

Two-player Games

ZUI 2016/2017

Branislav Bošanský

bosansky@fel.cvut.cz

Two Player Games

- Important test environment for AI algorithms
- Benchmark of Al
 - Chinook (1994/96) world champion in checkers
 - Deep Blue (1997) beats G. Kasparov in chess (3.5 2.5)
 - ...
 - Alpha Go (2016) beats Lee Sedol in Go (4 1)
 - DeepStack (2016/2017) beats Poker Pros (https://www.deepstack.ai/)
 - ...

- until now only the searching player acts in the environment
- there could be others:
 - Nature stochastic environment (MDP, POMDP, ...)
 - other agents rational opponents

- until now only the searching player acts in the environment
- there could be others:
 - Nature stochastic environment (MDP, POMDP, ...)
 - other agents rational opponents
- Game Theory
 - mathematical framework that describes optimal behavior of rational self-interested agents
 - Mag. OI → B4M36MAS (Multi-agent Systems)

- What are the basic games categories?
 - perfect / imperfect information
 - deterministic / stochastic
 - zero-sum / general-sum
 - finite / infinite
 - two-player / n-player

• ...

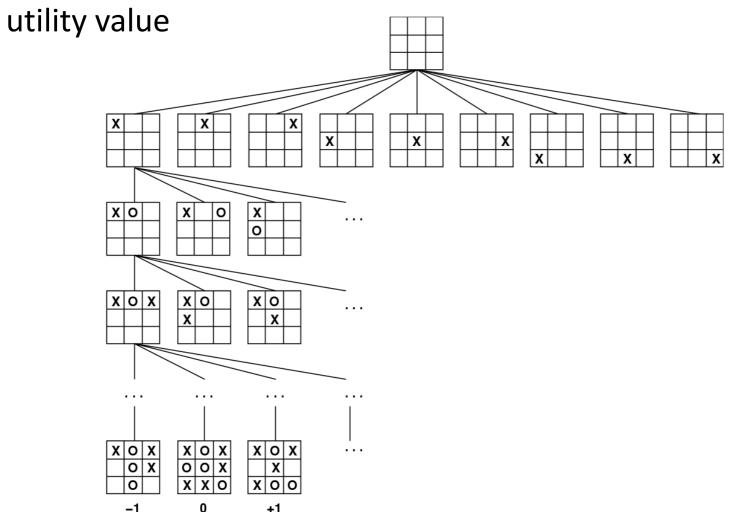
- What are the basic games categories?
 - perfect / imperfect information
 - **deterministic** / stochastic
 - zero-sum / general-sum
 - finite / infinite
 - two-player / n-player

• ...

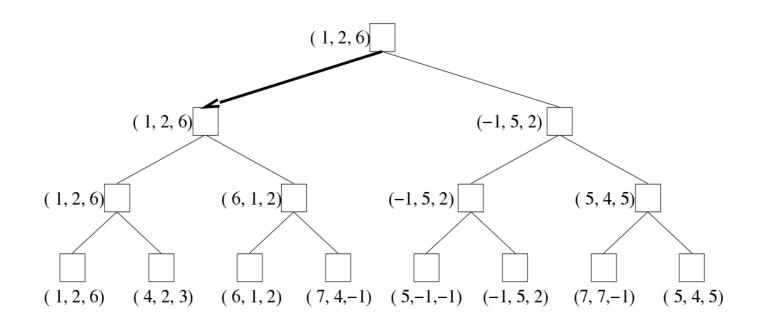
- What are the basic games categories?
 - perfect / imperfect information
 - **deterministic** / stochastic
 - zero-sum / general-sum
 - finite / infinite
 - two-player / n-player
 - ...
- What is the goal?

- What are the basic games categories?
 - perfect / imperfect information
 - **deterministic** / stochastic
 - zero-sum / general-sum
 - **finite** / infinite
 - two-player / n-player
 - ...
- What is the goal?
 - Finding an optimal strategy (i.e., what to play in which situation)

Players are rational – each player wants to maximize her/his



 Players are rational – each player wants to maximize her/his utility value



Minimax

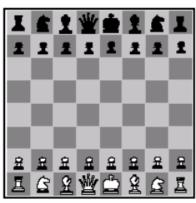
function minimax(node, Player) if (node is a terminal node) return utility value of node if (Player = MaxPlayer) for each child of node $\alpha := \max(\alpha, \min(\alpha, \beta))$ return α else for each child of node $\beta := \min(\beta, \min(\beta, \min(\beta, \min(\beta, \beta)))$ return β

Minimax in Real Games

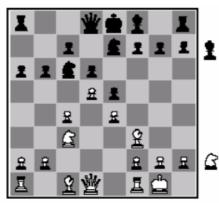
- search space in games is typically extremely large
 - exponential in branching factor b^d
 - e.g., 35 in chess, up to 360 in Go, up to 45000 in Arimaa
 - No-limit heads-up poker has 10¹⁶⁰ decision points
- we have to limit the depth of the search
- we need an evaluation function

