Heuristic (Informed) Search
(Where we try fo choose smartly)

R&N: Chap. 4, Sect. 4.1-3

Search Algorithm #2

SEARCH#2
1. INSERT(initial-node,Open-List)
2. Repeat:

a.

©c a0 o0

If empty(Open-List) then return failure
N < REMOVE(Open-List)
s € STATE(N)
If GOAL?(s) then return path or goal state
For every state s’ in SUCCESSORS(s)
i. Create a node N' as a successor of N
ii. INSERT(N',Open-List)

Recall that the ordering
of Open List defines the
search strateg

Search Algorithm #?2

SEARCH#?2 St
INSERT(initial-node Open Lls'r)

2. Repeat:
a. If empty(Open-List)-then return failure
N € REMOVE(‘-Open Lle)
s € STATE(N) °
If GOAL?(s) then return path or goal state
For every state s' in SUCCESSORS(s)
i. Create a node N' as a successor of N
ii. INSERT(N',Open-List)

© a0 o

Best-First Search

= Tt exploits state description to estimate
how "good" each search node is

= An evaluation function f maps each node N
of the search tree to a real number

f(N) 20
[Traditionally, f(N) is an estimated cost; so, the smaller
f(N), the more promising N]

= Best-first search sorts the Open List in

increasing f
[Arbitrary order is assumed among nodes with equal f]

3

Fir's’r Search

= Tt exploits state description to estimate
how “good” pach search node is

= An evaluation function f maps each node N

of the se "Best” does not refer to the quality
f(N) > of the generated path

adjtionally, f(N) |Best-first search does not generate
he more pronoptimal paths in general

= Best-first search sorts the Open List in

increasing f
[Arbitrary order is assumed among nodes with equal f] 4

How to construct f?

= Typically, f(N) estimates:

- either the cost of a solution path through N

Then f(N) = g(N) + h(N), where
- g(N) is the cost of the path from the initial node o N
- h(N) is an estimate of the cost of a path from N to a goal node

* or the cost of a path from N fo a goal node
Then f(N)=h(N) — Greedy best-search

= But there are no limitations on f. Any function of your
choice is acceptable.
But will it help the search algorithm?

How to construct f?

= Typically, f(N) estimates:

- either the cost of a solution path through N
Then f(N) = g(N) + h(N), where
- g(N) is the cost of the path from the initial node o N
- h(N) is an estimate of the cost of a path from N to a goal node
» or the cost of a path from N to a goal node
Then f(N) = h(N) .

Heuristic function

= But there are no limitations on f. Any function of your
choice is acceptable.
But will it help the search algorithm?

Heuristic Function

= The heuristic function h(N) > O estimates the cost
to go from STATE(N) to a goal state

Its value is independent of the current search

tree; it depends only on STATE(N) and the goal
test GOAL?
5 8 1|2]3
= Example: 4121 4156
7136 718
STATE(N) Goal state

h,(N) = number of misplaced numbered tiles = 6
[Why is it an estimate of the distance to the goal?]

Other Examples

5 8 1|2

4121 4156

7136 7| 8
STATE(N) Goal state

= h,(N) = number of misplaced numbered tiles = 6

= h,(N) = sum of the (Manhattan) distance of
every numbered tile to its goal position
=2+3+0+1+3+0+3+1=13
= h,(N) = sum of permutation inversions
:n5+n8+n4+n2+n1+n7+n3+n6
=4 +6 +3 +1 +0+2 +0 +0
= 16

8-Puzzle
f(N) = h(N) = number of misplaced numbered tiles

The white tile is the empty tile

f(N) = g(N) + h(N)

1+5

8-Puzzle

2+4

4+1

5+2

5+0

10

8-Puzzle
f(N) = h(N) = X distances of numbered tiles to their goals

11

Robot Navigation

.
*
\g
*

X

2 2 X :
h,(N) = \/(XN -X,) +(YnY,)™ (Lyor Euclidean’distance)
h,(N) = |XN-X9| + |yN—y9| (L, or Manhattan distarte)

Best-First / Efficiency

Local-minimum problem

f(N) = h(N) = straight distance to the goal

13

Can we prove anything?

