
David Šišlák
david.sislak@fel.cvut.cz

Effec%ve	So*ware	

Lecture	2:	Virtual	machine,	JVM,	bytecode,	(de-)compilers,	disassembler,	profiling	

26th	February	2018	 ESW	–	Lecture	2	 2	

Introduc%on	–	Virtual	Machine	

»  Virtual	machine	model	(.NET,	JVM	–	Scala,	Jython,	JRuby,	Clojure,	…)	
•  source	code	
•  compiled	into	VM	bytecode	
•  hybrid	run-Ome	environment	(plaQorm	dependent	VM	implementaOon)	

–  interpreted	bytecode	
–  complied	assembly-code	(naOve	CPU	code)	
–  automated	plaQorm	capability	opOmizaOons	(e.g.	use	of	SIMD)	

»  comparison	of	bytecode	to	assembly-code	
•  (+)	plaQorm	independence	(portable)	–	architecture	(RISC/CISC,	bits),	OS	
•  (+)	reflecOon	–	observe,	modify	own	structure	at	run-Ome	
•  (+)	small	size	
•  (-)	slower	execuOon	–	interpreted	mode,	compilaOon	latencies	
•  (-)	less	control	on	assembly	code	–	less	opOons	for	custom	opOmizaOon	

26th	February	2018	 ESW	–	Lecture	2	 5	

JAVA	Virtual	Machine	–	Memory	Layout	

Thread specific Shared by many threads

26th	February	2018	 ESW	–	Lecture	2	 6	

JAVA	Virtual	Machine	–	Memory	Layout	

		

26th	February	2018	 ESW	–	Lecture	2	 8	

JAVA	Virtual	Machine	–	Stack-oriented	Machine	

»  stack-oriented		-	stack	machine	model	for	passing	parameters	and	output	
for	instrucOons	

	 	 					(2	+	3)	×	11	+	1	
	
	
	
	
	
	
	
»  JVM	bytecode	–	sequence	of	instruc(ons	composed	of	

•  opcode	–	operaOon	code,	what	should	be	done	
•  opcode	specific	parameters	–	some	has	no	params,	some	mulOple	

26th	February	2018	 ESW	–	Lecture	2	 9	

JAVA	Virtual	Machine	-	Frame	

»  frame	
»  each	thread	has	stack	with	frames	(outside	of	heap,	fixed	length)	

	 	StackOverflowError	vs.	OutOfMemoryError	
»  frame	is	created	each	Ome	method	is	invoked	(destroyed	ader	return)	

-  interpreted	frame	per	exactly	one	method	
-  complied	frame	includes	all	in-lined	methods	

»  frame	size	determined	at	compile-Ome	(in	class	file	for	interpreted)	
»  variables	(any	type)	

»  {this}	–	instance	call	only!	
»  {method	parameters}	
»  {local	variables}		

»  operand	stack	(any	type)	
»  LIFO	

»  reference	to	run-%me		
					constant	pool	(class	def)	
»  method	+	class	is	associated	

26th	February	2018	 ESW	–	Lecture	2	 10	

JAVA	Virtual	Machine	–	Opcodes	

»  JVM	opcode	(1	Byte	only	always):	
»  load	and	store	(aload_0,	istore,	aconst_null,	…)	
»  arithmeOc	and	logic	(ladd,	fcmpl,	…)	
»  type	conversion	(i2b,	d2i,	…)	
»  object	manipulaOon	(new,	puQield,	geQield,	…)	
»  stack	management	(swap,	dup2,	…)	
»  control	transfer	(ifeq,	goto,	…)	
»  method	invocaOon	(invokespecial,	areturn,	…)	–	frame	manipulaOon	
»  excepOons	and	monitor	concurrency	(athrow,	monitorenter,	…)	

»  prefix/suffix	–	i,	l,	s,	b,	c,	f,	d	and	a	(reference)	
»  variables	as	registers	–	e.g.	istore_1	(variable	0	is	this	for	instance	method)	
	

	 	 																						VS.		

