B4M36ESW: Efficient software

Lecture 13: Virtualization

Michal Sojka

michal.sojka@cvut.cz

qg_;—% (s
s

May 21, 2018



Virtualization basics
Hardware assisted virtualization
Example: Mini VMM with KVM

/O virtualization
m How do modern Network Interface Cards (NIC) work
m Device emulation

Virtio

PCI pass-through

Single-Root I/O Virtualization

Inter-VM networking

Summary



Virtualization basics

Outline

Virtualization basics



Virtualization basics
Virtualization

m Definition: Virtualization of the whole computing platform - the
operating system thinks it runs on real hardware, but the hardware
is largely emulated by hypervisor and/or virtual machine monitor
(VMM).

m Virtual machine (VM) vs. Java VM

m Java VM interprets Java byte code and interacts with an operating
system
m VM executes native (machine) code and interacts with a hypervisor.
m Used since '70, mostly on IBM mainframes
m Popek and Goldberg defined requirements for ISA virtualization in
their paper in 1974,
m x86 became fully virtualizable in 2005.

m More detailed introduction to virtualization (from OSY course):
https://cw.fel.cvut.cz/0ld/_media/courses/b4b350sy/
lekcel2_virt.pdf


https://cw.fel.cvut.cz/old/_media/courses/b4b35osy/lekce12_virt.pdf
https://cw.fel.cvut.cz/old/_media/courses/b4b35osy/lekce12_virt.pdf

Virtualization basics

Trap-and-emulate

Privileged (HV)

Unprivileged (VM)

m Basic mechanism of virtualization
m Popek and Goldberg: “All sensitive instructions must be privileged
instructions”
m Sensitive instruction: Changes global state' or behaves differently
depending on global state (e.g. cli, pushf on x86)
m Privileged instruction: Unprivileged execution traps to the
privileged mode (hypervisor, CPU exception)
m on x86 popf, pushf and few other instructions were not privileged!
m pushf stores all flags to stack (including “global” interrupt flag)
B popf sets IF in privileged mode and ignores it in unprivileged mode
(does not trap)
m Hypervisor (HV) can emulate the effect of sensitive instructions
depending on the VM state (not the global state).

1 Global state means a state that is common to all running VMs, not local to a single VM. For example, CPU reset signal is global.




Virtualization basics

Hypervisor

m Privileged code that supervises execution of the VM, i.e. handles traps.
m Hypervisor types:

Guest apps Guest apps

Guest apps

Guest 1 Guest 2

oo (aad impps

Bare-metal hypervisor (Xen, Hosted hypervisor (KVM,
VMware ESX, ...) VirtualBox)

m The boundary is blurry - many bare-metal hypervisors support native apps



Virtualization basics

Virtual Machine Monitor (VMM)

Guest apps Guest apps

Guest apps

Guest apps

Guest 1 Guest 2

Guest 1 Guest 2

m Software that emulates HW platform (network, graphics, storage, ...)

m Often implemented inside hypervisor (left) = people confuse VMM with hypervisors

m Today’s platforms are complex (e.g. PC bears 40 years heritage)

m It is more secure to execute the VMM in user mode, outside of privileged mode (right,
example: KVM & gemu)

m |t is also slower, but see NOVA microhypervisor (TU Dresden), which implements this
faster.



Virtualization basics

Questions

m How many privilege levels we need to implement virtualization?

m Two are sufficient, but then, every guest system call, page fault etc.
traps from the guest app to the hypervisor, which then arranges
switch to guest kernel - slow.

m Hardware assisted virtualization - introduces more privilege levels
and more - see later.

m Why is virtualization needed at all? (My personal rant)

m To some extent because the design of mainstream operating systems
is not up to the current needs.

m Current OSes do not offer sufficient isolation of applications and
groups of applications. Many things such as user permissions, apply
implicitly to the whole system.

m Microkernel OSes, which solve this problem, were designed in the
past without much success.

m Now, people are adding “containers” to mainstream OSes, which is
painful and often with security problems.

B Making a microkernel from a monolithic kernel is more difficult that
starting with microkernel from scratch.