Minimax in Real Games

- search space in games is typically very large
 - exponential in branching factor b^d
 - e.g., 35 in chess, up to 360 in Go, up to 45000 in Arimaa
 - No-limit heads-up poker has 10¹⁶⁰ decision points
- we have to limit the depth of the search
- we need an evaluation function

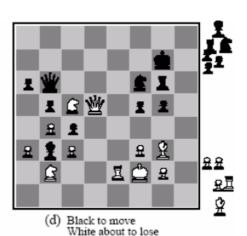


(a) White to move Fairly even



(b) Black to move White slightly better

(c) White to move Black winning



Minimax

```
function minimax(node, depth, Player)
if (depth = 0 or node is a terminal node) return evaluation value of node
if (Player = MaxPlayer)
  for each child of node
     \alpha := \max(\alpha, \min(\alpha, depth-1, switch(Player)))
  return α
else
  for each child of node
     \beta := \min(\beta, \min(\beta, \min(\beta, depth-1, switch(Player)))
  return β
```

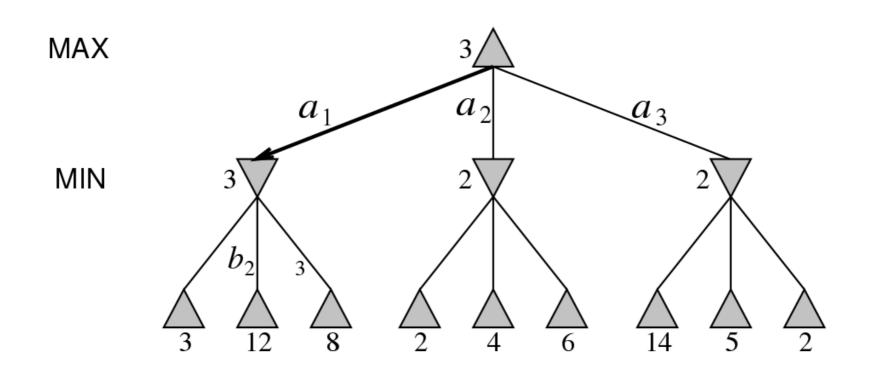

Minimax in Real Games - Problems

- good evaluation function
- depth?
 - horizon problem
 - iterative deepening
 - searching deeper does not always improve the results

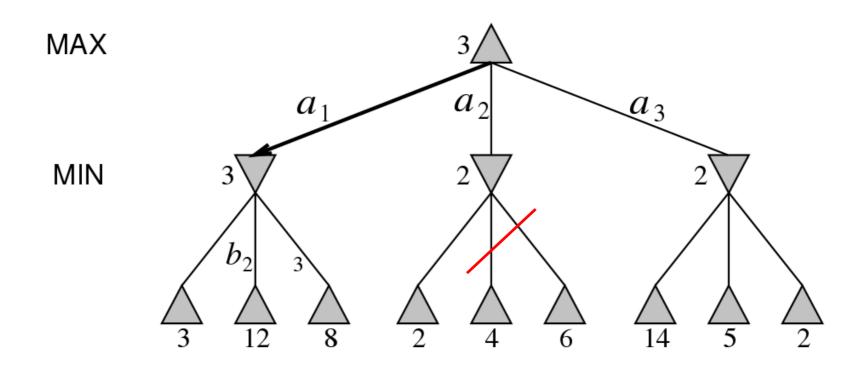
Minimax in Real Games - Problems

- good evaluation function
- depth?
 - horizon problem
 - iterative deepening
 - searching deeper does not always improve the results
- online vs. offline decision making
 - game playing vs. equilibrium computation
 - appear also in robotics / planning / decision making

Alpha-Beta Pruning



Alpha-Beta Pruning



Alpha-Beta Pruning

return β

function alphabeta(node, depth, α , β , Player) if (depth = 0 or node is a terminal node) return evaluation value of node if (Player = MaxPlayer) for each child of node $\alpha := \max(\alpha, \text{ alphabeta(child, depth-1, } \alpha, \beta, \text{ switch(Player) }))$ **if** (β ≤ α) break return α else for each child of node $\beta := \min(\beta, \text{ alphabeta(child, depth-1, } \alpha, \beta, \text{ switch(Player) }))$ **if** (β ≤ α) break

Negamax

- function negamax(node, depth, α , β , Player)
- **if** (depth = 0 or node is a terminal node) **return** the heuristic value of node
- if (Player = MaxPlayer)
- for each child of node
- $\alpha := \max(\alpha, -\text{negamax}(\text{child}, \text{depth-1}, -\beta, -\alpha, \text{switch}(\text{Player})))$
- if (β≤α) break
- return α
- else
- for each child of node
- $\beta := \min(\beta, \text{alphabeta(child, depth-1, } \alpha, \beta, \text{not(Player) }))$
- **if** (β≤α) break
- return β

