
1

Data Structures for Computer Graphics

Ray Shooting and its Applications I+II

Lectured by Vlastimil Havran

2

Ray Shooting Algorithm (RSA)

Task: Given a ray, find out

the first object intersected.

Input: a scene and a ray

Output: the object CA B

D

C

ray

E

3

Ray ShootingRay Shooting

Find nearest intersection along a ray

Problem Q S A

Ray shooting ray {objects} point

Hidden Surface

Removal

{rays} {objects} {points}

Visibility culling {rays} {objects} {objects}

Photon maps point {points} {points}

Ray maps point {rays} {rays}

Irradiance

caching

point {spheres} {spheres}

4

• Ray shooting versus ray tracing

• Applications of ray shooting

• Performance model/studies

• Ray shooting with kd-trees

• Octrees, uniform grids, recursive grids

• Bounding volume hierarchies

• Offline ray shooting

• Special algorithms

Ray Shooting

5

Ray Tracing

versus

Ray Shooting

• Ray shooting – only a single ray

• Ray tracing in computer graphics can be:

– Ray shooting (only a single ray)

– Ray casting – only primary rays from camera

– Recursive ray tracing

– Distribution ray tracing and others

6

Ray Casting and Ray TracingRay Casting and Ray Tracing

• Cast ray for each pixel

• Step 1: spatial data structure (XYZ)

– Preprocess

– Trees ~ quick sort

– Grid ~ distribution sort

• Step 2: search for

nearest intersection

– Min selection with

early termination
viewport

7

(Recursive Backward) Ray Tracing(Recursive Backward) Ray Tracing

8

Path TracingPath Tracing

9

Photon MappingPhoton Mapping
Phase I: photon shooting Phase II: gathering

10

Other Ray Shooting ApplicationsOther Ray Shooting Applications

• Simple collision detection: a player is approximated by a
sphere, collision is approximated by tens of rays

• Visibility preprocessing

• Radio waves propagation

– Prediction of radio wave propagation

– Optimization of radio wave propagation: where to put
antennas/ transmitters in a city to maximize its utilization
(mobile phones, television, radio waves etc.)

• Optical design: lenses, telescopes, camera objectives
(different kinds of distortion, attenuation, reflection)

• Vehicle design for army: minimize the impact of bullet
penetration (ballistic analysis) (US army research labs)

• Artificial body garment fitting for games

11

Radio Signal PropagationRadio Signal Propagation

• Interactive Realistic Simulation of Wireless Networks, RT07

• CTU-FEL - K13117 - Department of Electromagnetic Field,
http://www.feld.cvut.cz/vv/tymy/radiovlny.html

12

Bullet Ray Vision

– virtually shooting bullets

Bullet Ray Vision

– virtually shooting bullets
Images from Bullet Ray Vision by Buttler and Stephens, RT2007

13

Some Complexity Issues

Computational Geometry

– aims mainly at worst-case complexity

– restriction to certain class of object shape

(polygons, triangles)

– unacceptable memory requirements, further in slides

O(log N) query time induces Ω(N4) space

Computer Graphics

– aims at average-case complexity

– practical feasibility and robustness

– implementation issues important for performance

14

Some Complexity Results

Lower bound for worst-case complexity: 1997/98

Laszlo Szirmay-Kalos + Gabor Marton – lower bound for

space complexity is Ω(N4) for O(log N) search

Applicability of Computational Geometry

techniques in CG for ray tracing

– CGE techniques are not general

– limited to small number of primitives

– no real implementations available

15

Complexity: Why is it so difficult ?Complexity: Why is it so difficult ?

• We do have non-point data !

• For each of four lines we find two lines which intersect all of
them

• Triangles bounded by lines

• How many rays are then formed by N lines: the number of
combinations is K = N! / (4! * (N-4)!)) = Ω(N4)

- the number of different ray-object sequences

• A data structure based on trees has to distinguish at least
Ω(N4) possible cases

• This needs Ω(N4) space + preprocessing and the search in a
tree is computed in O(log N)

16

Computer Graphics

Techniques Overview

Techniques developed: aimed at practical

applications, no complexity guarantees, use

many “tricks”, the analysis difficult or infeasible

Basic techniques: bounding volumes, spatial

subdivision, ray classification

Basic techniques: bounding volumes, spatial

subdivision, ray classification

Augmented techniques: macro regions, pyramid

clipping, proximity clouds, directed safe zones

Special tricks: ray boxing, mailbox, handling

CSG primitives, other types of coherence, etc.

