techniques: macro regions, pyramid 

clipping, proximity clouds, directed safe zones

Special tricks: ray boxing, mailbox, handling 

CSG primitives, other types of coherence, etc. 
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RSA Techniques Classification

A) Subdivision techniques (top down)

-- binary space partitioning  (also kd-trees)

-- octrees

-- uniform and hierarchical grids

-- bounding volume hierarchy

B) Clustering (bottom up)

-- bounding volume hierarchy

C) Structures formed by insertion (incrementally)

-- bounding volume hierarchy
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D

B
A

C

D

B
A

C

Some RSA Techniques

D

B
A

C

D

B
A

C

octree kd-tree

hierarchy

of grids

bounding

volume

hierarchy
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Relations between Data StructuresRelations between Data Structures
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Recall: Search Performance Model

• CT Q cost of traversing the nodes of HDS

• CL Q cost of incidence operation in leaves

• CR Q cost of accessing the data from                                          

internal or external memory

Typical cost model:

C = CT + CL + CR

C = CTS * NTS + CLO * NLO + CAccess * NAccess
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RSA Techniques Comparison

30 scenes times 12 RSAs times 4 ray distribution methods  

=  1440 measurements, year 2000-2001
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RSA Techniques Comparison

Number of operations (ray-object intersections, traversal steps)

Note: values normalized to the worst value.
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Notation used in TablesNotation used in Tables

• TB Q building time for data structures (preprocessing)

• TR Q ray tracing time

• NIT Q number of ray-object intersection tests per ray

• NTS Q number of traversal steps per ray

• NETS Q number of traversal steps per ray through 

elementary cells (leaf cells, either empty or full = 

containing pointers to objects)

• NEETS .. number of traversal steps per ray through 

empty elementary cells (leaf cells)
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Intro: Ray Shooting with Kd-treesIntro: Ray Shooting with Kd-trees

• Kd-tree is one of the most efficient data structures 

for ray shooting and also for other problems

• Note that kd-tree is for ray shooting not 

constructed over point data, but over object data 

with spatial extent. Some objects can be 

referenced several times in leaves.
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Intro: Ray Shooting with Kd-trees cntd.Intro: Ray Shooting with Kd-trees cntd.

• Ray shooting is very different searching problem 

compared to NN-search or k-NN search, or 

circular range search over point data! 

• This requires changes both in the construction 

algorithm of kd-tree and the traversal algorithm 

for kd-tree.

• Performance at 2011/12 (CPU 1 thread)

– ray shooting up to 4M/s for individual coherent rays

– kd-tree construction time roughly in 80 ms for 100,000 

triangles.
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Visualisation of  Kd-tree
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RSA based on Kd-trees

Construction (best algorithm in O(N log N) time)

• based on cost function and geometric probability 

• automatic termination criteria algorithm

• various efficiency improvements:
– construction of kd-tree with empty spatial regions

– reducing objects’ axis-aligned bounding boxes

– preferred ray sets

Ray traversal

• in practice achieves expected O(log N) time

• robust recursive ray traversal algorithm

Quite an efficient solution used in practice
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Kd-tree Construction

• Spatial median splitting

– the node is subdivided in a geometric center, changing 
orientation of axis in x,y,z,x,yQ 

– the resulting kd-tree is rather inefficient

• Cost model in a priori setting for splitting

– the application of the cost model based on local greedy 
heuristics 

– can improve the performance of ray shooting by two 
orders of magnitude

– it is absolutely necessary for scenes with skewed 
distribution for performance reasons.
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Kd-tree Construction 

for Ray Shooting
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Note that object C is referenced in two leaves !
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Geometric Probability of Ray 

Intersecting a Subdivided Box

probabilityLEFT = SL / S = PLO +  PLR +  PRL

probabilityRIGHT = SR / S = PRO +  PLR +  PRL

Probability computed from surface area of the box

Condition: uniform ray distribution
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Kd-tree Construction Based on

Cost Function with Greedy Heuristics

Local greedy: CostLEFT = NLEFT and  CostRIGHT = NRIGHT

Cost

A

B

C
D

A,B,C,D

A B,C,D

Minimum cost

Cost = probabilityLEFT * CostLEFT + 

probabilityRIGHT * CostRIGHT
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Left bounding box Right bounding box

