
Sequential decision making under uncertainty

Jǐŕı Kléma

Department of Computer Science,
Czech Technical University in Prague

https://cw.fel.cvut.cz/wiki/courses/b4b36zui/prednasky

pAgenda

� Previous lecture: individual rational decisions under uncertainty

− uncertainty = stochastic action outcomes – lottery, expected utility,

� how to optimally choose whole sequences of actions?

− repeated decisions based on uncertain or incomplete information,

− prizes/rewards typically delayed,

− world does not have to be fully observable,

� Markov decision process

− introduces Markov assumption/property – process with a limited memory,

− works with stationarity and observability assumptions too,

− world/environment well defined by its transition and reward functions,

� generalization in the next lecture

− POMDP – the world is partially observable only,

− reinforcement learning – no environment model available, no state-transition
and reward functions.

� http://cw.felk.cvut.cz

pRunning example - a robot in a grid world

� Robot moves in a grid, it maximizes its (cumulative) reward,

� four actions (N,S,E,W) with uncertain outcomes, each costs -1/25,

� two terminal states, one of them is desirable, the other undesirable.

Russell, Norvig: AI: A Modern Approach.

� http://cw.felk.cvut.cz

pRunning example - a robot in a grid world

� A stochastic problem

− could be posed as state space search,

− asks for modifications, such as chance nodes
(already mentioned before in the course),

− however, this solution is commonly not efficient

∗ states are repeated,

∗ tree depth is infinite.

� We will introduce a new MDP framework

− all quantities should be computed only once.

� http://cw.felk.cvut.cz

pMarkov process

� random process, prob of visiting future states given by recent states only,

� distant past is irrelevant provided that we know the recent past,

� Markov chain

− discrete random process with Markov property,

− chain order m gives how many past states we need to concern

P (Xn = xn|Xn−1 = xn−1, . . . , X1 = x1) = P (Xn = xn|Xn−1 = xn−1, . . . , Xn−m = xn−m)

− most often 1st order models,

− commonly together with stationarity assumption (time invariance)

Pr(Xn+1 = x|Xn = y) = Pr(Xn = x|Xn−1 = y)

� examples of Markov chains

− coin tosses – HTHHHT . . .

∗ degenerate (zero order) Markov chain,

− weather observed every day at noon – SSSCRRCSRR . . .

∗ categorized (S)unny, (C)loudy, (R)ain, the order is unknown.

� http://cw.felk.cvut.cz

pSequential decision making under uncertainty

� commonly there are more steps/actions needed to reach the goal,

� let us assume

− non-deterministic environment (actions with uncertain outcomes),

− the goal state replaced by the aim of maximizing cumulative reward,

� the sequence of actions cannot be found by classical planning

− rational agent re-examines its steps during the process of solution
(execution of actions),

− next action depends on current observations,

− current observations depend on current state (= previous actions),

� solution

− agent evaluates states instead of direct creation of action sequences,

− in each state take the action leading to successor states with highest value.

� http://cw.felk.cvut.cz

pBasic concepts, problem definition

� Reward Rt

− simple sum of immediate rewards obtained per episode:
Rt = rt+1 + rt+2 + rt+3 + · · · + rT

− discounted sum for infinite processes
(γ is discount rate, 0 ≤ γ ≤ 1):
Rt = rt+1 + γrt+2 + γ2rt+3 + · · · =

∑∞
k=0 γ

krt+k+1

� Policy πt(s, a)

− is a mapping between states and actions,

− it gives probability that action a will be executed in state s,

− optimal policy π∗ maximizes the total reward Rt,

� http://cw.felk.cvut.cz

pDiscounting and the optimal policy

� Let us assume a deterministic 1D gridworld

� actions East, West and Exit (only available in states a and e)

� Questions

− what is the optimal policy for γ = 1?

− what is the optimal policy for γ = 0.1?

− for which γ are West and East equally good when in state d?