CENTER

Aspiration Search

- $[\alpha, \beta]$ interval window
- alphabeta initialization $[-\infty, +\infty]$

CENTER

Aspiration Search

- $[\alpha, \beta]$ interval window
- alphabeta initialization $[-\infty, +\infty]$
- what if we use $[\alpha_0, \beta_0]$
 - $x = alphabeta(node, depth, \alpha_0, \beta_0, player)$
 - $\alpha_0 \le x \le \beta_0$ we found a solution
 - $x \le \alpha_0$ failing low (run again with $[-\infty, x]$)
 - $x \ge \beta_0$ failing high (run again with $[x, +\infty]$)

NegaScout – Main Idea

- enhancement of alpha-beta algorithm
- assume some heuristic that determines move ordering
 - the algorithm assumes that the first action is the best one
 - after evaluating the first action, the algorithm checks whether the remaining actions are worse
 - the "test" is performed via null-window search

Scout -Test

what we really need at that moment is a bound (not the precise value)

CENTER

Scout -Test

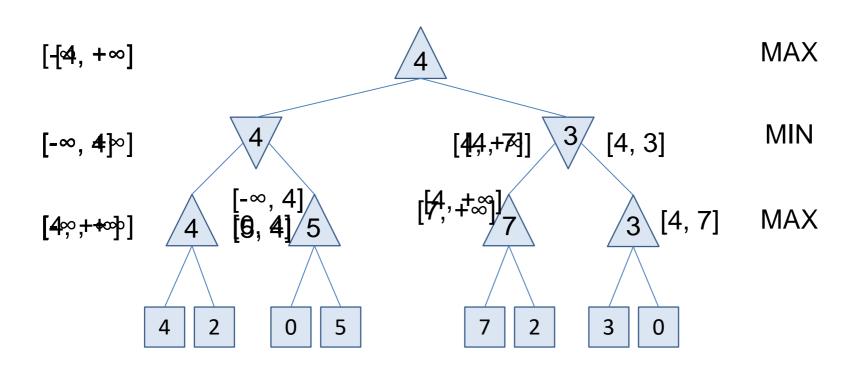
- what we really need at that moment is a bound (not the precise value)
- Remember Aspiration Search?
 - $x \le \alpha_0$ failing low (we know, that solution is $\le x$)
 - $x \ge \beta_0$ failing high (we know, that solution is $\ge x$)
- What if we use a null-window $[\alpha, \alpha+1]$ (or $[\alpha,\alpha]$)?
 - we obtain a bound ...

NegaScout

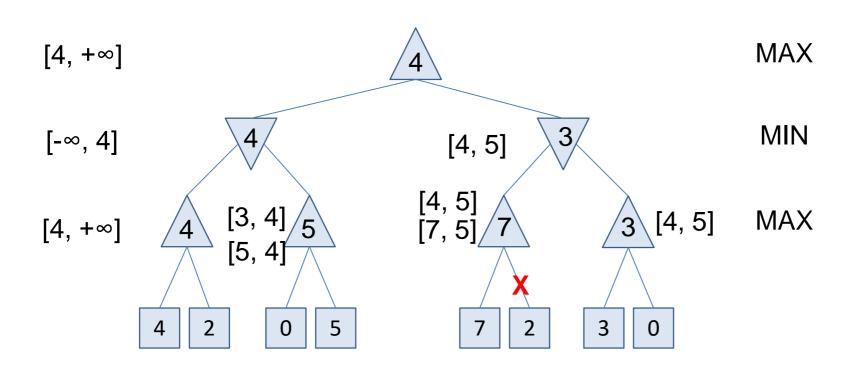
function negascout(node, depth, α , β , Player)

```
  if ((depth = 0) or (node is a terminal node)) return eval(node)
  b := β
  for each child of node
  v := -negascout(child, depth-1, -b, -α, switch(Player)))
  if ((α < ν) and (child is not the first child))</li>
  v := -negascout(child, depth-1, -β, -α, switch(Player)))
  α := max(α, ν)
  if (β≤α) break
  b := α + 1
  return α
```