CPU assembly-code JVM bytecode

26th	February	2018	 ESW	–	Lecture	2	 11	

JAVA	Virtual	Machine	

»  JVM	is	used	to	implement	also	other	languages	than	JAVA	
»  Erlang	->	Erjang	
»  JavaScript	->	Rhino	
»  Python	->	Jython	
»  Ruby	->	Jruby	
»  Scala,	Clojure	–	funcOonal	programming	
»  others	

»  bytecode	is	verified	before	executed:	
»  branches	(jumps)	are	always	to	valid	locaOons	–	only	within	method	
»  any	instrucOon	operates	on	a	fixed	stack	locaOon	(helps	JIT	for	

registers	mapping)	
»  data	is	always	iniOalized	and	references	are	always	type-safe	
»  access	to	private,	package	is	controlled	

26th	February	2018	 ESW	–	Lecture	2	 12	

JAVA	Virtual	Machine	–	Object	Oriented	Language	

»  Class	file	–	product	of	source	code	compilaOon		
•  one	per	each	class	
•  method	bytecode	is	included	

26th	February	2018	 ESW	–	Lecture	2	 13	

JAVA	Virtual	Machine	–	Example	1	–	Source	Code	

26th	February	2018	 ESW	–	Lecture	2	 14	

JAVA	Virtual	Machine	–	Example	1	–	Class	File	Content	

26th	February	2018	 ESW	–	Lecture	2	 15	

JAVA	Virtual	Machine	–	Example	1	–	Disassembled	Constants	

»  javap	–	JAVA	disassembler	included	in	JDK	

26th	February	2018	 ESW	–	Lecture	2	 16	

JAVA	Virtual	Machine	–	Example	1	–	Disassembled	Fields	

26th	February	2018	 ESW	–	Lecture	2	 17	

JAVA	Virtual	Machine	–	Example	1	–	Disassembled	Method	

»  geQield	
•  takes	1	ref	from	stack	
•  build	an	index	into	runOme	pool	of	class	instance	by	reference	this	

»  areturn	
•  takes	1	ref	from	stack	
•  push	onto	the	stack	of	calling	method	

opcode offset in bytecode
for the method employeeData

26th	February	2018	 ESW	–	Lecture	2	 18	

JAVA	Virtual	Machine	–	Example	1	–	Disassembled	Constructor	

		

26th	February	2018	 ESW	–	Lecture	2	 19	

JAVA	Virtual	Machine	–	Example	1	–	Decompiler	

»  procyon	–	open-source	JAVA	decompiler	

Original source code De-compiled source code

26th	February	2018	 ESW	–	Lecture	2	 20	

JAVA	Virtual	Machine	–	Example	2	–	Source	Code	

26th	February	2018	 ESW	–	Lecture	2	 21	

JAVA	Virtual	Machine	–	Example	2	–	daysInMonth	Bytecode	

26th	February	2018	 ESW	–	Lecture	2	 22	

JAVA	Virtual	Machine	–	Example	2	–	daysInMonth	Bytecode	

26th	February	2018	 ESW	–	Lecture	2	 23	

JAVA	Virtual	Machine	–	Example	2	–	compute	Bytecode	

No optimization during
source code compilation !

26th	February	2018	 ESW	–	Lecture	2	 24	

JAVA	Virtual	Machine	–	Source	Code	Compila%on	

»  source	code	compila%on	(source	code	=>	bytecode)	
»  bytecode	is	not	beper	than	your	source	code	

»  invariants	in	loop	are	not	removed		
»  no	opOmizaOons	like	

»  loop	unrolling	
»  algebraic	simplificaOon	
»  strength	reducOon	

»  opOonally	bytecode	could	be	modified	before	execuOon	by	JVM	
•  e.g.	ProGuard	–	obfuscator	including	bytecode	opOmizaOons	

–  shrinker	–	compact	code,	remove	dead	code	
–  opOmizer	

•  modify	access	papern	(private,	staOc,	final)	
•  inline	bytecode	

–  obfuscator	–	renaming,	layout	changes	
–  preverifier	–	ensure	class	loading	

Test yourself
- compute method is
simplified
- faster interpretation
- better JIT output

obfuscation = make code difficult to be understood
by humans but with the same functionality