� http://cw.felk.cvut.cz

pBasic concepts, problem definition

� State value V π(s)

− expected (cumulative) reward for following policy π starting from state s

V π(s) = Eπ{Rt | st = s} = Eπ

{ ∞∑
k=0

γkrt+k+1 | st = s

}
� Action value Qπ(s, a)

− expected (cumulative) reward starting from state s, taking action a and
thereafter following π

Qπ(s, a) = Eπ{Rt|st = s, at = a} = Eπ

{ ∞∑
k=0

γkrt+k+1 | st = s, at = a

}
� Goal: find π∗ (altogether with V ∗, Q∗ that serve as means).

� http://cw.felk.cvut.cz

pRunning example - the meaning of policy and state values

� The optimal policy and state values for the original assignment

− action cost R(s)=-1/25=-0.04,

− π∗ in the left, V ∗ in the right, Q∗?

Russell, Norvig: AI: A Modern Approach.

� http://cw.felk.cvut.cz

pRunning example - the influence of problem settings

� The optimal policy and state values change e.g. with R(s)

− the other settings remain unchanged here.

Russell, Norvig: AI: A Modern Approach.

� http://cw.felk.cvut.cz

pSequential decision making as finite MDP

� Finite Markov Decision Process (MDP)

− Markov assumption + the sets of states S and actions A are finite,

− MDP = {S,A,P,R}, can be written as a transition graph,

− P transition probability, R reward function,

P a
ss′ = Pr{st+1 = s′ | st = s, at = a}

Ra
ss′ = E{rt+1 | st = s, at = a, st+1 = s′}

− this definition leads to particular values of V and Q,

� implicit assumptions

− environment is observable (the current state is always known),

− environment is describable (P and R known),

− counter example: blackjack card game (reaching P and R a part of solu-
tion).

� http://cw.felk.cvut.cz

pSequential decision making as finite MDP

� How to obtain state values from a known environment and policy?

− by transition to the recursive V definition,

− state value = immediate reward for action execution + expected reward
for development of possible successor states.

Sutton, Barto: Reinforcement Learning: An Introduction.

� http://cw.felk.cvut.cz

pRecursive V definition (Bellman equation)

V π(s) = Eπ{Rt | st = s} =

= Eπ

{ ∞∑
k=0

γkrt+k+1 | st = s

}
=

= Eπ

{
rt+1 + γ

∞∑
k=0

γkrt+k+2 | st = s

}
=

=
∑
a

π(s, a)
∑
s′

P a
ss′

[
Ra
ss′ + γEπ

{ ∞∑
k=0

γkrt+k+2 | st+1 = s′

}]
=

=
∑
a

π(s, a)
∑
s′

P a
ss′ [R

a
ss′ + γV π(s′)]

� in the beginning V π(s), V π(s′) and π(s, a) unknown

− iterative calculation/improvement,

− bootstrapping – effort analogous to one who would lift himself by his
own bootstraps.

� http://cw.felk.cvut.cz

pDynamic programming

� The basic approach to solve MDP (find π∗)

− dynamic = iterative procedure

∗ to find V (s) in step k + 1 use V (s′) from step k,

− programming = searching for an acceptable sequence of actions,

� polynomial complexity in the number of states |S| and actions |A|
− despite the space of policies with cardinality |A||S|,
− state space search necessarily performs worse,

− still often intractable for real problems

∗ the above-mentioned estimate holds for single iteration,

∗ the number of iterations can be large (exponential when γ → 1),

∗ unknown process parameters (see reinforcement learning),

∗ computationally intractable

· often too many states,

· we cannot iterate systematically – asynchronous DP.

� http://cw.felk.cvut.cz

pDependency between policy and value functions

� When solving MDP, one simultaneously and interactively

− adapts state/action values according to the current policy,

− adapts the policy to maximize reward given the current state/action values.

Sutton, Barto: Reinforcement Learning: An Introduction.

