
B4M36ESW: Efficient software
Lecture 13: Virtualization

Michal Sojka
michal.sojka@cvut.cz

May 21, 2018

1 / 35



Outline

1 Virtualization basics

2 Hardware assisted virtualization

3 Example: Mini VMM with KVM

4 I/O virtualization
How do modern Network Interface Cards (NIC) work
Device emulation
Virtio
PCI pass-through
Single-Root I/O Virtualization
Inter-VM networking

5 Summary

2 / 35



Virtualization basics

Outline

1 Virtualization basics

2 Hardware assisted virtualization

3 Example: Mini VMM with KVM

4 I/O virtualization
How do modern Network Interface Cards (NIC) work
Device emulation
Virtio
PCI pass-through
Single-Root I/O Virtualization
Inter-VM networking

5 Summary

3 / 35



Virtualization basics

Virtualization

Definition: Virtualization of the whole computing platform – the
operating system thinks it runs on real hardware, but the hardware
is largely emulated by hypervisor and/or virtual machine monitor
(VMM).
Virtual machine (VM) vs. Java VM

Java VM interprets Java byte code and interacts with an operating
system
VM executes native (machine) code and interacts with a hypervisor.

Used since ’70, mostly on IBM mainframes
Popek and Goldberg defined requirements for ISA virtualization in
their paper in 1974,
x86 became fully virtualizable in 2005.

More detailed introduction to virtualization (from OSY course):
https://cw.fel.cvut.cz/old/_media/courses/b4b35osy/
lekce12_virt.pdf

4 / 35

https://cw.fel.cvut.cz/old/_media/courses/b4b35osy/lekce12_virt.pdf
https://cw.fel.cvut.cz/old/_media/courses/b4b35osy/lekce12_virt.pdf


Virtualization basics

Trap-and-emulate

Unprivileged (VM)

Privileged (HV)

Trap

Emulate

Basic mechanism of virtualization
Popek and Goldberg: “All sensitive instructions must be privileged
instructions”

Sensitive instruction: Changes global state1 or behaves differently
depending on global state (e.g. cli, pushf on x86)
Privileged instruction: Unprivileged execution traps to the
privileged mode (hypervisor, CPU exception)
on x86 popf, pushf and few other instructions were not privileged!

pushf stores all flags to stack (including “global” interrupt flag)
popf sets IF in privileged mode and ignores it in unprivileged mode
(does not trap)

Hypervisor (HV) can emulate the effect of sensitive instructions
depending on the VM state (not the global state).

1Global state means a state that is common to all running VMs, not local to a single VM. For example, CPU reset signal is global.
5 / 35



Virtualization basics

Hypervisor
Privileged code that supervises execution of the VM, i.e. handles traps.
Hypervisor types:

HW

Hypervisor

Guest 1 Guest 2

Guest apps Guest apps
Guest OS kernel Guest OS kernel

HW

Host OS kernel

Guest

Guest apps

Host apps

Guest OS kernel

Hypervisor

Bare-metal hypervisor (Xen,
VMware ESX, ...)

Hosted hypervisor (KVM,
VirtualBox)

The boundary is blurry – many bare-metal hypervisors support native apps

6 / 35



Virtualization basics

Virtual Machine Monitor (VMM)

HW

Hypervisor

Guest 1 Guest 2

Guest apps Guest apps
Guest OS kernel Guest OS kernel

VMM

HW

Hypervisor

Guest 1 Guest 2

Guest apps Guest apps
Guest OS kernel Guest OS kernel

VMM 2VMM 1

Software that emulates HW platform (network, graphics, storage, …)
Often implemented inside hypervisor (left) ⇒ people confuse VMM with hypervisors
Today’s platforms are complex (e.g. PC bears 40 years heritage)
It is more secure to execute the VMM in user mode, outside of privileged mode (right,
example: KVM & qemu)
It is also slower, but see NOVA microhypervisor (TU Dresden), which implements this
faster.

7 / 35



Virtualization basics

Questions
How many privilege levels we need to implement virtualization?

Two are sufficient, but then, every guest system call, page fault etc.
traps from the guest app to the hypervisor, which then arranges
switch to guest kernel – slow.
Hardware assisted virtualization – introduces more privilege levels
and more – see later.