17

RSA Techniques Classification

A) Subdivision techniques (top down)

-- binary space partitioning (also kd-trees)

-- octrees

-- uniform and hierarchical grids

-- bounding volume hierarchy

B) Clustering (bottom up)

-- bounding volume hierarchy

C) Structures formed by insertion (incrementally)

-- bounding volume hierarchy

18

D

B
A

C

D

B
A

C

Some RSA Techniques

D

B
A

C

D

B
A

C

octree kd-tree

hierarchy

of grids

bounding

volume

hierarchy

19

Relations between Data StructuresRelations between Data Structures

20

Recall: Search Performance Model

• CT Q cost of traversing the nodes of HDS

• CL Q cost of incidence operation in leaves

• CR Q cost of accessing the data from

internal or external memory

Typical cost model:

C = CT + CL + CR

C = CTS * NTS + CLO * NLO + CAccess * NAccess

21

RSA Techniques Comparison

30 scenes times 12 RSAs times 4 ray distribution methods

= 1440 measurements, year 2000-2001

0

20000

40000

60000

80000

100000

T_B

T_R

T_B + T_R

K
D

O
9

3
A

O
8

4
A

R
G

H
U

G

A
G

U
G

O
9

3

B
S

P

O
8

9

O
8

4

B
V

H

410000

89800
89450

66092

53350

31900

2211414760

8710
69306820

5241

Note: In tests BVH constructed by insertion !

Timings (build time, search time, total time)

22

RSA Techniques Comparison

Number of operations (ray-object intersections, traversal steps)

Note: values normalized to the worst value.

23

Notation used in TablesNotation used in Tables

• TB Q building time for data structures (preprocessing)

• TR Q ray tracing time

• NIT Q number of ray-object intersection tests per ray

• NTS Q number of traversal steps per ray

• NETS Q number of traversal steps per ray through

elementary cells (leaf cells, either empty or full =

containing pointers to objects)

• NEETS .. number of traversal steps per ray through

empty elementary cells (leaf cells)

24

Intro: Ray Shooting with Kd-treesIntro: Ray Shooting with Kd-trees

• Kd-tree is one of the most efficient data structures

for ray shooting and also for other problems

• Note that kd-tree is for ray shooting not

constructed over point data, but over object data

with spatial extent. Some objects can be

referenced several times in leaves.

25

Intro: Ray Shooting with Kd-trees cntd.Intro: Ray Shooting with Kd-trees cntd.

• Ray shooting is very different searching problem

compared to NN-search or k-NN search, or

circular range search over point data!

• This requires changes both in the construction

algorithm of kd-tree and the traversal algorithm

for kd-tree.

• Performance at 2011/12 (CPU 1 thread)

– ray shooting up to 4M/s for individual coherent rays

– kd-tree construction time roughly in 80 ms for 100,000

triangles.

26

Visualisation of Kd-tree

27

RSA based on Kd-trees

Construction (best algorithm in O(N log N) time)

• based on cost function and geometric probability

• automatic termination criteria algorithm

• various efficiency improvements:
– construction of kd-tree with empty spatial regions

– reducing objects’ axis-aligned bounding boxes

– preferred ray sets

Ray traversal

• in practice achieves expected O(log N) time

• robust recursive ray traversal algorithm

Quite an efficient solution used in practice

28

Kd-tree Construction

• Spatial median splitting

– the node is subdivided in a geometric center, changing
orientation of axis in x,y,z,x,yQ

– the resulting kd-tree is rather inefficient

• Cost model in a priori setting for splitting

– the application of the cost model based on local greedy
heuristics

– can improve the performance of ray shooting by two
orders of magnitude

– it is absolutely necessary for scenes with skewed
distribution for performance reasons.

29

Kd-tree Construction

for Ray Shooting

A

C

B

D

1 1

A

3

3
CD

2

2
4

B C

4

x

y

Note that object C is referenced in two leaves !