� http://cw.felk.cvut.cz

pPolicy iteration – PI

� Key idea: π0
E−→ V π0 I−→ π1

E−→ V π1 I−→ . . .
I−→ π∗

E−→ V π∗

1. policy π evaluation (E step):

� find state values V π(s),

� start: V (s) = 0 ∀ non-terminal states (V known in them),

� iteration: until V (s) gets steady (maxS |Vk+1(s)− Vk(s)| < ε),

2. policy improvement π → π′ (I step):

� adapt to the new state values,

� deterministic π: in every state takes single action,

if Qπ(s, π′(s)) ≥ V π(s) for ∀s, π′ is not worse than π,

obviously π′(s) = argmaxaQ
π(s, a), chooses the currently best action,

� stochastic π: action selection is driven by a probability distribution,

the same logic except for Qπ(s, π′(s)) =
∑

a π
′(s, a)Qπ(s, a),

3. if π and π′ differ in at least one state, go to step 1 with π′.

� http://cw.felk.cvut.cz

:: Deterministic actions, PI with random π0

� π(s, a) = 1/4, R(s) = −0.04,
P a
ss′ = 1 for desirable actions, γ = 1

� show state values at iterations (left),

� and greedy policy wrt state values (right)
(illustrative not actually used)

� general Bellman equation
V (s) =

∑
a πsa

∑
s′ P

a
ss′ [Rs + γV (s′)]

� particular iteration equations
V[1,1] = −0.04+1/4(2V[1,1]+V[2,1]+V[1,2])
V[2,1] = −0.04+1/4(2V[2,1]+V[1,1]+V[3,1])
. . .
V[3,3] = −0.04 + 1/4(1 + V[3,3] + V[2,3] +
V[3,2])

� for ε = 0.001 PI stops at iteration #154,

� no policy change with further iterations,

� even earlier iterations may be too many.

� http://cw.felk.cvut.cz

pValue iteration – VI

� is it necessary to evaluate/know the state values for the given policy perfectly?

− late iterations often leave policy unchanged,

− and may spend most of the time of the whole dynamic algorithm,

� value iteration

− policy evaluation stopped after first iteration,

− more frequent policy changes,

− in some tasks faster convergence,

− but it does not outperform PI in general, why?

∗ the max and thus action at each state rarely changes,

∗ the policy often converges long before the values,

� in terms of Bellman equation, a new iteration rule originates

V π(s) = max
a

∑
s′

P a
ss′ [R

a
ss′ + γV π(s′)]

� http://cw.felk.cvut.cz

pMDP – recycling robot

:: Mobile robot that cleans up/collects cans

� two internal states – battery low or high,

� three actions – search for cans, remain stationary, go to home base to recharge,

� positive reward for each can, negative reward when depleted needing rescue.

:: Logical goal: collect as many cans as possible without any external aid.

:: Technical goal: develop a policy that maximizes long term reward.

Sutton, Barto: Reinforcement Learning: An Introduction.

� http://cw.felk.cvut.cz

pRecycling robot – DP solution

� Bellman equation: V π(s) =
∑

a π(s, a)
∑

s′ P
a
ss′
[
Ra
ss′ + γV π(s′)

]
� Iteration equations for particular deterministic action (policy) choices

high=h, wait=w, etc.:

π(h,w) = 1 : V (h) = Q(h,w) = Rw + γV (h)
π(h, s) = 1 : V (h) = Q(h, s) = Rs + γ [αV (h) + (1− α)V (l)]
π(l, r) = 1 : V (l) = Q(l, r) = γV (h)
π(l, w) = 1 : V (l) = Q(l, w) = Rw + γV (l)
π(l, s) = 1 : V (l) = Q(l, s) = βRs − 3(1− β) + γ [βV (l) + (1− β)V (h)]

� http://cw.felk.cvut.cz

pRecycling robot – DP solution

:: Parameters: α = 0.95, β = 0.9, Rs = 2, Rw = 1, γ = 0.9, ε = 0.01

:: Method: policy iteration (EI cycle)

1. Randomly choose a deterministic policy:

π(low, wait) = π(high, wait) = 1,

2. set V (low) = V (high) = 0,

3. use the iteration equations until V values get steady,

4. use evaluations in V to determine optimal actions:

V (s) = maxaQ
π(s, a), π′(s) ≈ argmaxaQ

π(s, a)

5. in the case of no policy change stop, go to step 2 otherwise.