Why is virtualization needed at all? (My personal rant)
To some extent because the design of mainstream operating systems
is not up to the current needs.
Current OSes do not offer sufficient isolation of applications and
groups of applications. Many things such as user permissions, apply
implicitly to the whole system.
Microkernel OSes, which solve this problem, were designed in the
past without much success.
Now, people are adding “containers” to mainstream OSes, which is
painful and often with security problems.

Making a microkernel from a monolithic kernel is more difficult that
starting with microkernel from scratch.

8 / 35



Hardware assisted virtualization

Outline

1 Virtualization basics

2 Hardware assisted virtualization

3 Example: Mini VMM with KVM

4 I/O virtualization
How do modern Network Interface Cards (NIC) work
Device emulation
Virtio
PCI pass-through
Single-Root I/O Virtualization
Inter-VM networking

5 Summary

9 / 35



Hardware assisted virtualization

Hardware assisted virtualization

Accelerates virtualized execution
Differences between vendors (Intel, AMD, ARM, …), core principles
similar:

More privilege levels (x86 – root/non-root, ARMv8 EL0–3)
Nested paging
IO virtualization

10 / 35



Hardware assisted virtualization

Intel VMX
VMX root operation
(host rings 0–3)
VMX non-root operation
(guest rings 0–3)
root→non-root = VM Enter

instructions: vmlaunch, vmresume
non-root→root = VM Exit

instructions: vmresume, vmcall
faults (e.g. I/O)

Guest state

Host state

VM-execution control fields

VM-exit control fields

VM-entry control fields

VM-exit information fields

VMCS (up to 4 KiB – e.g. 1024 B)

VM Control Structure (VMCS)
Data structure in memory that controls VMX execution (managed by
hypervisor/VMM)
(Re)stores host/guest state
“Large structure” ⇒ VM Enter/Exit has overhead
The overhead depends on what is (re)stored from/to VMCS (configurable)

11 / 35



Hardware assisted virtualization

Nested paging & address spaces

Host physical

Guest virtualHost virtual
Guest physical

Guest page tables
Host page tables

HW Hypervisor Guest

PDPT PD PT

12 / 35



Hardware assisted virtualization

Memory access overhead

TLB misses and page faults are more expensive in a VM!
Page walk in a VM (worst case):

1 Translate PDPT (CR3) address using host page tables (3 memory
accesses for 3-level page tables)

2 Translate PD address using host page tables (3 accesses)
3 Translate PT address using host page tables (3 accesses)

Performance drop up to 15/38% (Intel/AMD)2

Tagged TLBs
No need to flush TLBs on process (or VM) switches (good)
Applications share TLBs with hypervisor and VMM (bad)

Recommendation: Use huge pages if possible

2Ulrich Drepper, The Cost of Virtualization, ACM Queue, Vol. 6 No. 1 – 2008
13 / 35



Example: Mini VMM with KVM

Outline

1 Virtualization basics

2 Hardware assisted virtualization

3 Example: Mini VMM with KVM

4 I/O virtualization
How do modern Network Interface Cards (NIC) work
Device emulation
Virtio
PCI pass-through
Single-Root I/O Virtualization
Inter-VM networking

5 Summary

14 / 35



Example: Mini VMM with KVM

KVM

Linux-based hosted hypervisor
Abstracts hardware-assisted virtualization of different architectures
behind ioctl-based API
We will develop a miniature user-space VMM

Simplest hardware to virtualize: serial port

1 Setup the VM’s memory
2 Load the code to execute
3 Run the VM
4 Handle the VM Exits and emulate serial port
5 Goto 3

See also https://lwn.net/Articles/658511/

15 / 35

https://lwn.net/Articles/658511/


I/O virtualization

Outline

1 Virtualization basics

2 Hardware assisted virtualization

3 Example: Mini VMM with KVM

4 I/O virtualization
How do modern Network Interface Cards (NIC) work
Device emulation
Virtio
PCI pass-through
Single-Root I/O Virtualization
Inter-VM networking

5 Summary

16 / 35



I/O virtualization » How do modern Network Interface Cards (NIC) work

Outline

1 Virtualization basics

2 Hardware assisted virtualization

3 Example: Mini VMM with KVM

4 I/O virtualization
How do modern Network Interface Cards (NIC) work
Device emulation
Virtio
PCI pass-through
Single-Root I/O Virtualization
Inter-VM networking

5 Summary

17 / 35



I/O virtualization » How do modern Network Interface Cards (NIC) work

Network Interface Card & transmit operation
NIC Registers

Buffer descriptors
(in memory)

Packet data

TX head
TX tail
RX head
RX tail

...