= ITf the state space is infinite, in general the
search is not complete

= If the state space is finite and we do not discard
nodes that revisit states, in general the search is
not complete

= If the state space is finite and we discard nodes
that revisit states, the search is complete, but in
general is not optimal

14

Admissible Heuristic

= Let h*(N) be the cost of the optimal path
from N to a goal node

= The heuristic function h(N) is admissible if:
0 < h(N) < h*(N)

= An admissible heuristic function is always
optimistic |

15

Admissible Heuristic

= Let h*(N) be the cost of the optimal path
from N to a goal node

= The heuristic function h(N) is admissible if:
0 < h(N) < h*(N)

= An admissible heuris\fwmn is always
optimistic |

G is a goal node = h(G) = 0

8-Puzzle Heuristics

5 8 1|2

4121 4156

7136 7| 8
STATE(N) Goal state

= h,(N) =number of misplaced tiles = 6
IS 227?

8-Puzzle Heuristics

5 8 1|2

4121 4156

7136 7| 8
STATE(N) Goal state

= h,(N) =number of misplaced tiles = 6
is admissible
= h,(N) = sum of the (Manhattan) distances of

every tile to its goal position
=2+3+0+1+3+0+3+1=13
is 2?7?

8-Puzzle Heuristics

5 8 1|2

4121 4156

7136 7| 8
STATE(N) Goal state

= h,(N) =number of misplaced tiles = 6
is admissible
= h,(N) = sum of the (Manhattan) distances of

every tile to its goal position
=2+3+0+1+3+0+3+1=13
is admissible

» h,(N) = sum of permutation inversions

=4+6+3+1+0+2+0+0=16
is 2?2?

8-Puzzle Heuristics

5 8 1|2

4121 4 5|6

7136 7| 8
STATE(N) Goal state

= h,(N) =number of misplaced tiles = 6
is admissible
= h,(N) = sum of the (Manhattan) distances of
every tile to its goal position
=2+3+0+1+3+0+3+1=13
is admissible
» h,(N) = sum of permutation inversions
=4+6+3+1+0+2+0+0=16
is not admissible

Robot Navigation Heuristics

x, J

Cost of one horizontal/vertical step =1
Cost of one diagonal step =+2

h}(N) = \/(XN-X9)2+(YN-YQ)2 is admissible

Robot Navigation Heuristics

x, _l

Cost of one horizontal/vertical step =1
Cost of one diagonal step =2

h,(N) = |><N-><9| + |YN-Y9| is 22?

Robot Navigation Heuristics

x, _l

Cost of one horizontal/vertical step =1
Cost of one diagonal step =2

ho(N) = |xg-x | + lyn-y,l is admissible if moving along
diagonals is not allowed, and

h*(I)= 4v2 not admissible otherwise
ho(I) = 8 J 23

How to create an admissible h?

= An admissible heuristic can usually be seen as the
cost of an optimal solution to a relaxed problem (one
obtained by removing constraints)

= In robot navigation:

* The Manhattan distance corresponds to removing the
obstacles

* The Euclidean distance corresponds to removing both the
obstacles and the constraint that the robot moves on a grid

= More on this topic later

24

A* Search
(most popular algorithm in AT)

1) £(N) = g(N) + h(N), where:
*g(N) = cost of best path found so far to N
h(N) = admissible heuristic function

2) forall arcs: c(NN)2e>0

3) SEARCH#?2 algorithm is used

- Best-first search is then called A* search

25

Result #1

A* is complete and optimal

[This result holds if nodes revisiting
states are not discarded]

26

Proof (1/2)

1) If a solution exists, A* terminates and
returns a solution

- For each node N on the Open List,
f(N) = g(N) + h(N) 2 g(N) > d(N) x ¢,
where d(N) is the depth of N in the tree

SEARCH#2
1. INSERT(initial-node,Open List)
2. Repeat:
a. If empty(Open List) then return failure
b. N € REMOVE(Open List)
c. s € STATE(N)
2 d. If 6OAL?(s) then return path or goal state
e. For every state s' in SUCCESSORS(s) 27
i. Create a node N' as a successor of N
ii. INSERT(N',Open List)