� http://cw.felk.cvut.cz

� http://cw.felk.cvut.cz

pRecycling robot – DP solution

:: Parameters: α = 0.95, β = 0.9, Rs = 2, Rw = 1, γ = 0.9, ε = 0.01,

:: Method: value iteration

1. Set V (low) = V (high) = 0.

2. Use evaluations in V to determine optimal actions:

V (s) = maxaQ
π(s, a), π′(s) ≈ argmaxaQ

π(s, a).

3. apply once the current best actions and recompute values in V (s),

4. in the case of no state value change larger than ε stop,

go to step 2 otherwise.

� http://cw.felk.cvut.cz

pRecycling robot – DP solution

step 0: V (l) = V (h) = 0, π(l, s) = π(h, s) = 1
step 1: V (l) = 1.5, V (h) = 2, π(l, s) = π(h, s) = 1
step 9: V (l) = 9.2, V (h) = 11.1, π(l, r) = π(h, s) = 1,

policy change
step 52: V (l) = 17.1, V (h) = 19.1, π(l, r) = π(h, s) = 1,

all V perturbations smaller than ε, STOP

SUMMARY:
policy: low → recharge, high → search
V (h) = 19.1, V (l) = 17.1, 52 iterations

� http://cw.felk.cvut.cz

pWhy does value iteration certainly converge?

� contraction c(x)

− ∃k ∀x1x2 : d(c(x1), c(x2)) ≤ kd(x1, x2),

− d is a metric (distance function), constant 0 ≤ k < 1,

− fixed point bc: c(bc) = bc, c(c(. . . c(x))) = bc,

− each contraction has only one fixed point,

− example: c(x) = x
2 , d(x, y) = |x− y|, bc = 0,

� value iteration equation

− Vi+1(s) = maxa
∑

s′ P
a
ss′
[
Ra
ss′ + γVi(s

′)
]

− can be simplified as Vi+1 ← BVi,

− as d we employ max norm ||V || = maxs|V (s)|,

� the above defined B is wrt || || contraction (without proof)

− ||BVi −BV ′i || ≤ γ||Vi − V ′i ||.

� http://cw.felk.cvut.cz

pWhy does value iteration certainly converge?

� provided that B is a contraction wrt || ||

− for any pair of state utility vectors it holds

||BVi −BV ′i || ≤ γ||Vi − V ′i || ⇒ ||Vi+1 − Vi|| ≤ γ||Vi − Vi−1||,
∗ value iteration converges for γ < 1,

− the fixed point is the actual state utility vector V ∗

∗ ||BVi − V ∗|| ≤ γ||Vi − V ∗||,
∗ ||BVi − V ∗|| is the error in estimate of state values,

∗ the error is reduced by a factor of at least γ at each iteration,

∗ converges exponentially with γ

· fast convergence for small γ,

· small γ implies a short horizon, may miss the long term action effects.

� http://cw.felk.cvut.cz

pSummary

� MDPs allow to search stochastic state spaces

− computational complexity is increased due to stochasticity,

� problem solving = policy finding

− policy assigns each state the optimal action, can be stochastic too,

− basic approaches are policy iteration and value iteration,

− other choices can be modified iteration approaches, possibly asynchronous,

� techniques similar to MDP

− POMDP for partially observable environments,

− RL for environments with unknown models,

� applications

− agent technology in general, robot control and path planning in robotics,

− network optimization in telecommunication, game playing.

� http://cw.felk.cvut.cz

pRecommended reading, lecture resources

:: Reading

� Russell, Norvig: AI: A Modern Approach, Making Complex Decisions

− chapter 17,

− online on Google books:
http://books.google.com/books?id=8jZBksh-bUMC,

� Sutton, Barto: Reinforcement Learning: An Introduction

− MIT Press, Cambridge, 1998,

− http://www.cs.ualberta.ca/~sutton/book/the-book.html.

� Levine, Russell: Introduction to Artificial Intelligence

− CS188 course, Berkeley,

− https://inst.eecs.berkeley.edu/~cs188/sp19/.

� http://cw.felk.cvut.cz

pDemo

� RL simulator

− find the optimal path in a maze

− implemented in Java

− http://www.cs.cmu.edu/~awm/rlsim/

c©Kelkar, Mehta: Robotics Institute, Carnegie Mellon University

� http://cw.felk.cvut.cz