...

addr
size, flags

TX operation:
1 Write packet data
2 Fill in empty buffer descriptor
3 Notify NIC by writing TX tail reg

18 / 35



I/O virtualization » How do modern Network Interface Cards (NIC) work

Network Interface Card & receive operation
NIC Registers

Buffer descriptors
(in memory)

Packet data

TX head
TX tail
RX head
RX tail

...

...

addr
size, flags

RX operation:
1 Allocate packet buffers

and update buffer descriptors
2 Update RX head/tail regs
3 On packet RX, NIC generates an interrupt

19 / 35



I/O virtualization » How do modern Network Interface Cards (NIC) work

Network Interface Card & SG DMA
NIC Registers

Buffer descriptors
(in memory)

Headres &
Packet data

TX head
TX tail
RX head
RX tail

...

...

addr[2]
size[2], flags

Scatter-Gather DMA:
Final packet is composed from several
pieces scattered in memory
Typically header (from OS) and data
(from app) 20 / 35



I/O virtualization » Device emulation

Outline

1 Virtualization basics

2 Hardware assisted virtualization

3 Example: Mini VMM with KVM

4 I/O virtualization
How do modern Network Interface Cards (NIC) work
Device emulation
Virtio
PCI pass-through
Single-Root I/O Virtualization
Inter-VM networking

5 Summary

21 / 35



I/O virtualization » Device emulation

NIC device emulation

Trap accesses to NIC registers (memory-mapped IO)
Upon write to TX tail, VMM iterates over queued buffers and sends
them via real NIC (e.g. SOCK_RAW)
Multiple packets can be sent during single VM Exit (⇒ less
overhead)
Reception works similarly

Not all hardware is “that nice” to virtualize
Several VM Exits per TX or RX
Registers that must be trapped are intermixed with non-sensitive
(e.g. read-only) registers in a single page

⇒ Unnecessary VM Exits for some register accesses
VMM must emulate not only RX/TX, but also management

Link negotiation, configuration, …
More complex compared to RX/TX

22 / 35



I/O virtualization » Virtio

Outline

1 Virtualization basics

2 Hardware assisted virtualization

3 Example: Mini VMM with KVM

4 I/O virtualization
How do modern Network Interface Cards (NIC) work
Device emulation
Virtio
PCI pass-through
Single-Root I/O Virtualization
Inter-VM networking

5 Summary

23 / 35



I/O virtualization » Virtio

Virtio

It is neither easy nor necessary to emulate a real NIC
TX, RX and simple configuration (e.g. MAC address) is sufficient
Why to implement different ring-buffer formats?

Virtio3
Universal ring-buffer-based communication between VM and HV
Used for network, storage, serial line, …
PCI-based probing & configuration – VMs can easily discover virtio
devices

3R. Russell, virtio: Towards a De-Facto Standard For Virtual I/O Devices, ACM
SIGOPS Operating Systems Review, 2008

24 / 35

http://www.ozlabs.org/~rusty/virtio-spec/virtio-paper.pdf
http://www.ozlabs.org/~rusty/virtio-spec/virtio-paper.pdf


I/O virtualization » PCI pass-through

Outline

1 Virtualization basics

2 Hardware assisted virtualization

3 Example: Mini VMM with KVM

4 I/O virtualization
How do modern Network Interface Cards (NIC) work
Device emulation
Virtio
PCI pass-through
Single-Root I/O Virtualization
Inter-VM networking

5 Summary

25 / 35



I/O virtualization » PCI pass-through

PCI pass-through

Even virtio needs one VM Exit per (a batch of) TX operation(s)
If we don’t want VM Exits, we may want to give a VM exclusive
access to the NIC
Few problems to solve…

26 / 35



I/O virtualization » PCI pass-through

PCI pass-through graphically

Host physical

Guest virtual

Guest page tables
Host page tables

Hypervisor Guest

PDPT PD PT

Chipset/
PCI Root
Complex

CPU
CPU

interconnect

MemoryMemory bus

Device
PCIe

Host virtual
Guest physical

NIC regs

NIC regs

NIC buffs

NIC buffs

HVDevice page tables

Device

Device

NIC regs

NIC buffs

27 / 35



I/O virtualization » PCI pass-through

PCI pass-through

Problems:
1 Virtual address space (see previous slide)

Security: One VM could configure the NIC to read or write memory of
other VM or even the hypervisor!