Proof (1/2)

1) If a solution exists, A* terminates and
returns a solution

- For each node N on the Open List,
f(N) = g(N) + h(N) > g(N) > d(N) x ¢,
where d(N) is the depth of N in the tree
= As long as A* hasn't ferminated, a hode K

! on the Open List lies on a solution path
SEARCH#2
1. INSERT(initial-node,Open List)
2. Repeat:

a. If empty(Open List) then return failure
b. N € REMOVE(Open List)
c. s € STATE(N)
2 d. If 6OAL?(s) then return path or goal state
e. For every state s' in SUCCESSORS(s) 28
i. Create a node N' as a successor of N
ii. INSERT(N',Open List)

Proof (1/2)

1) If a solution exists, A* terminates and
returns a solution

- For each node N on the Open List,
f(N) = g(N)+h(N) = g(N) = d(N)xe,
where d(N) is the depth of N in the tree

- As long as A* hasn't tferminated, a hode K
on the Open List lies on a solution path

- Since each node expansion increases the
2. Repeat: .
< wemmopenm e length of one path, K will eventually be

b. N ¢ REMOVE(Open List)

s € STATE() selected for expansion, unless a solution is

IDd. If GOAL?(s) then return path ol

e. Ff)reverysfafes'inSUCCESSC found along anoTher‘ paTh

i. Create a node N'as a succes
ii. INSERT(N',Open List)

Proof (2/2)

2) Whenever A* chooses to expand a goal
node, the path to this node is optimal

- C*= cost of the optimal solution path

- G non-optimal goal node in the Open List
f(6) = 9(6) + h(6) = g(6) > C*

- A node K in the Open List lies on an

‘ .
SEARCH#2 o) pTl I’nCl|
1. INSERT(initial-node,Open List) .
; Repseat: initial-node,Open List pa_'_h.
a. If empty(Open List) then returr _ *
b. E E(ist) - + <
F(K)= g(K) +h(K) <€

IDd. If GOAL?(s) then return path ol
e. For every state s' in SUCCESSC

e mean ~ 00, G Will not be selected for expansion

i. INSERT(N',Open List)

Time Limit Issue

When a problem has no solution, A* runs for ever if
the state space is infinite. In other cases, it may take
a huge amount of fime to terminate

So, in practice, A* is given a time limit. If it has not
found a solution within this limit, it stops. Then there
is no way to know if the problem has no solution, or if
more time was needed to find it

When AT systems are "small” and solving a single
search problem at a time, this is not too much of a
concern.

When AI systems become larger, they solve many
search problems concurrently, some with no solution.

31

8-Puzzle

f(N) = g(N) + h(N)
with h(N) = number of misplaced tiles

1+5 2+4

4+1

5+2

5+0

32

Robot Navigation

STt

33

Robot Navigation

f(N) = h(N), with h(N) = Manhattan distance to the goal
(not A*)

8 |7 |6 |5 (4 [3 |2 |3 |4 |5

o |O1 | D O O

34

Robot Navigation

f(N) = h(N), with h(N) = Manhattan distance to the goal
(not A*)

/7 |16 |5 14 |3 |2 |3 |4 |5

o O | D O O

8
7
6
7
8

35

Robot Navigation

f(N) = g(N)+h(N), with h(N) = Manhattan distance to goal
(A%)

8+3|7+4|6+3|5+6(4+7|3+8(2+9(3+10[4 |5
7/+2 5+6|4+7|3+8

6+1 3 [2+9|1+10(0+111 |2
7+0]6+1
8+1|7+2(6+3|5+4|4+5|3+6(2+7|3+8| 4 |5

o |O1 | D O O

36

Best-First Search

= An evaluation function f maps each node N of the
search tree to a real number

f(N) 20

= Best-first search sorts the Open List in
increasing f

37

A* Search

1) f(N) = g(N) + h(N), where:
* g(N) = cost of best path found so far to N
h(N) = admissible heuristic function

2) for all arcs: ¢c(NN)2¢e>0

3) SEARCH#2 algorithm is used

- Best-first search is then called A* search

38

Result #1

A* is complete and optimal

[This result holds if nodes revisiting
states are not discarded]

39

What to do with revisited states?

c=1 2
h = 100 '/‘\@1 The heuristic h is

1 902 clearly admissible

100

40

What to do with revisited states?

f = 14100 (21

100 ?

