/\I

CENTER

Two-player Games

ZUl 2016/2017

Branislav Bosansky

bosansky@fel.cvut.cz

/\I

Two Player Games CENTER

o Important test environment for Al algorithms

o Benchmark of Al
o Chinook (1994/96) — world champion in checkers
Deep Blue (1997) — beats G. Kasparov in chess (3.5 — 2.5)

Alpha Go (2016) — beats Lee Sedol in Go (4 — 1)

DeepStack (2016/2017) — beats Poker Pros
(https://www.deepstack.ai/)

/\I

Game-tree Search / Adversarial Search CENTER

« until now — only the searching player acts in the environment
« there could be others:

o Nature — stochastic environment (MDP, POMDP, ...)

o other agents —rational opponents

/\I

Game-tree Search / Adversarial Search CENTER

« until now — only the searching player acts in the environment
« there could be others:

o Nature — stochastic environment (MDP, POMDP, ...)

o other agents —rational opponents

« Game Theory

o mathematical framework that describes optimal behavior of
rational self-interested agents

o Mag. Ol = B4M36MAS (Multi-agent Systems)

/\I

Game-tree Search / Adversarial Search CENTER

o What are the basic games categories?
o perfect /imperfect information
« deterministic / stochastic
e zero-sum / general-sum
o finite / infinite
« two-player / n-player

/\I

Game-tree Search / Adversarial Search CENTER

o What are the basic games categories?
« perfect / imperfect information
« deterministic / stochastic
e zero-sum / general-sum
o finite / infinite
« two-player / n-player

/\I

Game-tree Search / Adversarial Search CENTER

o What are the basic games categories?
« perfect / imperfect information
« deterministic / stochastic
e zero-sum / general-sum
o finite / infinite
« two-player / n-player

o What is the goal?

/\I

Game-tree Search / Adversarial Search CENTER

o What are the basic games categories?
« perfect / imperfect information
« deterministic / stochastic
e zero-sum / general-sum
o finite / infinite
« two-player / n-player

« What is the goal?

o Finding an optimal strategy (i.e., what to play in which
situation)

Game-tree Search / Adversarial Search

/\I

CENTER

« Players are rational — each player wants to maximize her/his

utility value

— 1

i\\

X

X

X

X

> (>

*X|O|x

L |o|lolo
>

o |x|ojlo}—

Y lo|x|o}—— -

/\I

Game-tree Search / Adversarial Search CENTER

« Players are rational — each player wants to maximize her/his
utility value

(L,2,0)

/\

(1,2,6) (-1,5,2)

(1,2,6) (6,1,2) (-1,5,2) (5,4,5)

(L2,6) (423 (6,1,2) (7,4-1) (5-1-1) (-1.5.2) (7.7.-1) (5,4,5)

/\I

Minimax CENTER

function minimax(node, Player)
if (node is a terminal node) return utility value of node
if (Player = MaxPlayer)
for each child of node
a := max(a, minimax(child, switch(Player)))

return a
else
for each child of node
B := min(B, minimax(child, switch(Player)))

return 3

/\I

Minimax in Real Games CENTER

o search space in games is typically extremely large
« exponential in branching factor b®

e €.g.,35in chess, up to 360 in Go, up to 45000 in
Arimaa

o No-limit heads-up poker has 100 decision points
« we have to limit the depth of the search
« Wwe need an evaluation function

/\I

Minimax in Real Games CENTER

« search space in games is typically very large
« exponential in branching factor b¢

e €.g.,35in chess, up to 360 in Go, up to 45000 in
Arimaa

o No-limit heads-up poker has 100 decision points
« we have to limit the depth of the search
o Wwe need an evaluation function

(c) White to move (d) Black to move
White slightly better ack wi White about to lose

/\I

Minimax CENTER

function minimax(node, depth, Player)
if (depth = 0 or node is a terminal node) return evaluation value of node
if (Player = MaxPlayer)
for each child of node
a := max(a, minimax(child, depth-1, switch(Player)))

return a
else
for each child of node
B := min(B, minimax(child, depth-1, switch(Player)))

return 3

/\I

Minimax in Real Games - Problems CENTER

o good evaluation function
o depth?
o horizon problem
o iterative deepening
o searching deeper does not always improve the results

/\I

Minimax in Real Games - Problems CENTER

o good evaluation function
o depth?
o horizon problem
o iterative deepening
o searching deeper does not always improve the results

« online vs. offline decision making
o game playing vs. equilibrium computation
« appear also in robotics / planning / decision making

