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Outline

m Artificial agents with deliberate and effective decision making =

how to define them,

how to cope with uncertain action results,

decision theory + utility theory,

concepts: prize, lottery, utility function, preference,

= rational and deliberate human decision making

do we behave rationally when making decisions?

money as an example of ordinal utility measure,
= multiattribute utility

each and every state cannot be separately assessed,
preference and utility derived from its attributes,

= value of information

when does it pay off to make an effort to obtain a piece of information?




Task formalization, basic terms

= agent chooses among possible of the world {s1,...,s,},
m every state can be assigned a {A B,...},
= agent reaches states by performing {ai,...,an}

actions are stochastic, the outcome=state is not certain,

action a leading with prob p to state s; with prize A and with prob p — 1
to state sy with prize B can be defined as L,=|p,A;(1—p), B],

a deterministic lottery (no random element) is equal to a prize,

m rationality: the agent’'s goal is to apply action resulting in the highest prize.
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Preferences

s How can we define prizes?

in general, they do not have to be numerical,

it suffices to define symbolic prizes with relations

A= B ... A preferred to B,
A~ B ...A and B indifferent,
A > B ...B not preferred to A,

m a rational agent has to implement preferences with certain

orderability: (A > B)V (B> A)V (A~ B),

transitivity: (A > B)A (B = C) = (A > (),

continuity: A= B>~ C=dp[p,A; 1 —p,C| ~ B,

substitutability: A~ B =1[p,A; 1 —p,C| ~[p,B;1—p, (],
monotonicity: A >~ B= (p>qg< [p,A; 1 —p,B| = [q,A; 1 —q, B]),
decomposability: [p, A; 1—p,[q,B; 1—q,C]] ~ [p, A; (1—p)q, B; (1—
p)(1—gq),Cl.




Transitivity as necessary condition of rationality

= Violating the constraints leads to irrationality,
m example: intransitive agent can give away all his money

assume an agent with preferences A = B, B >~ C, C' = A,

it is willing to pay (say) 1 cent to exchange its C' for somebody else's B,
consequently, it pays 1 cent to exchange its B for somebody else’s A,
finally, it exchanges A for C' and pays 1 extra cent again,

it owns (' again, but has got 3 cents less.
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Maximizing expected utility

= von Neumann-Morgenstern theorem

given constrained preferences there exists a real-valued function U s.t.
UA >UB)< A= B
(we keep the preferences in prizes),

U([ph S15 -+ Poy Sn]) = Z@'piU(Sz'>

(lottery utility computed as expected utility of the individual outcomes),
m maximizing expected utility, the principle
take an action (corresponding lottery) that maximizes expected utility,
= introduction of (explicit) utility is not a necessary condition of rationality

ex.: agent has its strategy in the form of look-up table.

State |Best action

O O

X X
X XX
O O




From preferences towards utility function

= utility function maps prizes (and thus states) on real numbers

the linear ordering given by preferences must be preserved,
there is an infinite number of functions with the identical behavior of agent,
in deterministic environments (without lotteries) it is the only condition

A < B~ C =< D agrees both with U; and U,,
the behavior of agent does not change.
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From preferences towards utility function

m with lotteries there is one more condition,
m behavior does not change with utility function transformations only,
Vk1 >0 UQ(CE) = k1U1<£E> + ko,

AB|C| D
U |1122] 3
Usy|-1]12]2/]1000

Uy and Uy interchange preferences in lotteries [0.5, A; 0.5, B| and |0.9, A; 0.1, D],

m standardize by normalized utility

best possible prize ut = 1.0, worst possible catastrophe u; = 0.0,

any intermediate prize A matches p set such that

A~ p,ut; (1 —p),uyl.




People as “rational” money-driven agents

= St. Petersburg paradox (Bernoulli, 1738)

how much would you pay as an entry fee for the following game?

* adversary repeatedly tosses a (standard) coin until the first head,
* the number of coin tosses n — your gain 2" K& — game over,




People as “rational” money-driven agents

= St. Petersburg paradox (Bernoulli, 1738)

how much would you pay as an entry fee for the following game?