0 104

If we discard this new node, then the search
algorithm expands the goal node next and
returns a non-optimal solution

41

What to do with revisited states?

1 2
100 D1 1+100 oL
N
% 2+90 @ 4+90
100
0 102 @ 104

Instead, if we do not discard nodes revisiting
states, the search terminates with an optimal
solution

42

= Tt is not harmful to discard a node revisiting a
state if the cost of the new path to this state is 2

cost of the ’ar'evious path
[so, in particular, one can discard a node if it re-visits a
state already visited by one of its ancestors]

= A* remains optimal, but states can still be re-

visited multiple times
[the size of the search tree can still be exponential in the
number of visited states]

= Fortunately, for a large family of admissible
heuristics - consistent heuristics - there is a much
more efficient way to handle revisited states

45

Consistent Heuristic

An admissible heuristic h is consistent (or
monotone) if for each node N and each child

N' of N: N
c(N,NY/
h(N) < ¢(N,N') + h(N') QLR
h(N) < C*(N) < c(N.N') + h*(N) h(N’)‘\‘%
h(N) - c(NN) < h*(N) (triangle inequality)
h(N) - ¢(N,N) < h(N) ¢ h*(N)

- Intuition: a consistent heuristics becomes
more precise as we get deeper in the search tree

Consistency Violation

If h tells that N is 100
units from the goal,
then moving from N
along an arc costing 10
units should not lead to
a hode N' that h
estimates to be 10 units
away from the goal

(triangle inequality)

47

Consistent Heuristic
(alternative definition)

A heuristic h is consistent (or monotone) if
1) for each node N and each childr\ll\l' of N:

h(N) < c(NIN) + h(N) <f

2) for each goal node G: N Q)

AN
h(G)=0 b
) .. (triangle inequality)
A consistent heuristic
IS also admissible

48

Admissibility and Consistency

s A consistent heuristic is also admissible

= An admissible heuristic may not be
consistent, but many admissible heuristics
are consistent

49

8-Puzzle

g 8 1|2
4 12 |1 4 | 5
N 71 3|6 718
c(N,Nf\ sTATE(N) goal
N’ ‘\h(N)
PN = h,(N) = number of misplaced tiles
¢ = h,(N) = sum of the (Manhattan) distances

h(N) < ¢(NN) + h(N) of every ftile to its goal position

are both consistent (why?)

50

Robot Navigation

;ﬁ

\

c(N,N’

\‘ >.<
N’ vh(N)

\\ \
AN
¢

h(N) < ¢(N,N') + h(N")

Cost of one horizontal/vertical step =1
Cost of one diagonal step =2

h(N) = \/(XN X, Y +(YnY4) s consistent

h,(N) = |><N-><9| + |YN-Y9| is consistent if moving along
diagonals is not allowed, and
not consistent otherwise

Result #2

If h is consistent, then whenever A*
expands a node, it has already found
an optimal path to this node's state

52

Proof (1/2)

1) Consider a node N and its child N'
Since h is consistent: h(N) < ¢c(N,N') + h(N')

f(N) = g(N)+h(N) ¢ g(N)+c(NN)+h(N) = f(N')

So, f is non-decreasing along any path

53

Proof (2/2)

2) If anodeKis selected for expansion, then any other node N in
the Open List verifies f(N) 2,f(K)

6K N &

S

If one node N lies on another path to the state of K, the cost
of this other path is no smaller than that of the path to K:

f(N)2f(N)2f(K) and h(N) = h(K)
So, g(N') 2 g(K) 54

Proof (2/2)

2) If anodeKis selected for expansion, then any other node N in
the Open List verifies f(N) 2,f(K)

Result #2
- If his consistent, then whenever A* expands a
node, it has already found an optimal path to this
node's state