30

Geometric Probability of Ray

Intersecting a Subdivided Box

probabilityLEFT = SL / S = PLO + PLR + PRL

probabilityRIGHT = SR / S = PRO + PLR + PRL

Probability computed from surface area of the box

Condition: uniform ray distribution

31

Kd-tree Construction Based on

Cost Function with Greedy Heuristics

Local greedy: CostLEFT = NLEFT and CostRIGHT = NRIGHT

Cost

A

B

C
D

A,B,C,D

A B,C,D

Minimum cost

Cost = probabilityLEFT * CostLEFT +

probabilityRIGHT * CostRIGHT

32

Left bounding box Right bounding box

Kd-tree Efficiency Improvements

Cutting off empty space

Ray

Splitting plane

Reducing objects’ axis-

aligned bounding boxes

Splitting plane
Leaf

33

Termination Criteria for ConstructionTermination Criteria for Construction

• Local: using a stack

– Simple local: maximum depth + number of objects
(usually 1 or 2)

– More complicated local: a maximum number of cost
improvement failures + maximum estimated depth +
number of objects

• Global: using a priority queue

– maximum memory used

– maximum memory used + maximum leaf cost

Note: maximum depth is good to select as dmax = k1 + k2 * log (N),

for example k1=3, k2 = 1.25

34

Construction in O(N log N)

There are two methods assuming N objects.

• Presorting

– three sorted lists of boundaries, each list in one axis
contains 2*N boundaries

– for each list we compute cost function and select the
position with minimum cost

– the three lists are subdivided into six lists, three lists for
left child, three lists for right child (requires to copy the
boundaries of objects that straddle the splitting plane)

• Discretized sampling

– preselect several positions and compute cost function
only for them

– the complexity is O(N * (k+log N)), where “k” is the
number of preselected positions (k = 16 or so).

35

Kd-tree Construction for

Preferred Ray Sets
Idea: different than uniform distribution of rays,

gain 2 times up to 3 times

U
n

if
o

rm
P

re
fe

rr
e

d

36

Recursive Ray Traversal Algorithm

for Kd-tree

37

Interior node of

kd-tree

Recursive Ray Traversal

Basic Cases Classification

L R

Right only

L R

Left only

L R

Left, then right

L R

Right, then left

38

Traversal pseudocode for kd-trees,

list of variables, naïve implementation

Traversal pseudocode for kd-trees,

list of variables, naïve implementation

struct Skdnode {

int axis; // 0-x, 1-y, 2-z, 3-leaf

float value;

Skdnode *leftChild, *rightChild;

vector<CObject> *listOfobjects;

};

struct SStackEntry {

Skdnode *node;

float mint, maxt;

};

stack<SStackEntry> stacktrav;

float mint, maxt; // the signed entry and exit distance to the box

float t; // the signed distance along ray to the splitting plane

Skdnode *nearChild, *farChild; // the pointer to the near child and far child

ray

Near

child

Far

child

39

Possible Traversal Cases for kd-treePossible Traversal Cases for kd-tree

Far

child

ray

Near

child

ray

Near

child

ray

ray
ray

Far

child

Ray.origin[axis] < SplittingPlanePosition Ray.origin[axis] > SplittingPlanePosition

40

Traversal Pseudo-Code for kd-treesTraversal Pseudo-Code for kd-trees
Compute mint and maxt given the scene box and the ray;

stacktrav.Push(root, mint, maxt); // Init a stack with root node, mint, maxt

while stacktrav is not empty do {

stacktrav.Pop(w, mint, maxt);

while w is not a leaf do {

int axis = w->GetAxis();

float value = w->GetValue();

if (value > ray.origin(axis)) { nearChild = w->rightChild; farChild = w->leftChild; }

else { nearChild = w->leftChild; farChild = w->rightChild; }

float t = (value - ray.origin(axis)) / ray.dir(axis);

if ((t < 0) || (t > maxt)) then

w = nearChild; // visit only nearest child node

else

if (t > mint) then

w = w->GetFarthestChild(ray); // visit only farthest child node

else {

stacktrav.Push(GetFarthestChild(ray), t, maxt); // visit farther child later

w = w->GetNearestChild(ray); // visit first near child

maxt = t;