26th	February	2018	 ESW	–	Lecture	2	 26	

JAVA	Virtual	Machine	–	Bytecode	Compila%on	in	run-%me	

»  Just-in-%me	(JIT)	
»  converts	bytecode	into	assembly	code	in	run-Ome	
»  check	OpenJDK	sources	for	very	detailed	informaOon	

	 	 	hpp://openjdk.java.net		
»  JIT	includes	adap%ve	op%miza%on	(adapOve	Oered	compilaOon	since	version	7)	

»  balance	trade-off	between	JIT	and	interpreOng	instrucOons	
»  monitors	frequently	executed	parts	“hot	spots”	including	data	on	caller-callee	

relaOonship	for	virtual	method	invocaOon	
»  triggers	dynamic	re-compilaOon	based	on	current	execuOon	profile	
»  inline	expansion	to	remove	context	switching	
»  opOmize	branches	
»  can	make	risky	assumpOon	(e.g.	skip	code)	->		

»  unwind	to	valid	state	
»  deopOmize	previously	JITed	code	even	if	code	is	already	executed	

»  Ahead-of-Time	CompilaOon	(AOT)	–	remove	warm-up	phase	
•  compile	into	assembly	code	prior	to	launching	the	virtual	machine	

26th	February	2018	 ESW	–	Lecture	2	 27	

JAVA	Virtual	Machine	–	JIT	Compila%on	

»  Just-in-6me	(JIT)	compilers	–	asynchronous	(3	C1,	7	C2		threads	for	32	cores)	
»  C1	compiler	–	much	faster	than	C2	

»  simplified	inlining,	using	CPU	registry	
»  window-based	opOmizaOon	over	small	set	of	instrucOons	
»  intrinsic	funcOons	with	vector	operaOons	(Math,	arraycopy,	…)	

»  C2	compiler	–	high-end	fully	opOmizing	compiler	
»  dead	code	eliminaOon,	loop	unrolling,	loop	invariant	hoisOng,	common	sub-
expression	eliminaOon,	constant	propagaOon	

»  full	inlining,	full	deopOmizaOon	(back	to	level	0)	
»  escape	analysis,	null	check	eliminaOon,		
»  papern-based	loop	vectorizaOon	and	super	word	packing	(SIMD)	

»  JIT	compila%on	%ers	

»  on-stack	replacement	(OSR)	–	opOmizaOon	during	execuOon	of	a	method	
»  start	at	bytecode	jump	targets	(goto,	if_)		

26th	February	2018	 ESW	–	Lecture	2	 28	

Assembly	Code	

»  reasons	to	study	assembly	code	(both	Java	and	C/C++)	
•  educaOonal	reasons	

–  predict	efficient	coding	techniques	
•  debugging	and	verificaOon	

–  how	well	the	code	looks	like	
•  opOmize	code	

–  for	speed		
•  avoid	poorly	compiled	paperns	
•  data	fits	into	cache	
•  predictable	branches	or	no	branches	
•  use	vector	programing	if	possible	(SIMD)	

»  256bit	registers	with	AVX2	since	Intel	Sandy	Bridge	
»  512bit	AVX-512	since	Intel	Knight	Landing	(Xeon	Phi)	

–  for	size	
•  primarily	code	cache	efficiency		

26th	February	2018	 ESW	–	Lecture	2	 29	

JAVA	Virtual	Machine	–	Example	2	–	Tiered	Compila%on	

»  -XX:+PrintCompilaOon	(-XX:+PrintInlining)	

{millis from start} {compilation_task_id} {flags} {tier} {class:method} (bytecode size)@OSR {removing not rentrant/zombie}

Notice standard
compilation path
0 -> 3 -> 4

26th	February	2018	 ESW	–	Lecture	2	 30	

JVM	–	Example	2	–	daysInMonth	Assembly	Code	–	Tier	3	

»  -XX:+UnlockDiagnosOcVMOpOons	-XX:+PrintAssembly	
»  all	examples	are	in	JVM	8	64-bit,	Intel	Haswell	CPU,	AT&T	syntax	
	
%er	3	-	C1	with	invoca%on	&	backedge	counters	+	MethodDataOop	counter	

	because:	count="256"	iicount="256”	hot_count="256”	
	
stack	iniOalizaOon,	invoca%on	counter	in	MDO	(0xDC)	+	trigger	C2	(Oer	4)	