Kd-tree Efficiency Improvements

Cutting off empty space

Ray

Splitting plane

Reducing objects’ axis-

aligned bounding boxes

Splitting plane
Leaf



33

Termination Criteria for ConstructionTermination Criteria for Construction

• Local: using a stack

– Simple local: maximum depth + number of objects 
(usually 1 or 2)

– More complicated local: a maximum number of cost 
improvement failures + maximum estimated depth + 
number of objects

• Global: using a priority queue

– maximum memory used

– maximum memory used + maximum leaf cost

Note: maximum depth is good to select as dmax = k1 + k2 * log (N), 

for example k1=3, k2 = 1.25
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Construction in O(N log N)

There are two methods assuming N objects.

• Presorting

– three sorted lists of boundaries, each list in one axis 
contains 2*N boundaries

– for each list we compute cost function and select the 
position with minimum cost

– the three lists are subdivided into six lists, three lists for 
left child, three lists for right child (requires to copy the 
boundaries of objects that straddle the splitting plane)

• Discretized sampling

– preselect several positions and compute cost function 
only for them

– the complexity is O(N * (k+log N)), where “k” is the 
number of preselected positions (k = 16 or so).
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Kd-tree Construction for 

Preferred Ray Sets
Idea: different than uniform distribution of rays, 

gain 2 times up to 3 times

U
n

if
o

rm
P

re
fe

rr
e

d



36

Recursive Ray Traversal Algorithm 

for Kd-tree
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Interior node of 

kd-tree

Recursive Ray Traversal 

Basic Cases Classification

L R

Right only

L R

Left only

L R

Left, then right

L R

Right, then left
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Traversal pseudocode for kd-trees, 

list of variables, naïve implementation

Traversal pseudocode for kd-trees, 

list of variables, naïve implementation

struct Skdnode {

int axis; // 0-x, 1-y, 2-z, 3-leaf

float value;

Skdnode *leftChild, *rightChild;

vector<CObject> *listOfobjects;

};

struct SStackEntry {

Skdnode *node;

float mint, maxt;

};

stack<SStackEntry> stacktrav;

float mint, maxt; // the signed entry and exit distance to the box

float t; // the signed distance along ray to the splitting plane

Skdnode *nearChild, *farChild; // the pointer to the near child and far child

ray

Near 

child

Far 

child
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Possible Traversal Cases for kd-treePossible Traversal Cases for kd-tree

Far 

child

ray

Near 

child

ray

Near 

child

ray

ray
ray

Far 

child

Ray.origin[axis] < SplittingPlanePosition Ray.origin[axis] > SplittingPlanePosition
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Traversal Pseudo-Code for kd-treesTraversal Pseudo-Code for kd-trees
Compute mint and maxt given the scene box and the ray;

stacktrav.Push(root, mint, maxt); // Init a stack with root node, mint, maxt

while stacktrav is not empty do {

stacktrav.Pop(w, mint, maxt);

while w is not a leaf do { 

int axis = w->GetAxis();

float value = w->GetValue();

if (value > ray.origin(axis)) { nearChild = w->rightChild; farChild = w->leftChild;  }

else { nearChild = w->leftChild; farChild = w->rightChild;  }

float t = (value - ray.origin(axis)) / ray.dir(axis);

if ((t < 0) || ( t > maxt) ) then 

w = nearChild; // visit only nearest child node

else 

if (t > mint) then

w = w->GetFarthestChild(ray); // visit only farthest child node

else {

stacktrav.Push(GetFarthestChild(ray), t, maxt); // visit farther child later

w = w->GetNearestChild(ray); // visit first near child

maxt = t;

}

} // while

Compute intersection between ray and all objects referenced in a leaf node w; 

if any ray-object intersection lies between mint and maxt, then return the object; // FINISHED

} // while

return no object;  // no object is intersected by ray - FINISHED
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A B

D

D B

x

y

Recursive Ray Traversal Algorithm

kd-tree:

Stack:

24

A

C1
C

4
2

41
2

3

3

1

Intersection

foundLeft | Right

C2

Note: more variants of traversal algorithms for kd-trees in the survey paper by

M. Hapala, V. Havran: "Review: Kd-tree Traversal Algorithms for Ray Tracing", in 

journal Computer Graphics Forum, Vol. 30, Issue 1, pages 199–213, 2011 
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Ray Shooting with OctreesRay Shooting with Octrees

• Interior node arity (branching factor) is eight

• Up to four child nodes can be traversed in 
an interior node

• Traversal algorithm necessarily more 
complicated than for kd-trees

• About 26 papers about ray tracing with 
octrees were published

• Octrees are less adaptive to the scene 
object distributions than kd-trees

• Geometric probability can be used in the 
same way as for kd-trees (Octree-R)

• According to the experiments, octrees are 
less efficient than kd-trees even if we use 
the most efficient traversal algorithm for 
octree.

D

B
A

C

Note: octrees     

can be 

simulated by 

kd-trees
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Ray Shooting with Uniform GridsRay Shooting with Uniform Grids

• Arity (branching factor) of a node proportional to the number of objects

• Traversal method based on 3D discrete differential analyzer (3DDDA)

• For skewed distributions of objects in the scene it is inefficient

• For highly and moderately uniform distributions of objects it is slightly more 
efficient than kd-trees

• Construction time is only O(N).
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Trick: MailboxingTrick: Mailboxing

• Some objects are contained in more than one cell

• An object that was tested for ray-object intersection 
can be tested again

• Idea: save already computed results of ray-object 
intersections. Instead of computing it again, we find 
the result in the records.

• Suitable for complex object primitives such as 
NURBS etc. 

• Does not pay off for triangles, spheres, and other 
easy primitives since the computation overhead to 
maintain the cache is higher than to compute the 
result repetitively.
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Mailboxing variantsMailboxing variants

1. Each object has its own data for mailboxing 

– the results are exact, but it requires much 

more memory (8 Bytes for each object)

2. There is a small array cache of size N (8 or 

16 entries) and by hashing function we 

record by simple hashing function (triangle 

ID mod N) the result to the cache (triangle 

ID + result)
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Ray Shooting with Bounding Volume 

Hierarchy (BVH)

Ray Shooting with Bounding Volume 

Hierarchy (BVH)

• Each interior node is fully described by a 
bounding box

• The number of child nodes is usually two for 
top-down construction (more for bottom-up 
construction)

• The nodes can overlap

• Each object is referenced only once (no 
mailboxing) and the number of nodes is 
limited

D

B
A

C

• The storage of a node is high Q the memory consumption is higher 
than for kd-trees, typically 32 Bytes

• Efficient traversal algorithm is very similar to kd-trees, but we cannot 
finish the traversal upon the first intersection

• Kd-trees can be emulated by BVHs.
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Three Variants of BVHs Construction

• Constructed in top-down fashion

• Constructed incrementally by insertion

• Constructed by clustering

• Constructed in any way and further optimized, 

(article “Optimizing the Cost of Bounding Volume 

Hierarchies via Rotations”, 2008 IEEE Symposium on 

Interactive Ray Tracing (2008) DOI: 10.1109/RT.2008.4634624)
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1) BVH Constructed in Top-Down 

Fashion

1) BVH Constructed in Top-Down 

Fashion

• Very similar to kd-trees

• Each interior node has two children. 

• Compute the cost function as for kd-trees, but two 

child nodes can overlap. 

• The ray traversal algorithm can first visit closer 

cells, then farther cells as for kd-trees.

• The performance of ray-tracing with these BVHs 

is comparable with kd-trees. O(N log N) 

complexity. The analogy is quicksort.
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2) BVH Constructed Incrementally by 

Insertion

2) BVH Constructed Incrementally by 

Insertion

• We insert each object into partially constructed 
tree based on the cost function. Upon insertion 
either the new child is created, or a child node 
becomes an interior node with two children. 
Generally, the interior node can have several 
children. 

• The cost of such BVH is much worse than for top-
down construction. 