: /\1i
Alpha-Beta Pruning An

MAX

MIN

: /\1i
Alpha-Beta Pruning An

MAX

MIN

: /\1i
Alpha-Beta Pruning An

function alphabeta(node, depth, o, 3, Player)
if (depth = 0 or node is a terminal node) return evaluation value of node
if (Player = MaxPlayer)
for each child of node
a := max(a, alphabeta(child, depth-1, o, B, switch(Player)))
if (B<a) break
return a
else
for each child of node
B := min(B, alphabeta(child, depth-1, o, B, switch(Player)))
if (B<a) break

return (3

/\I

Negamax CENTER

function negamax(node, depth, a, B, Player)

if (depth = 0 or node is a terminal node) return the heuristic value of node

for each child of node
a := max(a, -negamax(child, depth-1, -3, -a, switch(Player)))
if (B<a) break

return a

/\I

Aspiration Search CEnTER

o [a, B] interval — window
« alphabeta initialization [-oo, +o°]

/\I

Aspiration Search CEnTER

o [a, B] interval — window
» alphabeta initialization [-oo, +o°]
« what if we use [a,, B,]
« X =alphabeta(node, depth, a,, B, player)

e 0,<x< P, -we found a solution
« X< a,-failing low (run again with [-o, x])

« X 2B, - failing high (run again with [x, +o])

/\I

NegaScout — Main Idea Lenin

« enhancement of alpha-beta algorithm

o assume some heuristic that determines move ordering

the algorithm assumes that the first action is the best one

after evaluating the first action, the algorithm checks whether the
remaining actions are worse

the “test” is performed via null-window search

/\I

Scout —Test CENTER

« what we really need at that moment is a bound (not the
precise value)

/\I

Scout —Test CENTER

« what we really need at that moment is a bound (not the
precise value)

« Remember Aspiration Search?
« X< a,-failing low (we know, that solution is < x|
« X2, - failing high (we know, that solution is = x)
o What if we use a null-window [a, a+1] (or [a,a])?

e We obtain a bound ...

/\I

NegaScout CENTER

function negascout(node, depth, a, B, Player)

. if ((depth = 0) or (node is a terminal node)) return eval(node)

. b:=p

. for each child of node

. v := -negascout(child, depth-1, -b, -a, switch(Player)))

. if ((o < v)and (child is not the first child))

. v := -negascout(child, depth-1, -B, -a, switch(Player)))
. a := max(a, v)

. if (B<a) break

. b:=a+1

o return a

Alpha-Beta vs. Negascout /N\I

CENTER

MAX

MIN

Alpha-Beta vs. Negascout /N\I

[4, +°]

-0, 4]

[4, +]

CENTER

MAX

MIN

Alpha-Beta vs. Negascout /N\I

CENTER

[4, +2] MAX

Re-search needed

MIN

/\I

NegaScout CENTER

« also termed Principal Variation Search (PVS)

o dominates alpha-beta
o never evaluates more different nodes than alpha-beta
o can evaluate some nodes more than once

« depends on the move ordering
« can benefit from transposition tables
o generally 10-20% faster compared to alpha-beta

MTD A

« Memory-enhanced Test Driver

TN RN RN TN (<
f+\ | :* X : f
f"\ fr : I fo—-— 7 | /—/
i - = 1
f f \ f o h o
/ / - |
px £ | |
/ l |
f £
o NN N AN
Dual* SSS* MTD(step) MTD(bi) MTD(f)

o Best-first fixed-depth minimax algorithms. Plaat et. al., In Artificial Intelligence,
Volume 87, Issues 1-2, November 1996, Pages 255-293

/\I

Further Topics CENTER

« more advanced algorithms
o Monte-Carlo Tree Search (leading algorithm for many games)
o further enhanced with many heuristics and techniques
« more complex games
o games with uncertainty
o chance (Nature player), calculating expected utilities

o imperfect information (players cannot distinguish certain
states)

/\I

Other Games - Chance nodes CENTER
MAX A
CHANCE (O) & O - O S
1f?6 :II!18 éf%B fgs

MIN Y Y/ e Y v
CHANCE e . - . .

‘11;"1136 11‘18 éJ%B é/gs
MAX A A A A

TERMINAL 5 _{ 1 Y

“ Al

Games and Game Theory in AIC CENTER

o« Mmore fundamental research

o general algorithms for solving sequential games with
imperfect information

o implementation of domain independent algorithms

/\I

Artificial Intelligence Goes All-In: CENTER
Computers Playing Poker

4

Invitation

Lecture by prof. Michael
Bowling, head of Computer
Poker Research Group at
University of Alberta.

Photos by John Ulan from the University of Alberta

Prof. Michael Bowling
+ World-famous expert on Al and reinforcement learning
* Led many outstanding computer poker results:
* Polaris, beating pros in heads-up limit poker
+ Cepheus, playing optimally heads-up limit poker
+ DeepStack, beating pros in heads-up no-limit
» Two publications on poker in prestigious Science
» Proposed Atari games as a benchmark for Al
» Won one of the first RoboCup challenges

March 30, 2017 at 16:00
Auditorium KN:E-107, FEL CTU,
Karlovo nam. 13, Prague 2

COMPUT FACULTY
SGENCE OF ELECTRICAL
- ENGINEERING
CTU IN PRAGUE

2 UNIVERZITA KARLOVA
Matematicko-fyzikilni

%" fakulta