}

} // while

Compute intersection between ray and all objects referenced in a leaf node w;

if any ray-object intersection lies between mint and maxt, then return the object; // FINISHED

} // while

return no object; // no object is intersected by ray - FINISHED

41

A B

D

D B

x

y

Recursive Ray Traversal Algorithm

kd-tree:

Stack:

24

A

C1
C

4
2

41
2

3

3

1

Intersection

foundLeft | Right

C2

Note: more variants of traversal algorithms for kd-trees in the survey paper by

M. Hapala, V. Havran: "Review: Kd-tree Traversal Algorithms for Ray Tracing", in

journal Computer Graphics Forum, Vol. 30, Issue 1, pages 199–213, 2011

42

Ray Shooting with OctreesRay Shooting with Octrees

• Interior node arity (branching factor) is eight

• Up to four child nodes can be traversed in
an interior node

• Traversal algorithm necessarily more
complicated than for kd-trees

• About 26 papers about ray tracing with
octrees were published

• Octrees are less adaptive to the scene
object distributions than kd-trees

• Geometric probability can be used in the
same way as for kd-trees (Octree-R)

• According to the experiments, octrees are
less efficient than kd-trees even if we use
the most efficient traversal algorithm for
octree.

D

B
A

C

Note: octrees

can be

simulated by

kd-trees

43

Ray Shooting with Uniform GridsRay Shooting with Uniform Grids

• Arity (branching factor) of a node proportional to the number of objects

• Traversal method based on 3D discrete differential analyzer (3DDDA)

• For skewed distributions of objects in the scene it is inefficient

• For highly and moderately uniform distributions of objects it is slightly more
efficient than kd-trees

• Construction time is only O(N).

44

Trick: MailboxingTrick: Mailboxing

• Some objects are contained in more than one cell

• An object that was tested for ray-object intersection
can be tested again

• Idea: save already computed results of ray-object
intersections. Instead of computing it again, we find
the result in the records.

• Suitable for complex object primitives such as
NURBS etc.

• Does not pay off for triangles, spheres, and other
easy primitives since the computation overhead to
maintain the cache is higher than to compute the
result repetitively.

45

Mailboxing variantsMailboxing variants

1. Each object has its own data for mailboxing

– the results are exact, but it requires much

more memory (8 Bytes for each object)

2. There is a small array cache of size N (8 or

16 entries) and by hashing function we

record by simple hashing function (triangle

ID mod N) the result to the cache (triangle

ID + result)

46

Ray Shooting with Bounding Volume

Hierarchy (BVH)

Ray Shooting with Bounding Volume

Hierarchy (BVH)

• Each interior node is fully described by a
bounding box

• The number of child nodes is usually two for
top-down construction (more for bottom-up
construction)

• The nodes can overlap

• Each object is referenced only once (no
mailboxing) and the number of nodes is
limited

D

B
A

C

• The storage of a node is high Q the memory consumption is higher
than for kd-trees, typically 32 Bytes

• Efficient traversal algorithm is very similar to kd-trees, but we cannot
finish the traversal upon the first intersection

• Kd-trees can be emulated by BVHs.

47

Three Variants of BVHs Construction

• Constructed in top-down fashion

• Constructed incrementally by insertion

• Constructed by clustering

• Constructed in any way and further optimized,

(article “Optimizing the Cost of Bounding Volume

Hierarchies via Rotations”, 2008 IEEE Symposium on

Interactive Ray Tracing (2008) DOI: 10.1109/RT.2008.4634624)

48

1) BVH Constructed in Top-Down

Fashion

1) BVH Constructed in Top-Down

Fashion

• Very similar to kd-trees

• Each interior node has two children.

• Compute the cost function as for kd-trees, but two

child nodes can overlap.

• The ray traversal algorithm can first visit closer

cells, then farther cells as for kd-trees.

• The performance of ray-tracing with these BVHs

is comparable with kd-trees. O(N log N)

complexity. The analogy is quicksort.

49

2) BVH Constructed Incrementally by

Insertion

2) BVH Constructed Incrementally by

Insertion

• We insert each object into partially constructed
tree based on the cost function. Upon insertion
either the new child is created, or a child node
becomes an interior node with two children.
Generally, the interior node can have several
children.

• The cost of such BVH is much worse than for top-
down construction.