0x1ff8 >> 3 = 1024 invocations trigger tier 4 (C2)

month, year
stacking banging technique, StackOverflowException
stack allocation, saving registers

26th	February	2018	 ESW	–	Lecture	2	 31	

JVM	–	Example	2	–	daysInMonth	Assembly	Code	–	Tier	3	

ESI is month input

default jump

26th	February	2018	 ESW	–	Lecture	2	 32	

JVM	–	Example	2	–	daysInMonth	Assembly	Code	–	Tier	3	

target	for	month=4,	backedge	counter	tracking	in	MDO	(0x290):	
	
	
jump	target,	inlined	TLAB	alloca%on	of	Integer	object:	
	
	
	
	
	
	

no space in TLAB -> new TLAB + external allocation
 with header init returns after the inlined allocation

EBX=30 is retVal

RAX Integer instance address
Object structure (64-bit JVM):
-  header 12 or 16 Bytes
-  object data super class first, type grouped

8B - mark word

4B / 8B – Klass ref.

… object data

Array object structure (64-bit JVM):
-  header 16 or 20 Bytes
-  sequence of array values

8B - mark word

4B / 8B – Klass ref.

sequence of values

4B – array length

0x10 Integer instance size

object initialization, header filed with prototype mark

26th	February	2018	 ESW	–	Lecture	2	 33	

JVM	–	Example	2	–	daysInMonth	Assembly	Code	–	Tier	3	

inlined	Integer	constructor	with	supers,	invocaOon	counts	in	MDOs	(0xDC)	
		 	Integer::<init>,	Number::<init>,	Object::<init>		

	 	-	currently	in	Oer	3	(C1	counters	in	MDO)	
	 invocation cnt of Integer::<init> in daysInMonth for inline

invocation cnt in Integer::<init> + trigger its C2 (tier 4)

invocation cnt of Number::<init> in Int::<init> for inline

invocation cnt in Number::<init> + trigger its C2 (tier 4)

invocation cnt of Object::<init> in Numb::<init> for inline

invocation cnt in Object::<init> + trigger its C2 (tier 4)

RAX.value = EBX (retVal)

26th	February	2018	 ESW	–	Lecture	2	 34	

JVM	–	Example	2	–	daysInMonth	Assembly	Code	–	Tier	3	

final	cleanup	and	return,	RAX	contains	return	value	(pointer	to	Integer	instance)	
	
	
»  Ordinary	Object	Pointer	(Oop)	–	flexible	reference	to	an	object	
»  safepoint	–	Oops	in	perfectly	described	state	by	OopMap	(GCmaps)	

•  Oop	can	be	safely	manipulated	externally	while	thread	is	suspended	
•  in	interpreted	mode	–	between	any	2	byte	codes		
•  in	C1/C2	compiled	–	end	of	all	methods	(not	in-lined),	non-counted	loop	back	edge,	

			during	JVM	run-Ome	call	
•  parked,	blocked	on	IO,	monitor	or	lock	
•  while	running	JNI	(do	not	need	thread	suspension)	
•  global	safepoint	(all	threads)	–	stop	the	world	

–  GC,	print	threads,	thread	dumps,	heap	dump,	get	all	stack	trace	
–  enableBiasedLocking,	RevokeBias	
–  class	redefiniOon	(e.g.	instrumentaOon),	debug		

•  local	safepoint	(just	execu%ng	thread)	
–  de-opOmizaOon,	enable/revoke	bias	locking,	OSR	

stack dealocation, reload register
safepoint poll check

26th	February	2018	 ESW	–	Lecture	2	 35	

JVM	–	Time	To	Safe	Point	

»  Time	To	Safe	Point	(TTSP)	–	how	long	it	takes	to	enter	safepoint	
	
-XX:+PrintSafepointStaOsOcs	-XX:+PrintGCApplicaOonStoppedTime	-XX:PrintSafepointStaOsOcsCount=1	

	
TTSP	overhead	in	profiler	while	calling	GetStackTrace	example	with	5	threads:	