If one node N lies on another path to the state of K, the cost
of this other path is no smaller than that of the path to K:

f(N)2f(N)2f(K) and h(N') = h(K)
So, g(N) 2 g(K) 55

Implication of Result #?2

.
The path fo N _’ < \
is the optimal e \
\
pClTh to S P < \

vE :

O N, can be
| j discarded
@) N,

56

Revisited States with Consistent Heuristic

= When a node is expanded, store its state
into CLOSED

= When a new node N is generated:
» If STATE(N) is in CLOSED, discard N

* If there exists a node N' in the Open
List such that STATE(N') = STATE(N),
discard the node - N or N' - with the
largest f (or, equivalently, g)

o7

Is A* with some consistent heuristic all that
we heed?

No |

There are very dumb consistent heuristic
functions

58

For example: h =0

= It is consistent (hence, admissible) |
= A* with h=0 is uniform-cost search

= Breadth-first and uniform-cost are
particular cases of A*

59

Heuristic Accuracy

Let h, and h, be two consistent heuristics such that for all
nodes N:

h,(N) < h_(N)

h, is said to be more accurate (or more informed) than h,

5 8 1|2|3]| = hy(N)=number of misplaced tiles
4121 41916 a hy(N)=sum of distances of
7,36 7.8 every tile to its goal position

STATE(N) Goal state

= h, is more accurate than h;

Result #3

= Let h, be more accurate than h,

= Let A* be A* using h,
and A,* be A* using h,

= Whenever a solution exists, all the nodes
expanded by A,*, are also expanded by A*

- except possibly for some nodes such that f (N)=f,(N) = C*

(cost of optimal solution)

61

Proof

= C* = h*(initial-node) [cost of optimal solution]

= Every node N such that f(N) < C* is eventually expanded.
No node N such that f(N) > C* is ever expanded

= Every node N such that h(N) < C*-g(N) is eventually
expanded. So, every node N such that h2(N) < C*-g(N) is
expanded by A2*. Since h1(N) < h2(N), N is also
expanded by A1*

62

Effective Branching Factor

» Tt is used as a measure the effectiveness of a heuristic

= Let n be the total number of nodes expanded by A* for a
particular problem and d the depth of the solution

= The effective branching factor b* is defined by n=1+
b* + (b*)2 +..+ (b*)¢

63

Experimental Results

(see R&N for details)

= 8-puzzle with:
= h; = number of misplaced tiles

= h, = sum of distances of tiles to their goal positions

= Random generation of many problem instances
= Average effective branching factors (number of

expanded nodes):

IDS

A%

A*

2.45

1.79

1.79

2.73

1.34

1.30

12

2.78 (3,644,035)

142 (227)

1.24 (73)

16

1.45

1.25

20

1.47

1.27

24

1.48 (39,135)

1.26 (1,641)

64

How to create good heuristics?

= By solving relaxed problems at each node

= In the 8-puzzle, the sum of the distances of each tile to its
goal position (h,) corresponds to solving 8 simple problems:

°| |8 1123 d.is the length of the
2|1 —]4]5]6 shortest path o move
3|6 7|8 tile i to its goal position,
ignoring the other tiles,
5 e.g., dy=2
T 5
h, =2, 84

= Tt ignores negative interactions among ftiles o

Can we do better?

=For example, we could consider two more complex relaxed problems:

d;,34 = length of the
shortest path o move
tiles 1,2, 3, and 4 to
their goal positions,
ignoring the other tiles

5 8 1 3
2 — 516
7|13]|6 7|8
ds7s
) A
11213 5 8
|4 _
7 6 7

66

Can we do better?