• The traversal algorithm has to visit all interior 
nodes intersected by a ray. O( N log N) 
complexity. The analogy is insertion sort.
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3) BVH Constructed by Clustering3) BVH Constructed by Clustering

• Up to O(N2) complexity, similar properties to 

variant 2), no ordering of child nodes in an interior 

node, it uses only a distance. Note: analogy is 

merge sort. RT 2008 paper – O(N log N) by 

locally organized agglomerative clustering.



Exact versus Approximate Cost Evaluation

Ray Tracing (51)

C

A
B

C

D

E

A,B,C,D,E

A,B C,D,E

C

� Exact using

boundaries

� Approximate

with 8 samples



BVH Traversal Algorithm

� Similar, but the ray has to be checked along its traversed 

path until the first intersection found

� The bounding boxes in principle arbitrary, in practice a 

single axis orientation is encoded as for kd-trees in 2 bits

Ray Tracing (52)

- DIRX < 0

DIRY < 0

+X
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Two-Step Algorithm Building Data 

Structures for Ray Shooting

Two-Step Algorithm Building Data 

Structures for Ray Shooting

• Motivation

– uniform grids are constructed in O(N) time. Uniform 
grids are efficient for uniform distribution of objects in 
the scene, but do not work well for skewed distribution.

• Algorithm

– Construct uniform grid in O(N) time

– Estimate if the grid will be fast enough (compute 
statistical characterization of scene known as variance, 
skewness, and kurtosis or shoot few sample rays)

– If the uniform grid is estimated to be efficient, use it.  
Otherwise, discard the uniform grid and construct a 
standard kd-tree or BVH.
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Statistical Scene CharacterizationStatistical Scene Characterization

• Initially – distribute the scene to a uniform grid cells

– Nv Q number of cells (proportional to number of objects)

– ni Q number of objects associated with a cell “i”

• Variance:   v = 1/Nv . Σ (ni – navg)
2 ,

where mean navg is a mean: navg = 1/Nv . Σ ni

• Standard deviation  σ = sqrt(v)

• Skewness:   s = 1/Nv . Σ ((ni – navg)/σ)3

• Curtosis:   k = 1/Nv . Σ ((ni – navg)/σ)4 - 3
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Data Layout of Trees in MemoryData Layout of Trees in Memory

Inorder, preorder (depth-first-search), heap 

(breadth-first-search), van Emde Boas

Depth-first-search (DFS) layout van Emde Boas layout

Needs rewritingBy standard memory allocator
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Performance Model of 

Ray Shooting

• Faster ray-object intersection tests 

• Decreasing number of ray-object intersection tests

• Faster traversal step

• Decreasing number of traversal steps

• Reducing CPU-memory traffic

Total cost for RSA = 

cost for ray-object intersection tests  + 

cost for ray traversal of kd-tree + 

cost for data move from memory to CPU
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Offline Ray ShootingOffline Ray Shooting

• Shooting several rays at once

• Rays are formed by camera, by viewing frustum or 

by point light sources

• Rays are coherent = similar in direction and origin

• Problem can be formulated as offline setting of 

searching

• We can amortize the cost of traversal operations 

though the data structure Q the number of 

traversal steps is decreased typically by 60-70%

• Solving by LCTS – longest common traversal 

sequence
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How the cells look at the projection to 

the viewer ?

Constructed for uniform ray distribution
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Offline Ray Shooting: CoherenceOffline Ray Shooting: Coherence

• If boundary rays traverse the same sequence S of 

leaves, then all rays in between also traverse the 

same sequence.

• Proof by convexity (convex leaves, convex shaft)
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R2:

R1:

Offline Ray Shooting in 

HDS: Principle

A

C

B

D

1

2

3

x

y
B

2

1

A

3

1

B

3

C

2

A D

B

2

1

3

A

R1

R2

Ray origin



61

SLCTS +  two dimensions:

SLCTS

SLCTS +  scanline:

SLCTS SLCTS 

SLCTS

Hidden surface removal based on LCTS concept 

in one or two dimensions.