TT
S

P

26th	February	2018	 ESW	–	Lecture	2	 36	

JVM	–	Example	2	–	daysInMonth	Assembly	Code	–	Tier	4	

%er	4	–	C2	compiler	–	no	profile	counters	
	because:	count="5376"	iicount="5376”	hot_count="5376”	

		
stack	iniOalizaOon,	use	lookup	table	jump	for	table	switch	

default (>=12)

month, year

26th	February	2018	 ESW	–	Lecture	2	 37	

JVM	–	Example	2	–	daysInMonth	Assembly	Code	–	Tier	4	

target	for	month=4	
		Integer.<init>,		Number.<init>,	Object.<init>	-	iicount=“5376”	->	Inline	(hot)	
op%mized	branching,	inlined	TLAB	alloca%on,	inlined	constructors,	no	nulling,	
caching	op%miza%on	
	
	
	
	
	
	
	
	
	
	
	
	

EBP=30 is retVal

TLAB Integer object allocation, ref in RAX

MarkWord fetch from class and then store
compressed OOP to Integer class

RAX.value = EBX (retVal)

final cleanup

RAX contains return value (pointer to Integer instance)

cache optimization 3 cache lines ahead

26th	February	2018	 ESW	–	Lecture	2	 38	

JVM	–	Example	2	–	daysInMonth	Assembly	Code	–	Tier	4	

target	for	default		
	class	IllegalArgumentExcepOon	no	profile	->	uncommon	->	reinterpret	
		
remap	inputs,	return	back	to	reinterpreter		
	
	
	
	
	
then	discard	Oer	3	version	
	

26th	February	2018	 ESW	–	Lecture	2	 39	

JVM	–	Example	2	–	compute	Assembly	Code	–	Tier	4	OSR	

OSR	@10	–	On	Stack	Replacement	at	bytecode	10	
%er	4	–	C2	(before	there	was	Oer	3	OSR	@10	because	60416	loops	and	Oer	3)	

	because:	backedge_count=”101376"	hot_count=”101376”	
	
copy	4	locals	on	stack	from	Oer3	OSR	@10	to	regs	
	
	

RSI compiled stack of
tier 3 OSR @10

26th	February	2018	 ESW	–	Lecture	2	 40	

JVM	–	Example	2	–	compute	Assembly	Code	–	Tier	4	OSR	

loop	criteria	
	
	
	
	
then	there	is	inlined	Oer	4	daysOfMonth	(lookup	jump)	because	the	call	is	hot	
ending	with	addiOon	into	accumulator	o	
	
	
reinterpret	on	end	of	cycle	jump	(unstable	if_	bytecode),	save	3	locals	to	stack	

EBX is local I; 0xF4240 = 1_000_000

26th	February	2018	 ESW	–	Lecture	2	 41	

JVM	–	Example	2	–	compute	Assembly	Code	–	Tier	4	

%er	4	–	C2	
	because:	count=”2”	backedge_count=”150528”	

	
use	combinaOon	of	full	inline,	dead	code	elimina%on,	object	escape,	loop	
invariant	hois%ng,	strength	reduc%on	
	

30_000_000

RAX contains return value (primitive int)

26th	February	2018	 ESW	–	Lecture	2	 42	

Java	Virtual	Machine	–	Performance	

»  requires	warm-up	to	u%lize	benefits	of	C2	(or	C1)	
»  compilers	cannot	do	all	magic	->	write	beger	algorithms	

»  32-bit	vs	64	bits	JVMs	
•  32-bit	(max	~3GB	heap)	

–  smaller	memory	footprint	
–  slower	long	&	double	operaOons	

•  64-bit	max	32GB	virtual	memory	(with	default	ObjectAlignmentInBytes)	
-  faster	performance	for	long&double	
–  slight	increase	of	memory	footprint	
–  compressed	OOPs	are	slightly	slower	for	references	upon	usage	
–  compressed	OOPs	less	memory	->	less	frequent	GC	->	faster	program	

•  64-bit	>32GB	virtual	memory	(large	heap)	
–  fast	reference	usage	
–  wasOng	a	lot	of	memory	(48GB	~32GB	with	compressed	OOPs)	

