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Synchronization

Multi-core CPUs are today’s norm, many-core CPUs will come

tomorrow

To take advantage of such a hardware, parallel (multi-threaded)

programs must be run on them

It is not useful when the threads are completely independent, i.e.

threads have to communicate (synchronize)

Basic forms of synchronization:

Mutual exclusion (e.g. access to shared data)
Producer-consumer (e.g. database waits for requests)
…
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Naive synchronization

Naive synchronization
Mutual exclusion

Data should be modified at

most by one thread at a

time:

bool locked;

void func() {
while (locked == true)
/* busy wait */;

locked = true;
data++;
locked = false;

}

Terminology: code in the “locked” region
is called critical section

Problems:

1 Checking and setting the lock is not
atomic

2 Compiler can optimize out all
accesses to locked

3 Compiler can move access to data
out of critical section

4 Hardware can reorder memory
accesses even if compiler does not

5 Can easily deadlock

6 Busy waiting wastes energy
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Naive synchronization » Problems

Atomic operations

Example of non-atomic increment:

C expression: data++;
Assembler (x86): inc ($data) – uninterruptible
Hardware: memory bus read, ALU, memory bus write

CPU0 CPU1 data
bus read 0
ALU bus read 0
bus write ALU 1

bus write 1

Atomic operations ensure that the operation (typically read-modify-write)
is atomic (uninterruptible) even at the hardware (bus) level.

compare-and-swap/CAS instruction (x86: cmpxchg)

void lock() {
while (locked == true)

/* busy wait */;
locked = true;

}

⇒

void lock() {
while (__atomic_exchange_n(&locked, true,

…) == true)
/* busy wait */;
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Naive synchronization » Problems

Atomic operations in C and C++

For long time, atomic operations were not standardized in C/C++

Solution: Incompatible compiler extensions, inline assembler

C11, C++11 introduced thread-aware memory model and defined

platform independent atomic operations

C11: stdatomic.h, atomic_* functions

C++11

std::atomic template
std::atomic<int> x;
x++; // atomic increment
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Compiler optimizations

bool locked;

while (locked)
{}
locked = true;
data++;
locked = false;

⇒

#define barrier() \
asm volatile("" : : : "memory")

volatile bool locked;

while (locked)
{}
locked = true;
barrier();
data++;
barrier();
locked = false;

Compiler expects the memory is only modified by the program

being compiled

Locked seems to be useless⇒ optimize out

Compiler is free to reorder operations as long as the result of the

computation is the same
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Compiler optimizations cont.

Defining the variable volatile makes all accesses “volatile” i.e.

slow.

Sometimes, we need only certain accesses to have volatile

semantics and the rest can be optimized:

#define ACCESS_ONCE(x) (*(volatile typeof(x) *)&(x))
#define LOAD_SHARED(p) ACCESS_ONCE(p)
#define STORE_SHARED(x, v) ({ ACCESS_ONCE(x) = (v); })

#define barrier() asm volatile("" : : : "memory")
The macro barrier is only a compiler barrier, not hardware barrier,

i.e., the compiler will not reorder generated instructions.
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Hardware reordering

Different CPU architectures implement different memory consistency

models

Some operations can be reordered with respect to other operations
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Loads stores Y Y Y Y Y N N N Y N Y N

Stores stores Y Y Y Y Y Y N N Y N Y N

Stores loads Y Y Y Y Y Y Y Y Y Y Y Y

Atomic loads Y Y N Y Y N N N N N Y N

Atomic stores Y Y N Y Y Y N N N N Y N

Dependent loads Y N N N N N N N N N N N

Incoherent inst. cache pipeline Y Y N Y Y Y Y Y Y N Y

x86 can reorder stores after loads, i.e. data can be read before other

CPUs see locked set to true!