• The traversal algorithm has to visit all interior
nodes intersected by a ray. O(N log N)
complexity. The analogy is insertion sort.

50

3) BVH Constructed by Clustering3) BVH Constructed by Clustering

• Up to O(N2) complexity, similar properties to

variant 2), no ordering of child nodes in an interior

node, it uses only a distance. Note: analogy is

merge sort. RT 2008 paper – O(N log N) by

locally organized agglomerative clustering.

Exact versus Approximate Cost Evaluation

Ray Tracing (51)

C

A
B

C

D

E

A,B,C,D,E

A,B C,D,E

C

� Exact using

boundaries

� Approximate

with 8 samples

BVH Traversal Algorithm

� Similar, but the ray has to be checked along its traversed

path until the first intersection found

� The bounding boxes in principle arbitrary, in practice a

single axis orientation is encoded as for kd-trees in 2 bits

Ray Tracing (52)

- DIRX < 0

DIRY < 0

+X

53

Two-Step Algorithm Building Data

Structures for Ray Shooting

Two-Step Algorithm Building Data

Structures for Ray Shooting

• Motivation

– uniform grids are constructed in O(N) time. Uniform
grids are efficient for uniform distribution of objects in
the scene, but do not work well for skewed distribution.

• Algorithm

– Construct uniform grid in O(N) time

– Estimate if the grid will be fast enough (compute
statistical characterization of scene known as variance,
skewness, and kurtosis or shoot few sample rays)

– If the uniform grid is estimated to be efficient, use it.
Otherwise, discard the uniform grid and construct a
standard kd-tree or BVH.

54

Statistical Scene CharacterizationStatistical Scene Characterization

• Initially – distribute the scene to a uniform grid cells

– Nv Q number of cells (proportional to number of objects)

– ni Q number of objects associated with a cell “i”

• Variance: v = 1/Nv . Σ (ni – navg)
2 ,

where mean navg is a mean: navg = 1/Nv . Σ ni

• Standard deviation σ = sqrt(v)

• Skewness: s = 1/Nv . Σ ((ni – navg)/σ)3

• Curtosis: k = 1/Nv . Σ ((ni – navg)/σ)4 - 3

55

Data Layout of Trees in MemoryData Layout of Trees in Memory

Inorder, preorder (depth-first-search), heap

(breadth-first-search), van Emde Boas

Depth-first-search (DFS) layout van Emde Boas layout

Needs rewritingBy standard memory allocator

56

Performance Model of

Ray Shooting

• Faster ray-object intersection tests

• Decreasing number of ray-object intersection tests

• Faster traversal step

• Decreasing number of traversal steps

• Reducing CPU-memory traffic

Total cost for RSA =

cost for ray-object intersection tests +

cost for ray traversal of kd-tree +

cost for data move from memory to CPU

57

Offline Ray ShootingOffline Ray Shooting

• Shooting several rays at once

• Rays are formed by camera, by viewing frustum or

by point light sources

• Rays are coherent = similar in direction and origin

• Problem can be formulated as offline setting of

searching

• We can amortize the cost of traversal operations

though the data structure Q the number of

traversal steps is decreased typically by 60-70%

• Solving by LCTS – longest common traversal

sequence

58

How the cells look at the projection to

the viewer ?

Constructed for uniform ray distribution

59

Offline Ray Shooting: CoherenceOffline Ray Shooting: Coherence

• If boundary rays traverse the same sequence S of

leaves, then all rays in between also traverse the

same sequence.

• Proof by convexity (convex leaves, convex shaft)

60

R2:

R1:

Offline Ray Shooting in

HDS: Principle

A

C

B

D

1

2

3

x

y
B

2

1

A

3

1

B

3

C

2

A D

B

2

1

3

A

R1

R2

Ray origin

61

SLCTS + two dimensions:

SLCTS

SLCTS + scanline:

SLCTS SLCTS

SLCTS

Hidden surface removal based on LCTS concept

in one or two dimensions.