* adversary repeatedly tosses a (standard) coin until the first head,
* the number of coin tosses n — your gain 2" K& — game over,

provided that money directly represent utility function, you shall be willing
to pay an arbitrary finite fee

x let us apply von Neumann-Morgenstern theorem

U(pbgh) = U([p(h1),U(h1); p(ha),U(ha);...]) =

= > g2 =141+ =00

this conclusion does not seem to be truly rational
x Bernoulli solved the paradox by log transform of money utility

U(k) = log, k

U(pbgh) = 37 5logy2 = 5+24+2+ - =2
* reverse transformation gives the real game fee: 2 = log, k = k£ = 4 K&.




People as “rational” money-driven agents

= Tversky and Kahneman experiment (1982)

choose one of the lotteries L; and Lo, then one of the lotteries L3 and L4

Choice 1 Choice 2
L1 =10.8,80000K¢;0.2,0] | Ly = [0.2,80000K ¢; 0.8, 0]
Ly = [1,60000K ¢] L, =10.25,60000K ¢; 0.75, 0]




People as “rational” money-driven agents

= Tversky and Kahneman experiment (1982)

choose one of the lotteries L; and Lo, then one of the lotteries L3 and L4

Choice 1 Choice 2
L1 =10.8,80000K¢;0.2,0] | Ly = [0.2,80000K ¢; 0.8, 0]
Ly = [1,60000K ¢] L, =10.25,60000K ¢; 0.75, 0]

most people prefer lottery Ly to Ly and L3 to Ly
* does not seem rational, provided that U(0K¢) = 0 it holds
choice 1: 0.8U(80000K ¢) < U(60000K ¢),
choice 2: 0.8U(80000K ¢) > U(60000K ¢),
x there is no utility function consistent with both choices,
possible explanations
x people are irrational,
x the analysis disregards regret when loosing a very likely reward ad Lo,
* that is why people avoid/take risk in probable/unlikely events.




People as “rational” money-driven agents

m money is not the direct utility function

people often do not maximize monetary expected utility,

U(lp1,S1:-- -0, Sn)) # ZipiU(Si)

and tend to avoid the risk, i.e., lotteries,
U([p1, Sl; e oy Pny Sn]) < Zz sz<Sz>
0 non-linearly transforms money to utility

we search for probability p, for which a given person does not distinguish
prize x and lottery [p, $M; (1 — p), $0], $M is large
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Multiattribute utility functions

m Often we cannot assign a prize to every state

too many states or infinite state space,
states usually described by features
(airport locality selection — safety, noise level, land prize),

m utility function has several parameters then

U(Xy,...,X,) (parameters resp. attributes instead of state),

n attributes with m distinct values define m™ states,

utility function can be simplified by assumption of preference

x preference monotonicity when changing single attribute
r>y=UX,...,.X;=2,...,X,) >UXy,....X;=vy,..., X,),

x relationships of independence among attributes wrt preferences
state defs: A ~ (z1,11), B ~ (z2,11), C ~ (21,y2), D ~ (22, yo)
preference independence: (A >~ B=C > D)N(A>=C= B> D)

preference regularities correspond to a simplified utility function

x U(x1,...,xn) = flfi(x1), ..., fulzy)], fis simple, e.g., addition.




Strict dominance

m assumption: U monotonously increasing in all attributes,

m choice B strictly dominates choice A iff

Vi Xi(B) > Xi(A) = fi(Xi(B)) > fi(Xi(A)) = U(B) > U(A)

one airport location safer, less noisy with cheaper land than others,
m rarely applicable in practice

utility further decreased by uncertainty in estimation of attribute values.
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Stochastic dominance

m do not compare the worst possible attribute value in the first state with the
best possible in the second,

m rather compare cumulative distribution functions of the attributes,

m distribution p; stochastically dominates distribution py if

vt [*_pilx)de < [ po(x)de,

m for U monotonously increasing with z it necessarily holds

o (@) U(z)de > [7 po(x)U(x)de,

s for multiple attributes require stochastic dominance of a state in all attributes,




Stochastic dominance — example

m S1: the airport cost at location 1 3.7 £+ 0.4mld,
m S2: the airport cost at location 2 4.0 £+ 0.35mld,

m choose S1.
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Value of information

m Agent rarely has complete information at its disposal

what questions shall it ask?

question — information with both value and costs (for test, time of an
expert, etc.),

agent sorts questions by the difference between value and costs,

negatively valued questions not asked, actions taken based on the current
information,

agent typically myopic — greedy decisions, disregards interactions between
questions.

s How to compute the value of information?

has the given piece of information potential to change the current plan?

can be a modified plan significantly better than the current one?