Why? Stores may have to wait for cache-line ownership. Not waiting with

subsequent reads improves performance.
Solution: Insert memory barrier instructions.

e.g. mfence, lfence on x86
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Specifying memory ordering requirements in C/C++

std::atomic<int> x;
x.load(order);
w.store(0, order);

order specifies how regular, non-atomic memory accesses are to
be ordered around an atomic operation

relaxed: no overhead, no order guarantee
consume
acquire
release
acq_rel,
seq_cst: high overhead, sequential consistency

Depending on the CPU architecture, different orders cause the
compiler to generate barrier instructions (e.g., lfence on x86)
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Cost of atomic operations & barriers

16-CPU 2.8GHz Intel X5550 (Nehalem) System

Operation Cost (ns) Ratio

Clock period 0.4 1.0

“Best-case” CAS 12.2 33.8

Best-case lock 25.6 71.2

Single cache miss 12.9 35.8

CAS cache miss 7.0 19.4

Single cache miss (off-core) 31.2 86.6

CAS cache miss (off-core) 31.2 86.5

Single cache miss (off-socket) 92.4 256.7

CAS cache miss (off-socket) 95.9 266.4

Source: Paul E. McKenney, IBM

Atomic operations are costly (here 19–266 times slower than non-atomic

operations)

Barriers are typically cheaper (weak barriers more that full barriers)
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Cost of atomic operations & laws of physics
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Speed of light RT in 1 cycle @ 3 GHz = 5 cm

Speed of electrons in transisors: 0.03–0.3CAll CPUs executing atomic increment of global variableAll CPUs executing atomic increment of per-cpu variable

Every CPU experiences a cache miss, because other CPUs access the variable as well No

cache miss⇒much faster
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Locking overhead

pthread_mutex_lock(mutex);
x++;
pthread_mutex_unlock(mutex);

Uncontended case: during lock(), mutex is not in the cache, during unlock() it is

Contended case: mutex is not in the cache even during unlock, because there is (probably)

another CPU trying to lock the mutex and thus “stealing” the lock from mutex-owner’s cache

Single-instruction critical sections protected by multiple locks

256.7 cycles

1
cycle

256.7 cycles

1
cycle

256.7 cycles

Uncontended

Contended,
No Spinning
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Deadlock

Example:

Single-core system
Two threads low- and high-priority

LP_thread HP_thread
~~~~~~~~~ ~~~~~~~~~
lock();
data++;

→ preemption →
deadlock();

Solution: When the lock is not available, ask the OS scheduler to
put your thread to sleep and wake you up after the lock is available

Problem: atomicity of checking the lock and going to sleep
Requires implementation in the OS kernel
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Semaphores

Kernel semaphores

Each system call adds overhead (≈ 100 cycles on modern HW)

It is preferable to use “fine-grain” locking, i.e. locks protect as little

data as possible to prevent lock contention.

If fine-grain locking is effective the lock is not contended and

threads rarely have to sleep, but always pay the syscall overhead!

That’s not efficient – the solution in Linux is called futex.
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Futex

Futex
Fast Userspace Mutex

Uncontended mutex never goes to kernel

It uses atomic instruction cmpxchg(val, expct, new) → prev

futex_wait() and futex_wake() are system calls

class mutex {
public:
mutex () : val (0) { }

void lock () {
int c;
if ((c = cmpxchg (val, 0, 1)) != 0) {

if (c != 2)
c = xchg (val, 2);

while (c != 0) {
futex_wait (&val, 2);
c = xchg (val, 2);

}
}

}

void unlock () {
if (atomic_dec (val) != 1) {

val = 0;
futex_wake (&val, 1);

}
}

private:
int val;

};

U. Drepper, Futexes Are Tricky, 2011, Online: https://www.akkadia.org/drepper/futex.pdf
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Futex

Futex uses

Futex primitive can be used to implement the following higher-level

synchronization mechanisms:

Mutexes

Semaphores

Conditional variables

Thread barriers

Read-write locks
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Futex

The problem of mutex

Mutual exclusion in massively parallel read-mostly workload

1 Lock/unlock overhead

2 Dead time during updates

CPU 0

CPU 1

CPU 2

CPU 3

Reader

Reader

Updater

Dead
Time!!! Reader

Reader
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Real-mostly workload

Read-Write lock

Wait

CPU 0

CPU 1

CPU 2

CPU 3

Reader

Reader
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Reader
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Reader

Reader

UpdaterReader Reader

Dead
Time!!! Reader

Reader

Reader

Reader

Update blocks readers

Can be implemented on top of mutex(es)
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Real-mostly workload

We want this

CPU 0

CPU 1

CPU 2

CPU 3

Reader

Reader

Reader

Reader

Reader
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UpdaterReader Reader

Reader

Reader

Reader

Reader

Updater does not block readers

Is that possible?
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Read-Copy-Update (RCU)

Read-Copy-Update (RCU)

0
1e+06
2e+06
3e+06
4e+06
5e+06
6e+06
7e+06
8e+06
9e+06

0 10 20 30 40 50 60 70

N
um

be
r o

f r
ea

ds
 / 

se
co

nd

Number of cores

pthread mutex
pthread reader-writer lock

Zoomed in

Read-side scalability of various synchronization primitives

RCU is scalable – typically up to hundreds or thousands of CPUs

Locking does not scale
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Read-Copy-Update (RCU)

Updating RCU-based list
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2 Copy B

3 Update B to D

4 Make the updated element visible to readers

5 Wait after all readers stop accessing B and free it
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Read-Copy-Update (RCU)

Main mechanisms of RCU

1 Publishing of updates (34)
Ensure that updated data reach memory before the updated pointer
Compiler and memory barrier

2 Accessing new versions of data (how readers traverse the list)
Ensure that we see all the updates made before publishing
Compiler and memory barrier

3 Waiting for all readers to finish

The tricky part!
No explicit (and expensive) tracking of each reader (e.g. no
reference counting)
RCU uses indirect way of determining the end of all read-side
sections
In certain implementations (QSBR) read-side has zero overhead
Note: It makes little sense to use RCU in Java, because there
objects are freed by the garbage collector, which is based on
reference tracking. Garbage collection has its overhead. RCU
allows to have zero overhead (on read side).
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Read-Copy-Update (RCU)

RCU concepts and API

Grace period

started and waited by synchronize_rcu()

Reader Must not happen!

Reader

Reader

Reader

Reader

Reader

Reader

Reader

UpdaterReader

Reader

Reader

Reader

Reader

Reader

Free

Reader

Read-side critical section

rcu_read_lock()/unlock()

rcu_dereference()

Quiescent state
code outside r.s.c.s.

rcu_assign_pointer()
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Read-Copy-Update (RCU)

RCU read-side critical section

rcu_read_lock(); /* Start critical section. */
p = rcu_dereference(cptr);
/* *p guaranteed to exist. */
do_something_with(p);
rcu_read_unlock(); /* End critical section. */
/* *p might be freed!!! */

rcu_read_lock()/unlock() and rcu_dereference() are cheap,

sometimes nop.

Updaters are more heavy-weight.