=For example, we could consider two more complex relaxed problems:

d;,34 = length of the

shortest path o move
tiles 1,2, 3, and 4 to
their goal positions,

7 7
ignoring the other tiles A d5678
«

3

2

5

6

3

6

8

1

2

3

5

8

4

- Several order-of-magnitude speedups
for the 15- and 24-puzzle (see R&N)

69

On Completeness and Optimality

= A* with a consistent heuristic function has nice
properties: completeness, , ho need to
revisit states

= Theoretical completeness does nhot mean
“practical” completeness if you must wait too long
to get a solution (remember the time limit issue)

= So, if one can't design an accurate consistent
heuristic, it may be better to settle for a non-
admissible heuristic that "works well in practice”,
even through completeness and optimality are no
longer guaranteed

70

Iterative Deepening A* (IDA™)

= Tdea: Reduce memory requirement of A* by
applying cutoff on values of f

= Consistent heuristic function h

= Algorithm IDA™:
1. TInitialize cutoff to f(initial-node)

2. Repeat:

a. Perform depth-first search by expanding all nodes
N such that f(N) < cutoff

b. Reset cutoff to smallest value f of non-expanded

(leaf) nodes »

8-Puzzle

f(N) = g(N) + h(N)
with h(N) = number of misplaced tiles

Cutoff=4

72

8-Puzzle

f(N) = g(N) + h(N)
with h(N) = number of misplaced tiles

Cutoff=4 4

73

8-Puzzle

f(N) = g(N) + h(N)
with h(N) = number of misplaced tiles

Cutoff=4 4 5

74

8-Puzzle

f(N) = g(N) + h(N)
with h(N) = number of misplaced tiles

75

8-Puzzle

f(N) = g(N) + h(N)
with h(N) = number of misplaced tiles

76

8-Puzzle

f(N) = g(N) + h(N)
with h(N) = number of misplaced tiles

Cutoff=5

77

8-Puzzle

f(N) = g(N) + h(N)
with h(N) = number of misplaced tiles

Cutoff=5\ 4

78

8-Puzzle

f(N) = g(N) + h(N)
with h(N) = number of misplaced tiles

Cutoff=5\ 4 <

79

8-Puzzle

f(N) = g(N) + h(N)
with h(N) = number of misplaced tiles

4
Cutoff=5 \ 4 ?\m

8-Puzzle

f(N) = g(N) + h(N)
with h(N) = number of misplaced tiles

4 E< 5
Cutoff=5\ 4 <

8-Puzzle

f(N) = g(N) + h(N)
with h(N) = number of misplaced tiles

4 3<ﬁ!ﬁ, it
Cutoff=5 4 5

82

8-Puzzle

f(N) = g(N) + h(N)
with h(N) = number of misplaced tiles

4 ﬁ 5 ?\ﬁ
Cutoff=5\ 4 <

5
7

83

Experimental Results of IDA*

= IDA* is asymptotically same time as A* but only
O(d) in space - versus O(bd) for A*
= Also avoids overhead of sorted queue of nodes
= IDA* is simpler to implement - no closed lists
(limited open list).

= In Korf's 15-puzzle experiments IDA*: solved all
problems, ran faster even though it generated
more nodes than A*,

84

Advantages/Drawbacks of IDA*

= Advantages:
» Still complete and optimal
* Requires less memory than A*
» Avoid the overhead to sort the Open List

= Drawbacks:
» Can't avoid revisiting states not on the current path

* Available memory is poorly used
(= memory-bounded search, see R&N p. 101-104)

84

Local Search

Light-memory search method

No search tree; only the current state is
represented!

Only applicable to problems where the path is
irrelevant (e.g., 8-queen), unless the path is
encoded in the state

Many similarities with optimisation techniques

85

Oradea

71 Neamt
[
Zerind 87
75 151
J Iasi
Arad 140
- 92
Sibiu 99 Fagaras
118 L1 Vaslui
80
. . Rimnicu Vilcea
Timisoara ™
142
et 4o 211
111 1 Lugoj Pitesti
[|
70 98
. 85 Hirsova
"] Mehadia 101 Urziceni
75 138 . 86
Bucharest
Drobeta [] 120
- 90
Craiova (] Giurgiu Eforie

Figure 3.2 FILES: figures/romania-distances.eps (Tue Nov 3 16:23:37 2009). A simplified road
map of part of Romania.

(a) The initial state

(b) After expanding Arad

253 329 374

(c) After expanding Sibiu

(d) After expanding Fagaras

0

Figure 3.23 FILES: figures/greedy-progress.eps (Tue Nov 3 16:22:55 2009). Stages in a greedy
best-first tree search for Bucharest with the straight-line distance heuristic hsr,p. Nodes are labeled
with their h-values.