Value of information — qualitative distinctions

m 3 examples: actions A; and A,, their expected utility U; and U,
= the utility distributions known a priori, £; will bring the precise action utility,
(a) choice is obvious, information worth little,

(b) choice is unclear, information worth a lot,

(c) choice is unclear, information worth little.
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Value of information — general description

m current evidence E, current best action «
possible outcomes of the action \S;, possible future observation £;

= expected utility without knowing the value of E;:

FEU(a|E) =max, Y, U(S;) P(Si|E,a)
= if we knew that £, = ¢z, then we would choose a different action Qe
= expected utility when knowing the value of £

EU(a.,|E, By = ejr) =max, ) ; U(S;) P(Si|E,a, Ej = ejy)

= when assessing the value of information, the value of E; is unknown
expected utility must aggregate over all possible values of E

VPIp(E;) = (Zk P(Ej = ejx| E)EU (0w, |E, Ej = €jk)) — BEU(a|E)
s VPI| = value of perfect information

exact evidence about E; can be obtained.




Value of information — characteristics

= VPl is always non-negative

Vj,E VPIg(E;) >0,

even though it can lead into a state with a lower utility eventually,
= VPl is not additive

VPIp(E;, Ey) # VPIg(E;)+VPIg(Ey),
m VPl is order-independent

VPIg(E;, By) =V PIg(E;)+V Plg g,(Ex) =V PIp(Ey)+V Plp g (E)),
= the agent inquires information if: 3E; V PIg(E;) > Cost(E;),
m consequence

evidence gathering becomes a




Value of information — investment example

:: There are three types of investment opportunity (l): stocks (s), funds (f) and
state bonds (b). Investment profit depends on whether markets (M) grow (1),
stay at the same level (resp. grow with inflation, —) or fall down (). Based on
the values in table below compute the value of information about future market
change.

M | Pr(M)|U(s,M) U(fM) U(b,M)
T 05 1500 900 500
BN
L

0.3 300 600 500
0.2 -300  -200 500




Value of information — investment example

_ UL M) Pr(M) =
Ulal{}) Iergéjsz}m%;“ (I, M) Pr(M)

= max(.5b x 1500 + .3 x 300 — 0.2 x 800,
5 % 900 + .3 x 600 — 0.2 x 200, 500) =
= max(680, 590, 500) = 680

Ulesl{th) = max. U.1) =150 (EU(a,[{=}) = 600, EU(a,|{1}) = 500

VPIG(M)=[ Y  Pr(M)EU(ay|M)] — EU(al{}) =
Meft -4}
= .5 x 1500 +.3 x 600 + 0.2 x 500 — 680 = 1030 — 680 = 350




Summary

m rational agent takes action leading to the best expected result,
m its decisions can be based on three types of theory
probability — how to cope with observations in uncertain world,

utility — how to describe what to strive for, how to formulate goal,

decision making — actions to take based on stochastic model and goals,
= how to define utility function, what it is good for

complex worlds, states defined by attribute vectors, dominance decisions,

pieces of information to prefer, when to ask for them,
m people are just “approximately” rational

in complex worlds we must employ instincts and heuristics

* automatic system that decides quickly, but imprecisely,
x reflexive human system approaches the ideal view of rationality,

Al — both ideally rational agents and agents behaving like people.




Recommended reading, lecture resources

:: Reading

s Russell, Norvig: Al: A Modern Approach, Rational Decisions
chapter 16, http://aima.eecs.berkeley.edu/slides-pdf/chapterl6.pdf

book online on Google books (limited access):
http://books.google.com /books?id=8jZBksh-bUMC.




Experimental ZUI utility curve

m For each x adjust p such that
half the students chooses lottery [p, 200000K ¢; 1 — p, 0], half prefers z,

m what is the relationship between the curve and risk taking?
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Utility and insurance

m On the concave curve the rational motivation for insurance can be shown.

room for insurance company profit

XL | Xo-P X, x[KE]