Hardware assisted virtualization

Outline

Hardware assisted virtualization



Hardware assisted virtualization

Hardware assisted virtualization

m Accelerates virtualized execution
m Differences between vendors (Intel, AMD, ARM, ...), core principles
similar:
m More privilege levels (x86 - root/non-root, ARMv8 EL0-3)
m Nested paging
m O virtualization



Hardware assisted virtualization

Intel VMX

m VMX root operation VMCS (up to 4 KiB - e.g. 1024 B)

(hOSt rings 0_3) VM-execution control fields
m VMX non-root operation
(guest rings 0-3)
m root—non-root = VM Enter

Host state

Guest state

m instructions: vmlaunch, vmresume VM-exit information fields
m non-root—root = VM EXxit VM-entry control fields
m instructions: vmresume, vmcall VM-exit control fields

m faults (e.g. I/0)

m VM Control Structure (VMCS)

m Data structure in memory that controls VMX execution (managed by
hypervisor/VMM)

m (Re)stores host/guest state

m “Large structure” = VM Enter/Exit has overhead

m The overhead depends on what is (re)stored from/to VMCS (configurable)



Hardware assisted virtualization

Nested paging & address spaces

Host virtupl

Guest physical Guest virtual

Host physical
Py Guest page tables

t page tables

LRRH RN AR { AL

HW Hypervisor Guest



Hardware assisted virtualization

Memory access overhead

m TLB misses and page faults are more expensive in a VM!
m Page walk in a VM (worst case):

Translate PDPT (CR3) address using host page tables (3 memory
accesses for 3-level page tables)

Translate PD address using host page tables (3 accesses)

Translate PT address using host page tables (3 accesses)

m Performance drop up to 15/38% (Intel/AMD)?

m Tagged TLBs

m No need to flush TLBs on process (or VM) switches (good)
m Applications share TLBs with hypervisor and VMM (bad)

m Recommendation: Use huge pages if possible

2UlIrich Drepper, The Cost of Virtualization, ACM Queue, Vol. 6 No. 1 - 2008



Example: Mini VMM with KVM
Outline

Example: Mini VMM with KVM



Example: Mini VMM with KVM

KVM

m Linux-based hosted hypervisor

m Abstracts hardware-assisted virtualization of different architectures
behind ioctl-based API
m We will develop a miniature user-space VMM
m Simplest hardware to virtualize: serial port

Setup the VM’s memory

Load the code to execute

Run the VM

Handle the VM Exits and emulate serial port
Goto 3

m Seealsohttps://lun.net/Articles/658511/


https://lwn.net/Articles/658511/

1/O virtualization
Outline

/O virtualization
m How do modern Network Interface Cards (NIC) work
m Device emulation

Virtio

PCI pass-through

Single-Root I/0O Virtualization

Inter-VM networking



1/O virtualization » How do modern Network Interface Cards (NIC) work

Outline

/O virtualization
m How do modern Network Interface Cards (NIC) work



1/O virtualization » How do modern Network Interface Cards (NIC) work

Network Interface Card & transmit operation

NIC Registers Packet data
Buffer descriptors

(in memory)

TX head —-\

TXtail addr

RX head size, flags
RX tail

—

~

TX operation:
Write packet data
Fill in empty buffer descriptor
Notify NIC by writing TX tail reg




1/O virtualization » How do modern Network Interface Cards (NIC) work
Network Interface Card & receive operation

NIC Registers Packet data
Buffer descriptors

(in memory)

TX head —-\

TXtail addr

RX head size, flags
RX tail

—

~

| |
|
N
ittt
RAZANY s

2l

RX operation:

Allocate packet buffers
and update buffer descriptors

Update RX head/tail regs
On packet RX, NIC generates an interrupt




1/O virtualization » How do modern Network Interface Cards (NIC) work

Network Interface Card & SG DMA

NIC Registers Headres &
Buffer descriptors Packet data

(in memory)

TX head —-\
TXtail

addr[2] _J
RX head size[2], flags]
RX tail

AN

\\\=

m Final packet is composed from several
pieces scattered in memory

Scatter-Gather DMA:

m Typically header (from OS) and data
(from app)



1/O virtualization » Device emulation

Outline

/O virtualization

m Device emulation



1/O virtualization » Device emulation

NIC device emulation

m Trap accesses to NIC registers (memory-mapped 10)

m Upon write to TX tail, VMM iterates over queued buffers and sends
them via real NIC (e.g. SOCK_RAW)

m Multiple packets can be sent during single VM Exit (= less
overhead)

m Reception works similarly

m Not all hardware is “that nice” to virtualize
m Several VM Exits per TX or RX
m Registers that must be trapped are intermixed with non-sensitive
(e.g. read-only) registers in a single page
m = Unnecessary VM Exits for some register accesses
m VMM must emulate not only RX/TX, but also management
m Link negotiation, configuration, ...
m More complex compared to RX/TX