26th	February	2018	 ESW	–	Lecture	2	 43	

Java	Virtual	Machine	–	CPU	and	Memory	Profiling	

»  profiling	
•  CPU	–	Ome	spent	in	methods	
•  memory	–	usage,	allocaOons	

»  modes	
•  sampling	

–  periodic	sampling	of	stacks	of	running	threads	to	esOmate	slowest	
–  no	invocaOon	counts,	no	100%	accuracy	(various	sampling	errors)	
–  no	bytecode	(&	assembly	code)	modificaOons	
–  1-2%	impact	to	standard	performance	(TTSP,	thread	dumps,	analysis)	

•  tracing	(instrumetaOon)	-	method	entry,	exit,	traceObjAllocaOons	
–  instrumented	bytecode	->	affected	performance	->	affected	compiler	
op%miza%ons	

»  jvisualvm	
•  JVM	monitoring,	troubleshooOng	and	profiling	tool	
•  included	in	all	JDKs	
•  profiled	thread	limit	32		

26th	February	2018	 ESW	–	Lecture	2	 44	

JVM	–	Example	2	–	CPU	Tracing	of	daysOfMonth	

assembly	code	of	%er	4	–	C2	(before	there	was	very	complex	Oer	3)	
	
inlined	daysInMonth	rootMethodEntry	tracking	

749 Bytes of assembly code for each rootMethodEntry

26th	February	2018	 ESW	–	Lecture	2	 45	

JVM	–	Example	2	–	CPU	Tracing	of	daysOfMonth	

addiOonal	rootMethodEntry	and	rootMethodExit	trackings	for		
	Integer::<init>	and	Number::<init>	

	
inlined	rootMethodExit	ader	Integer	instance.value	=	retVal	

313 Bytes of assembly code for each rootMethodEntry

26th	February	2018	 ESW	–	Lecture	2	 46	

JVM	–	Example	2	–	CPU	Tracing	Outcome	

26th	February	2018	 ESW	–	Lecture	2	 47	

JVM	–	Example	2	–	Profiling	Performance	

»  CPU	tracing	of	compute	results	into	much	slower	code	
•  no	object	escape	from	daysInMonth	call	
•  no	invariant	hoisOng	
•  no	strength	reducOon	(full	loop	remains	there)	

»  object	allocaOon	is	similar	with	traceObjAlloc	injected	calls	

»  recommended	approach	
•  do	sampling	first	
•  idenOfy	performance	boplenecks	(where	most	Ome	is	spent)	

–  it	could	be	outside	of	JVM	(e.g.	latency	of	external	DB,	file	system)	
•  focus	with	tracing	just	to	idenOfied	parts		

26th	February	2018	 ESW	–	Lecture	2	 48	

JVM	–	Java	Mission	Control	

jmc	–	JRockit	JVM,	included	in	commercial	JDKs,	sampling	in	Flight	recorder	
	

26th	February	2018	 ESW	–	Lecture	2	 49	

Approach	to	Performance	Tes%ng	

»  test	real	applica%on	–	ideally	the	way	it	is	used	
•  microbenchmarks	–	measure	very	small	units	

–  warm-up	–	to	measure	real	code,	not	compilers	itself,	biased	locks	
•  keep	in	mind	caching	

–  beware	of	compilers	–	use	results,	reordering	of	operaOons	
–  synchronizaOon	–	mulO-threaded	benchmarks	
–  vary	pre-calculated	right	parameters	affecOng	complexity	–	
different	opOmizaOon	in	reality	

•  macrobenchmarks	–	measure	applicaOon	input/output	
–  least	performing	component	affects	the	whole	applicaOon	

»  understand	throughput,	elapsed	and	response	%me	
•  outliers	can	occur	–	e.g.	GC	
•  use	exisOng	generators	than	wriOng	own	

26th	February	2018	 ESW	–	Lecture	2	 50	

Approach	to	Performance	Tes%ng	

»  understand	variability	–	changes	over	Ome	
•  internal	state	
•  background	effects	–	load,	network	
•  probabilisOc	analysis	–	works	with	uncertainty	

»  test	early,	test	o*en	–	ideally	part	of	development	cycle	
•  	ideally	some	properly	repeated	mesobenchmarking	
•  automate	tests	–	scripted		
•  proper	test	coverage	of	funcOonality	and	inputs	
•  test	on	target	system	–	different	code	on	different	systems	

