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Two Player Games

 Important test environment for AI algorithms

 Benchmark of AI

 Chinook (1994/96) – world champion in checkers

 Deep Blue (1997) – beats G. Kasparov in chess (3.5 – 2.5)

 …

 Alpha Go (2016) – beats Lee Sedol in Go (4 – 1)

 DeepStack (2016/2017) – beats Poker Pros
(https://www.deepstack.ai/)

 …



Game-tree Search / Adversarial Search

 until now – only the searching player acts in the environment

 there could be others:

 Nature – stochastic environment (MDP, POMDP, …)

 other agents – rational opponents
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 until now – only the searching player acts in the environment

 there could be others:

 Nature – stochastic environment (MDP, POMDP, …)

 other agents – rational opponents

 Game Theory

 mathematical framework that describes optimal behavior of 
rational self-interested agents

 Mag. OI      B4M36MAS (Multi-agent Systems)



Game-tree Search / Adversarial Search

 What are the basic games categories?

 perfect / imperfect information 

 deterministic / stochastic

 zero-sum / general-sum

 finite / infinite

 two-player / n-player

 …
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Game-tree Search / Adversarial Search

 What are the basic games categories?

 perfect / imperfect information 

 deterministic / stochastic

 zero-sum / general-sum

 finite / infinite

 two-player / n-player

 …

 What is the goal?

 Finding an optimal strategy (i.e., what to play in which 
situation)



Game-tree Search / Adversarial Search

 Players are rational – each player wants to maximize her/his 
utility value



Game-tree Search / Adversarial Search

 Players are rational – each player wants to maximize her/his 
utility value



 function minimax(node, Player)         
 if (node is a terminal node) return utility value of node

 if (Player = MaxPlayer)

 for each child of node

 α := max(α, minimax(child, switch(Player) ))     



 return α

 else

 for each child of node

 β := min(β, minimax(child, switch(Player) ))     



 return β 

Minimax



Minimax in Real Games

 search space in games is typically extremely large

 exponential in branching factor bd

 e.g., 35 in chess, up to 360 in Go, up to 45000 in 
Arimaa

 No-limit heads-up poker has 10160 decision points

 we have to limit the depth of the search

 we need an evaluation function 
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Arimaa
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 function minimax(node, depth, Player)         
 if (depth = 0 or node is a terminal node) return evaluation value of node

 if (Player = MaxPlayer)

 for each child of node

 α := max(α, minimax(child, depth-1, switch(Player) ))     



 return α

 else

 for each child of node

 β := min(β, minimax(child, depth-1, switch(Player) ))     



 return β 

Minimax



Minimax in Real Games - Problems

 good evaluation function

 depth?

 horizon problem

 iterative deepening

 searching deeper does not always improve the results



Minimax in Real Games - Problems

 good evaluation function

 depth?

 horizon problem

 iterative deepening

 searching deeper does not always improve the results

 online vs. offline decision making

 game playing vs. equilibrium computation

 appear also in robotics / planning / decision making
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 function alphabeta(node, depth, α, β, Player)         
 if (depth = 0 or node is a terminal node) return evaluation value of node

 if (Player = MaxPlayer)

 for each child of node

 α := max(α, alphabeta(child, depth-1, α, β, switch(Player) ))     

 if (β≤α)  break

 return α

 else

 for each child of node

 β := min(β, alphabeta(child, depth-1, α, β, switch(Player) ))     

 if (β≤α)   break

 return β 

Alpha-Beta Pruning 



 function negamax(node, depth, α, β, Player)         
 if (depth = 0 or node is a terminal node) return the heuristic value of node

 if (Player = MaxPlayer)

 for each child of node

 α := max(α, -negamax(child, depth-1, -β, -α, switch(Player) ))     

 if (β≤α)  break                     

 return α

 else

 for each child of node

 β := min(β, alphabeta(child, depth-1, α, β, not(Player) ))     

 if (β≤α)   break                             

 return β 

Negamax



 [α, β] interval – window

 alphabeta initialization [-∞, +∞]

Aspiration Search



 [α, β] interval – window

 alphabeta initialization [-∞, +∞]

 what if we use [α0, β0]

 x = alphabeta(node, depth, α0, β0,player)

 α0 ≤ x ≤ β0  - we found a solution

 x ≤ α0 - failing low (run again with [-∞, x])

 x ≥ β0 - failing high (run again with [x, +∞])

Aspiration Search



 enhancement of alpha-beta algorithm

 assume some heuristic that determines move ordering

 the algorithm assumes that the first action is the best one

 after evaluating the first action, the algorithm checks whether the 
remaining actions are worse

 the “test” is performed via null-window search

NegaScout – Main Idea



 what we really need at that moment is a bound (not the 
precise value)

Scout –Test



 what we really need at that moment is a bound (not the 
precise value)

 Remember Aspiration Search?

 x ≤ α0 - failing low (we know, that solution is ≤ x)

 x ≥ β0 - failing high (we know, that solution is ≥ x)

 What if we use a null-window [α, α+1] (or [α,α])?

 we obtain a bound … 

Scout –Test



function negascout(node, depth, α, β, Player)         

 if ((depth = 0) or (node is a terminal node)) return eval(node)

 b := β

 for each child of node

 v := -negascout(child, depth-1, -b, -α, switch(Player)))

 if (( α < v ) and (child is not the first child))

 v := -negascout(child, depth-1, -β, -α, switch(Player)))

 α := max(α, v)

 if (β≤α)  break                     

 b := α + 1

 return α

NegaScout



Alpha-Beta vs. Negascout
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Alpha-Beta vs. Negascout
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Re-search needed



 also termed Principal Variation Search (PVS)

 dominates alpha-beta 

 never evaluates more different nodes than alpha-beta

 can evaluate some nodes more than once

 depends on the move ordering

 can benefit from transposition tables

 generally 10-20% faster compared to alpha-beta

NegaScout



 Memory-enhanced Test Driver 

 Best-first fixed-depth minimax algorithms. Plaat et. al. , In Artificial Intelligence,
Volume 87, Issues 1-2, November 1996, Pages 255-293  

MTD



 more advanced algorithms

 Monte-Carlo Tree Search (leading algorithm for many games)

 further enhanced with many heuristics and techniques

 more complex games

 games with uncertainty

 chance (Nature player), calculating expected utilities

 imperfect information (players cannot distinguish certain 
states)

Further Topics



Other Games - Chance nodes



 more fundamental research

 general algorithms for solving sequential games with 
imperfect information

 implementation of domain independent algorithms

Games and Game Theory in AIC



Invitation