1 3 4 2 6 7 5 1

3 4

26

7

5

8 9

10 11 12

13

14

15 16

17 18 19

20 21 22

Sampling in Image Space

Other schemes: hierarchical image sampling

62

Traversal History for R1:

head

Simple LCTS =

Sequence of Leaves

R1, R2:

A

C

B

D

1

2

3

x

y

B

2

1

3

A

R1

R2

Ray origin

SLCTS(R1, R2):

B

head

B A

tail

Traversal History for R2:

B A

A

tail

head tail

63

;

A

C

B

D

1

3

2

4

x

y

R1

R2

Simple LCTS - Problems

1) No common sequence of leaves exists.

2) When accessing SLCTS, object was not

found, and traversal has to continue further.

R1

R2

x

y A

C

B

D

1

3

4

2

64

Hierarchical LCTS

Traversal History for R2:

Traversal History for R1:

A

C

B

D

1

2

3

x

y

R2

Ray origin

1

B

3

C

2

A D

BC

1(R,L)

D

3(R,L)2(L)

BA

1(R,L)

D

3(R,L)2(R)

65

Traversal History for R2:

Traversal History for R1:

Common Traversal History

for all rays between R1 and R2:

= HLCTS(R1, R2):

Hierarchical LCTS contd.

A

1(R,L)

3(R,L)2(R)

1

B

3

C

2

A D

head

D B

tail

2(?)

C

1(R,L)

3(R,L)2(L)

D

DB

B

Matching two traversal histories into common one:

66

Hierarchical LCTS contd.

1) Matching traversal histories for two or more rays.

2) Matching traversal histories for rays with the

previously constructed common traversal history.

R1

R2

HLCTS1

R3
HLCTS2

HLCTS1 - constructed from

traversal history of R1 and R2

HLCTS2 - constructed from

HLCTS1 and

traversal history of R3

Ray R3 - traversal uses HLCTS1

67

Special Issues in Ray TracingSpecial Issues in Ray Tracing

• Ray tracing heightfields

• Volumetric ray tracing

• Approximate ray tracing

• Ray tracing with ray cache for final gathering

68

Ray Tracing HeightfieldsRay Tracing Heightfields

• Heightfield: 2D array + height for each location in
2D array:

69

Fast Traversal Algorithm for HeightfieldsFast Traversal Algorithm for Heightfields

• Construct either quadtree or kd-tree and store in
each interior node min/max value of height of all
child nodes rooted here.

• During ray traversal operation we skip the parts of
the scene that cannot be intersected:

ray

70

Ray Tracing Volumetric Objects

based on Isosurfaces

Ray Tracing Volumetric Objects

based on Isosurfaces

• Source data: computer tomography

• Output of measurement: 3D grid + density
for each voxel in the grid – similar to
heightfields, but data have one dimension
more

• Output of rendering: 2D image, each ray is
finished at the voxel where the density is
higher than a selected threshold

• Skipping of low-level density regions can be
implemented similarly to height-fields. This
requires either octrees or kd-trees and
remembering minimum and maximum
density in all spatial region rooted in interior
nodes.

71

Approximate Ray Tracing with

Distance Imposters

Approximate Ray Tracing with

Distance Imposters

• Details in the paper: Szirmay-Kalos et al.: Approximate Ray-
Tracing on the GPU with Distance Imposters, 2005.

• Idea: approximate environment with the imposters given the
depth from the center of the scene.

• Use iterative algorithm to find out the intersection with high
probability if the scene is fat (ratio of longest and shortest side
is small)

• Possible to implement on GPU: suitable for games

72

Ray Cache in Final GatheringRay Cache in Final Gathering

• Store the rays into cache according to direction

• When a bucket is filled in, shoot all of them at once

• Improves cache access pattern for incoherent queries

• Sorting brings the speedup up to 30%

73

Surveys on Ray Shooting and

Ray Tracing

Surveys on Ray Shooting and

Ray Tracing

• G. Simiakakis: Accelerating Ray Tracing with

Directional Subdivision and Parallel Processing, PhD

Thesis, 1995

• V. Havran: Heuristic Ray Shooting Algorithms, PhD

Thesis, 2001

• I. Wald: Real Time Ray Tracing and Global

Illumination, PhD Thesis, 2004

• A. Y-H. Chang: Theoretical and Experimental Aspects

of Ray Shooting, PhD Thesis, 2005

• Wald et al.: State of the Art in Ray Tracing Animated

Scenes, Computer Graphics Forum, 2009

74