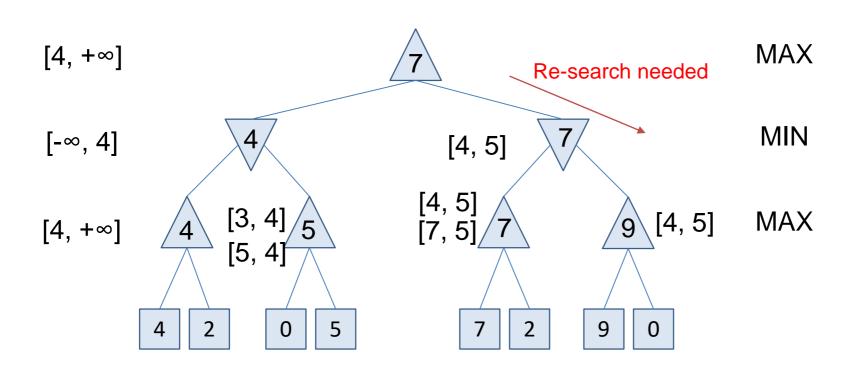
Alpha-Beta vs. Negascout



Alpha-Beta vs. Negascout



Alpha-Beta vs. Negascout



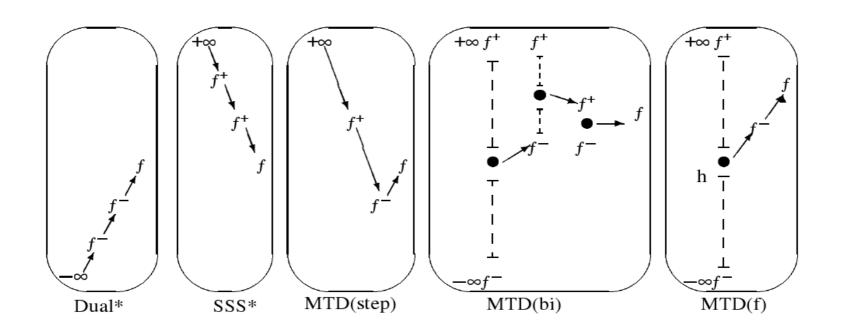
CENTER

NegaScout

- also termed Principal Variation Search (PVS)
- dominates alpha-beta
 - never evaluates more different nodes than alpha-beta
 - can evaluate some nodes more than once
- depends on the move ordering
- can benefit from transposition tables
- generally 10-20% faster compared to alpha-beta

MTD

Memory-enhanced Test Driver

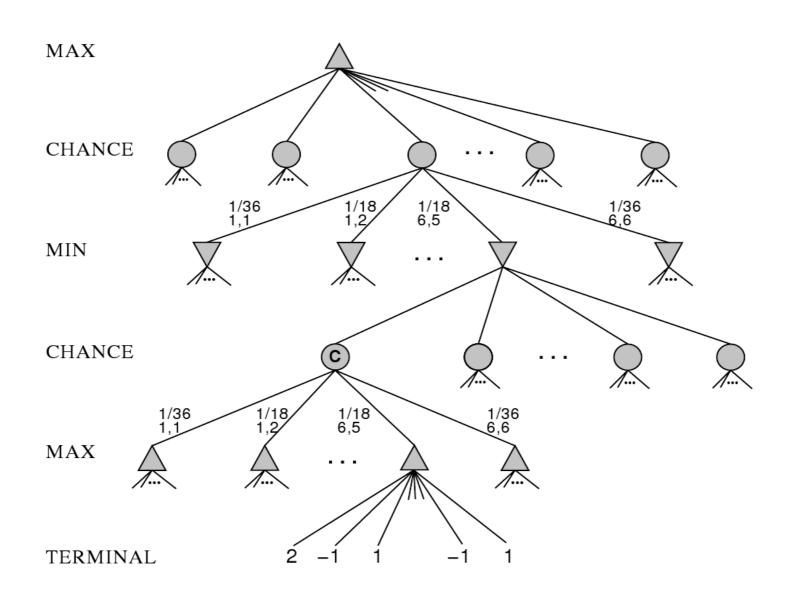


Best-first fixed-depth minimax algorithms. Plaat et. al., In Artificial Intelligence,
 Volume 87, Issues 1-2, November 1996, Pages 255-293

Further Topics

- more advanced algorithms
 - Monte-Carlo Tree Search (leading algorithm for many games)
 - further enhanced with many heuristics and techniques
- more complex games
 - games with uncertainty
 - chance (Nature player), calculating expected utilities
 - imperfect information (players cannot distinguish certain states)

Other Games - Chance nodes



Games and Game Theory in AIC

- more fundamental research
 - general algorithms for solving sequential games with imperfect information
 - implementation of domain independent algorithms

Invitation

Artificial Intelligence Goes All-In: Computers Playing Poker

Prof. Michael Bowling

- · World-famous expert on AI and reinforcement learning
- · Led many outstanding computer poker results:
 - · Polaris, beating pros in heads-up limit poker
 - · Cepheus, playing optimally heads-up limit poker
 - DeepStack, beating pros in heads-up no-limit
 - Two publications on poker in prestigious Science
- Proposed Atari games as a benchmark for Al
- · Won one of the first RoboCup challenges

March 30, 2017 at 16:00

Auditorium KN:E-107, FEL CTU, Karlovo nám. 13, Prague 2