1/O virtualization » Virtio

Outline

/O virtualization

m Virtio



1/O virtualization » Virtio

\ilgife

m ltis neither easy nor necessary to emulate a real NIC
m TX, RX and simple configuration (e.g. MAC address) is sufficient
m Why to implement different ring-buffer formats?

m Virtio®
m Universal ring-buffer-based communication between VM and HV
m Used for network, storage, serial line, ...
m PCl-based probing & configuration - VMs can easily discover virtio
devices

3R. Russell, virtio: Towards a De-Facto Standard For Virtual I/O Devices, ACM
SIGOPS Operating Systems Review, 2008


http://www.ozlabs.org/~rusty/virtio-spec/virtio-paper.pdf
http://www.ozlabs.org/~rusty/virtio-spec/virtio-paper.pdf

1/O virtualization » PCI pass-through

Outline

/O virtualization

m PCI pass-through



1/O virtualization » PCI pass-through

PCI pass-through

m Even virtio needs one VM Exit per (a batch of) TX operation(s)

m If we don’t want VM Exits, we may want to give a VM exclusive
access to the NIC

m Few problems to solve...



1/O virtualization » PCI pass-through

PCI pass-through graphically

Device Host virtual
Guest physical Guest virtual
NIC regs NIC regs
Host physical
Guest page tables
Device page tab t page tables
o BEE
NIC buffs NIC buffs %
NIC buffs
Device Hypervisor Guest
Memory bus
. CPU
pcle | Chipset/ |
Device e PCI Root interconnect cPU
Complex




1/O virtualization » PCI pass-through

PCI pass-through

m Problems:
Virtual address space (see previous slide)
m Security: One VM could configure the NIC to read or write memory of
other VM or even the hypervisor!
Device interrupts
m Host does not know how to acknowledge (silence) the interrupt - it has
no driver for the device
B ltinjects interrupt to the VM and returns from IRQ handler
m Host is interrupted again, because VM didn’t have chance to run and
ack the interrupt
m Solution: Hardware support for direct use of devices in VMs

IOMMU (AMD), VT-d (Intel), SMMU (ARM)
Mask individual sources of interrupts without understanding the
device
m Hard with PCI, where interrupt lines are shared between devices
m Possible with Message Signaled Interrupts (MSI)



1/O virtualization » Single-Root I/O Virtualization

Outline

/O virtualization

m Single-Root I/O Virtualization



1/O virtualization » Single-Root I/O Virtualization

Single-Root I/O Virtualization (SR-IOV)

m PCl pass-through is nice, but | have more VMs that want to communicate...

m Each VM has emulated NIC, VMM multiplexes the real NIC between VMs in software
m ... or perform the multiplexing in hardware

Guest apps Guest apps Guest apps

Guest 3

I Y A

m Besides “classic” physical function (PF), NIC implements several virtual functions (VFs)
m Each VF provides simplified PCl interface and its own RX/TX ring buffers

m SR-IOV



1/O virtualization » Inter-VM networking

Outline

/O virtualization

m Inter-VM networking



1/O virtualization » Inter-VM networking

Inter-VM networking

Guest apps Guest apps

m Packet stored in VM’s memory

= VMM notified (VM Exit) e.g. via virtio’s kick()

m VMM notifies the SW switch via standard IPC mechanism

m Switch does memcpy() of the packet from source VM to destination VM (into
dest NIC ring buffer)

m Dest VMM notifies the VM (injects interrupt)



1/O virtualization » Inter-VM networking

Optimizations

m OS networking stack is responsible for splitting application data to
packets (e.g. TCP segmentation) and adding appropriate headers

m VMM sees many small packets and switch does many small
memcpy()s

m Receiver’s networking stack strips packet headers and combines
the payload to larger data chunks for application.

m Segmentation is not necessary for Inter-VM communication
(overhead)!

m Modern NICs support TCP Segmentation Offioad (TSO)/Large
Receive Offioad (LRO): Segmentation/reconstruction is done in
hardware.

m If virtual NIC supports TSO/LRO, Inter-VM communication is much
faster, because whole TCP segments (in contrast to small packets)
can be copied at once.



Summary
Outline

Summary



Summary

Summary

m Virtualization is just “another layer of indirection” and as such it
adds overheads

m ltis useful to know where the overheads are and how to mitigate
them



	Virtualization basics
	Hardware assisted virtualization
	Example: Mini VMM with KVM
	I/O virtualization
	How do modern Network Interface Cards (NIC) work
	Device emulation
	Virtio
	PCI pass-through
	Single-Root I/O Virtualization
	Inter-VM networking

	Summary