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Read-Copy-Update (RCU)

RCU updater

pthread_mutex_lock(&updater_lock); /* not needed if there is
* just one updater */

old_p = cptr;
/* copy if needed */
rcu_assign_pointer(cptr, new_p); /* update */
pthread_mutex_unlock(&updater_lock);
synchronize_rcu(); /* Wait for grace period. */
free(old_p);
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Read-Copy-Update (RCU) » RCU implementations

How does it work?

Many implementations possible

Trade-off between read-side overhead and constraints of

application structure

We will look at the following implementations:

Quiescent-state based reclamation (QSBR)
General-purpose

See https://www.efficios.com/pub/rcu/urcu-supp.pdf,
Appendix D for more implementations and details.
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Quiescent-state based reclamation (QSBR)

// Protects registry from concurrent accesses
pthread_mutex_t rcu_gp_lock =

PTHREAD_MUTEX_INITIALIZER;

LIST_HEAD(registry);

struct rcu_reader {
unsigned long ctr;
char need_mb;
struct list_head node;
pthread_t tid;

};

/* per-thread variable */
struct rcu_reader __thread rcu_reader;

void rcu_register_thread(void) {
rcu_reader.tid = pthread_self();
mutex_lock(&rcu_gp_lock);
list_add(&rcu_reader.node, &registry);
mutex_unlock(&rcu_gp_lock);
rcu_thread_online();

}
void rcu_unregister_thread(void) {
rcu_thread_offline();
mutex_lock(&rcu_gp_lock);
list_del(&rcu_reader.node);
mutex_unlock(&rcu_gp_lock);

}

#define RCU_GP_ONLINE 0x1
#define RCU_GP_CTR 0x2

// global counter
unsigned long rcu_gp_ctr = RCU_GP_ONLINE;

static inline void rcu_read_lock(void) {}
static inline void rcu_read_unlock(void) {}

/* Every thread must call this function periodically
* outside of read-side critical section.
*/

static inline void rcu_quiescent_state(void) {
smp_mb();
STORE_SHARED(rcu_reader.ctr, LOAD_SHARED(rcu_gp_ctr));
smp_mb();

}
/* call before blocking system call */
static inline void rcu_thread_offline(void) {
smp_mb();
STORE_SHARED(rcu_reader.ctr, 0);

}
/* call after return from blocking system call */
static inline void rcu_thread_online(void) {
STORE_SHARED(rcu_reader.ctr, LOAD_SHARED(rcu_gp_ctr));
smp_mb();

}
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Quiescent-state based reclamation (QSBR), cont.

void synchronize_rcu(void) {
unsigned long was_online;
was_online = rcu_reader.ctr;
smp_mb();
if (was_online)
STORE_SHARED(rcu_reader.ctr, 0);

mutex_lock(&rcu_gp_lock);
update_counter_and_wait();
mutex_unlock(&rcu_gp_lock);
if (was_online)
STORE_SHARED(rcu_reader.ctr, LOAD_SHARED(rcu_gp_ctr));

smp_mb();
}
static void update_counter_and_wait(void) {

struct rcu_reader *index;
STORE_SHARED(rcu_gp_ctr, rcu_gp_ctr + RCU_GP_CTR);
barrier();
list_for_each_entry(index, &registry, node) {

while (rcu_gp_ongoing(&index->ctr))
msleep(10);

}
}
static inline int rcu_gp_ongoing(unsigned long *ctr)
{

unsigned long v;
v = LOAD_SHARED(*ctr);
return v && (v != rcu_gp_ctr);

}

Properties:

Grace periods are not

shared

Long waiting⇒ higher

memory consumption

Works only on 64-bit

architectures – the

counter must not

overflow
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QSBR example
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General-purpose RCU

#define RCU_GP_CTR_PHASE 0x10000
#define RCU_NEST_MASK 0x0ffff
#define RCU_NEST_COUNT 0x1

unsigned long rcu_gp_ctr = RCU_NEST_COUNT;

static inline void rcu_read_lock(void) {
unsigned long tmp;
tmp = rcu_reader.ctr;
if (!(tmp & RCU_NEST_MASK)) {
STORE_SHARED(rcu_reader.ctr, LOAD_SHARED(rcu_gp_ctr));
smp_mb();

} else {
STORE_SHARED(rcu_reader.ctr, tmp + RCU_NEST_COUNT);

}
}
static inline void rcu_read_unlock(void)
{

smp_mb();
STORE_SHARED(rcu_reader.ctr, rcu_reader.ctr - RCU_NEST_COUNT);

}

Properties:

Does not restrict application
structure

No need to call
rcu_quiescent_state
No need to call
rcu_thread_(on|off)line
around blocking syscalls

No counter-overflow problem
(different mechanism with only
1-bit counters)

Higher read-side overhead:
memory barrier (still less than
typical locks).
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Genereal-purpose RCU, cont.

void synchronize_rcu(void)
{
smp_mb();
mutex_lock(&rcu_gp_lock);
update_counter_and_wait();
barrier();
update_counter_and_wait();
mutex_unlock(&rcu_gp_lock);
smp_mb();

}
static void update_counter_and_wait(void)
{

struct rcu_reader *index;
STORE_SHARED(rcu_gp_ctr, rcu_gp_ctr ˆ RCU_GP_CTR_PHASE);
barrier();
list_for_each_entry(index, &registry, node) {

while (rcu_gp_ongoing(&index->ctr))
msleep(10);

}
}
static inline int rcu_gp_ongoing(unsigned long *ctr)
{

unsigned long v;
v = LOAD_SHARED(*ctr);
return (v & RCU_NEST_MASK) && ((v ˆ rcu_gp_ctr) & RCU_GP_CTR_PHASE);

}
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Update benchmarks
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Conclusion

RCU is a scalable synchronization mechanism for

hundreds/thousands of CPUs and read-mostly workload

We have seen an RCU-based implementation of single-linked list,

but many other common data structures can be implemented in

RCU-compatible way
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