2 Device interrupts
Host does not know how to acknowledge (silence) the interrupt – it has
no driver for the device
It injects interrupt to the VM and returns from IRQ handler
Host is interrupted again, because VM didn’t have chance to run and
ack the interrupt

Solution: Hardware support for direct use of devices in VMs
1 IOMMU (AMD), VT-d (Intel), SMMU (ARM)
2 Mask individual sources of interrupts without understanding the

device
Hard with PCI, where interrupt lines are shared between devices
Possible with Message Signaled Interrupts (MSI)

28 / 35



I/O virtualization » Single-Root I/O Virtualization

Outline

1 Virtualization basics

2 Hardware assisted virtualization

3 Example: Mini VMM with KVM

4 I/O virtualization
How do modern Network Interface Cards (NIC) work
Device emulation
Virtio
PCI pass-through
Single-Root I/O Virtualization
Inter-VM networking

5 Summary

29 / 35



I/O virtualization » Single-Root I/O Virtualization

Single-Root I/O Virtualization (SR-IOV)
PCI pass-through is nice, but I have more VMs that want to communicate…

Each VM has emulated NIC, VMM multiplexes the real NIC between VMs in software
… or perform the multiplexing in hardware

NICPF VF VF VF VF VF VF VF VF

Hypervisor

Guest 1 Guest 2

Guest apps Guest apps
Guest OS kernel Guest OS kernel

VMM 2VMM 1
Guest 3

Guest apps
Guest OS kernel

VMM 3

SR-IOV
Besides “classic” physical function (PF), NIC implements several virtual functions (VFs)
Each VF provides simplified PCI interface and its own RX/TX ring buffers

30 / 35



I/O virtualization » Inter-VM networking

Outline

1 Virtualization basics

2 Hardware assisted virtualization

3 Example: Mini VMM with KVM

4 I/O virtualization
How do modern Network Interface Cards (NIC) work
Device emulation
Virtio
PCI pass-through
Single-Root I/O Virtualization
Inter-VM networking

5 Summary

31 / 35



I/O virtualization » Inter-VM networking

Inter-VM networking

Hypervisor

Guest 1 Guest 2

Guest apps Guest apps
Guest OS kernel Guest OS kernel

VMM 2VMM 1

SW switch
Shared mem
with VMMs

Packet stored in VM’s memory
VMM notified (VM Exit) e.g. via virtio’s kick()
VMM notifies the SW switch via standard IPC mechanism
Switch does memcpy() of the packet from source VM to destination VM (into
dest NIC ring buffer)
Dest VMM notifies the VM (injects interrupt)

32 / 35



I/O virtualization » Inter-VM networking

Optimizations

OS networking stack is responsible for splitting application data to
packets (e.g. TCP segmentation) and adding appropriate headers
VMM sees many small packets and switch does many small
memcpy()s
Receiver’s networking stack strips packet headers and combines
the payload to larger data chunks for application.

Segmentation is not necessary for Inter-VM communication
(overhead)!
Modern NICs support TCP Segmentation Offload (TSO)/Large
Receive Offload (LRO): Segmentation/reconstruction is done in
hardware.
If virtual NIC supports TSO/LRO, Inter-VM communication is much
faster, because whole TCP segments (in contrast to small packets)
can be copied at once.

33 / 35



Summary

Outline

1 Virtualization basics

2 Hardware assisted virtualization

3 Example: Mini VMM with KVM

4 I/O virtualization
How do modern Network Interface Cards (NIC) work
Device emulation
Virtio
PCI pass-through
Single-Root I/O Virtualization
Inter-VM networking

5 Summary

34 / 35



Summary

Summary

Virtualization is just “another layer of indirection” and as such it
adds overheads
It is useful to know where the overheads are and how to mitigate
them

35 / 35


	Virtualization basics
	Hardware assisted virtualization
	Example: Mini VMM with KVM
	I/O virtualization
	How do modern Network Interface Cards (NIC) work
	Device emulation
	Virtio
	PCI pass-through
	Single-Root I/O Virtualization
	Inter-VM networking

	Summary

