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Two Player Games

 Important test environment for AI algorithms

 Benchmark of AI

 Chinook (1994/96) – world champion in checkers

 Deep Blue (1997) – beats G. Kasparov in chess (3.5 – 2.5)

 …

 Alpha Go (2016) – beats Lee Sedol in Go (4 – 1)

 DeepStack (2016/2017) – beats Poker Pros
(https://www.deepstack.ai/)

 …



Game-tree Search / Adversarial Search

 until now – only the searching player acts in the environment

 there could be others:

 Nature – stochastic environment (MDP, POMDP, …)

 other agents – rational opponents
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 Nature – stochastic environment (MDP, POMDP, …)
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 Game Theory

 mathematical framework that describes optimal behavior of 
rational self-interested agents

 Mag. OI      B4M36MAS (Multi-agent Systems)
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Game-tree Search / Adversarial Search

 What are the basic games categories?

 perfect / imperfect information 

 deterministic / stochastic

 zero-sum / general-sum

 finite / infinite

 two-player / n-player

 …

 What is the goal?

 Finding an optimal strategy (i.e., what to play in which 
situation)
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 Players are rational – each player wants to maximize her/his 
utility value
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 function minimax(node, Player)         
 if (node is a terminal node) return utility value of node

 if (Player = MaxPlayer)

 for each child of node

 α := max(α, minimax(child, switch(Player) ))     



 return α

 else

 for each child of node

 β := min(β, minimax(child, switch(Player) ))     



 return β 

Minimax



Minimax in Real Games

 search space in games is typically extremely large

 exponential in branching factor bd

 e.g., 35 in chess, up to 360 in Go, up to 45000 in 
Arimaa

 No-limit heads-up poker has 10160 decision points

 we have to limit the depth of the search

 we need an evaluation function 
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 function minimax(node, depth, Player)         
 if (depth = 0 or node is a terminal node) return evaluation value of node

 if (Player = MaxPlayer)

 for each child of node

 α := max(α, minimax(child, depth-1, switch(Player) ))     



 return α

 else

 for each child of node

 β := min(β, minimax(child, depth-1, switch(Player) ))     



 return β 

Minimax



Minimax in Real Games - Problems

 good evaluation function

 depth?

 horizon problem

 iterative deepening

 searching deeper does not always improve the results



Minimax in Real Games - Problems

 good evaluation function

 depth?

 horizon problem

 iterative deepening

 searching deeper does not always improve the results

 online vs. offline decision making

 game playing vs. equilibrium computation

 appear also in robotics / planning / decision making



Alpha-Beta Pruning 
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 function alphabeta(node, depth, α, β, Player)         
 if (depth = 0 or node is a terminal node) return evaluation value of node

 if (Player = MaxPlayer)

 for each child of node

 α := max(α, alphabeta(child, depth-1, α, β, switch(Player) ))     

 if (β≤α)  break

 return α

 else

 for each child of node

 β := min(β, alphabeta(child, depth-1, α, β, switch(Player) ))     

 if (β≤α)   break

 return β 

Alpha-Beta Pruning 



 function negamax(node, depth, α, β, Player)         
 if (depth = 0 or node is a terminal node) return the heuristic value of node

 if (Player = MaxPlayer)

 for each child of node

 α := max(α, -negamax(child, depth-1, -β, -α, switch(Player) ))     

 if (β≤α)  break                     

 return α

 else

 for each child of node

 β := min(β, alphabeta(child, depth-1, α, β, not(Player) ))     

 if (β≤α)   break                             

 return β 

Negamax



 [α, β] interval – window

 alphabeta initialization [-∞, +∞]

Aspiration Search



 [α, β] interval – window

 alphabeta initialization [-∞, +∞]

 what if we use [α0, β0]

 x = alphabeta(node, depth, α0, β0,player)

 α0 ≤ x ≤ β0  - we found a solution

 x ≤ α0 - failing low (run again with [-∞, x])

 x ≥ β0 - failing high (run again with [x, +∞])

Aspiration Search



 enhancement of alpha-beta algorithm

 assume some heuristic that determines move ordering

 the algorithm assumes that the first action is the best one

 after evaluating the first action, the algorithm checks whether the 
remaining actions are worse

 the “test” is performed via null-window search

NegaScout – Main Idea



 what we really need at that moment is a bound (not the 
precise value)

Scout –Test



 what we really need at that moment is a bound (not the 
precise value)

 Remember Aspiration Search?

 x ≤ α0 - failing low (we know, that solution is ≤ x)

 x ≥ β0 - failing high (we know, that solution is ≥ x)

 What if we use a null-window [α, α+1] (or [α,α])?

 we obtain a bound … 

Scout –Test



function negascout(node, depth, α, β, Player)         

 if ((depth = 0) or (node is a terminal node)) return eval(node)

 b := β

 for each child of node

 v := -negascout(child, depth-1, -b, -α, switch(Player)))

 if (( α < v ) and (child is not the first child))

 v := -negascout(child, depth-1, -β, -α, switch(Player)))

 α := max(α, v)

 if (β≤α)  break                     

 b := α + 1

 return α

NegaScout



Alpha-Beta vs. Negascout
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Alpha-Beta vs. Negascout
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Re-search needed



 also termed Principal Variation Search (PVS)

 dominates alpha-beta 

 never evaluates more different nodes than alpha-beta

 can evaluate some nodes more than once

 depends on the move ordering

 can benefit from transposition tables

 generally 10-20% faster compared to alpha-beta

NegaScout



 Memory-enhanced Test Driver 

 Best-first fixed-depth minimax algorithms. Plaat et. al. , In Artificial Intelligence,
Volume 87, Issues 1-2, November 1996, Pages 255-293  

MTD



 more advanced algorithms

 Monte-Carlo Tree Search (leading algorithm for many games)

 further enhanced with many heuristics and techniques

 more complex games

 games with uncertainty

 chance (Nature player), calculating expected utilities

 imperfect information (players cannot distinguish certain 
states)

Further Topics



Other Games - Chance nodes



 more fundamental research

 general algorithms for solving sequential games with 
imperfect information

 implementation of domain independent algorithms

Games and Game Theory in AIC



Invitation