1 3 4 2 6 7 5 1

3 4

26

7
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8 9

10 11 12

13

14

15 16

17 18 19

20 21 22

Sampling in Image Space

Other schemes: hierarchical image sampling
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Traversal History for R1:

head

Simple LCTS  = 

Sequence  of  Leaves

R1, R2:

A

C

B

D

1

2

3

x

y

B

2

1

3

A

R1

R2

Ray origin

SLCTS(R1, R2):

B

head

B A

tail

Traversal History for R2:

B A

A

tail

head tail
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;

A

C

B

D

1

3

2

4

x

y

R1

R2

Simple LCTS - Problems

1) No common sequence of leaves exists.

2) When accessing SLCTS, object was not    

found, and traversal has to continue further.

R1
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Hierarchical  LCTS

Traversal History for R2:

Traversal History for R1:

A

C

B

D

1

2

3

x

y

R2

Ray origin

1

B

3

C

2

A D

BC

1(R,L)

D
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Traversal History for R2:

Traversal History for R1:

Common Traversal History 

for all rays between R1 and R2:

=  HLCTS(R1, R2):

Hierarchical  LCTS contd.

A

1(R,L)

3(R,L)2(R)

1

B

3

C

2

A D

head

D B

tail

2(?)

C

1(R,L)

3(R,L)2(L)

D

DB

B

Matching two traversal histories into common one:
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Hierarchical  LCTS contd.

1) Matching traversal histories for two or more rays.

2) Matching traversal histories for rays with the 

previously constructed common traversal history.

R1

R2

HLCTS1

R3
HLCTS2

HLCTS1  - constructed  from 

traversal history of R1 and R2

HLCTS2  - constructed  from 

HLCTS1 and 

traversal history of R3

Ray R3 - traversal uses HLCTS1
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Special Issues in Ray TracingSpecial Issues in Ray Tracing

• Ray tracing heightfields

• Volumetric ray tracing

• Approximate ray tracing

• Ray tracing with ray cache for final gathering
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Ray Tracing HeightfieldsRay Tracing Heightfields

• Heightfield: 2D array + height for each location in 
2D array:
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Fast Traversal Algorithm for HeightfieldsFast Traversal Algorithm for Heightfields

• Construct either quadtree or kd-tree and store in 
each interior node min/max value of height of all 
child nodes rooted here.

• During ray traversal operation we skip the parts of 
the scene that cannot be intersected:

ray
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Ray Tracing Volumetric Objects 

based on Isosurfaces

Ray Tracing Volumetric Objects 

based on Isosurfaces

• Source data: computer tomography

• Output of measurement: 3D grid + density 
for each voxel in the grid – similar to 
heightfields, but data have one dimension 
more

• Output of rendering: 2D image, each ray is 
finished at the voxel where the density is 
higher than a selected threshold

• Skipping of low-level density regions can be 
implemented similarly to height-fields. This 
requires either octrees or kd-trees and 
remembering minimum and maximum 
density in all spatial region rooted in interior 
nodes.
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Approximate Ray Tracing with 

Distance Imposters

Approximate Ray Tracing with 

Distance Imposters

• Details in the paper: Szirmay-Kalos et al.: Approximate Ray-
Tracing on the GPU with Distance Imposters, 2005.

• Idea: approximate environment with the imposters given the 
depth from the center of the scene.

• Use iterative algorithm to find out the intersection with high 
probability if the scene is fat (ratio of longest and shortest side 
is small)

• Possible to implement on GPU: suitable for games
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Ray Cache in Final GatheringRay Cache in Final Gathering

• Store the rays into cache according to direction

• When a bucket is filled in, shoot all of them at once

• Improves cache access pattern for incoherent queries

• Sorting brings the speedup up to 30%
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Surveys on Ray Shooting and 

Ray Tracing

Surveys on Ray Shooting and 

Ray Tracing

• G. Simiakakis: Accelerating Ray Tracing with 

Directional Subdivision and Parallel Processing, PhD 

Thesis, 1995

• V. Havran: Heuristic Ray Shooting Algorithms, PhD 

Thesis, 2001

• I. Wald: Real Time Ray Tracing and Global 

Illumination, PhD Thesis, 2004

• A. Y-H. Chang: Theoretical and Experimental Aspects 

of  Ray Shooting, PhD Thesis, 2005

• Wald et al.: State of the Art in Ray Tracing Animated 

Scenes, Computer Graphics Forum, 2009
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