85

(a) The initial state
366=0+366

(b) After expanding Arad

393=140+253 447=118+329 449=75+374

(c) After expanding Sibiu

449=75+374

646=280+366 415=239+176 671=291+380 413=220+193

(d) After expanding Rimnicu Vilcea

449=75+374

526=366+160 417=317+100 553=300+253

(e) After expanding Fagaras

449=75+374

591=338+253 450=450+0 526=366+160 417=317+100 553=300+253

(f) After expanding Pitesti

447=118+329 449=75+374

418=418+0 615=455+160 607=414+193

Figure 3.24 FILES: figures/astar-progress.eps (Tue Nov 3 16:22:24 2009). Stages in an A* search
for Bucharest. Nodes are labeled with f = g + h. The h values are the straight-line distances to
Bucharest taken from Figure 3.20.

86

(a) The initial state
366=0+366

(b) After expanding Arad

393=140+253 447=118+329 449=75+374

(c) After expanding Sibiu

447=118+329

449=75+374

646=280+366 415=239+176 671=291+380 413=220+193

(d) After expanding Rimnicu Vilcea

449=75+374

526=366+160 417=317+100 553=300+253

(e) After expanding Fagaras

449=75+374

591=338+253 450=450+0 526=366+160 417=317+100 553=300+253

(f) After expanding Pitesti

449=75+374

418=418+40 615=455+160 607=414+193

87

RBFS - Recursive Best-First Search

= Mimics best-first search with linear space
= Similar to recursive depth-first

= Limits recursion by keeping track of the f-value of the best
alternative path from any ancestor node - one step look-
ahead

= If current node exceeds this value, recursion unwinds back
to the alternative path - same idea as contour

= As recursion unwinds, replaces f-value of node with best f- value
of children

= Allows to remember whether to re-expand path at later time

= Exploits information gathered from previous searches about
minimum f so as to focus further searches 84

Figure 3.25 FILES: figures/f-circles.eps (Tue Nov 3 16:22:45 2009). Map of Romania showing
contours at f = 380, f = 400, and f = 420, with Arad as the start state. Nodes inside a given contour
have f-costs less than or equal to the contour value.

389

(a) After expanding Arad, Sibiu,
and Rimnicu Vilcea

449

526 417 553

(b) After unwinding back to Sibiu
and expanding Fagaras

(c) After switching back to Rimnicu Vilcea
and expanding Pitesti

449

Cuchares Craiova> micu Vil

418 615 607

Figure 3.27 FILES: figures/rbfs-progress.eps (Tue Nov 3 16:23:27 2009). Stages in an RBFS
search for the shortest route to Bucharest. The f-limit value for each recursive call is shown on top
of each current node, and every node is labeled with its f-cost. (a) The path via Rimnicu Vilcea is
followed until the current best leaf (Pitesti) has a value that is worse than the best alternative path
(Fagaras). (b) The recursion unwinds and the best leaf value of the forgotten subtree (417) is backed
up to Rimnicu Vilcea; then Fagaras is expanded, revealing a best leaf value of 450. (c) The recursion
unwinds and the best leaf value of the forgotten subtree (450) is backed up to Fagaras; then Rimnicu
Vilcea is expanded. This time, because the best alternative path (through Timisoara) costs at least 447,

the expansion continues to Bucharest.

90

(a) After expanding Arad, Sibiu,
and Rimnicu Vilcea

449

526 417 553

(b) After unwinding back to Sibiu
and expanding Fagaras

(c) After switching back to Rimnicu Vilcea [

and expanding Pitesti 366
Csibiu >, | imisoars) Cerind >
o>
Fagaras Orad R
46 T 430 71 @ B
CCraiovay (Pitesti > Sibiu D
526 417 553

Craiova D
418 615

607

91

RBFS - Recursive Best-First Search

function RECURSIVE-BEST-FIRST-SEARCH (problem) returns a solution, or failure
RBFS(MAKE-NODE(INITIAL-STATE[problem]), co)

function RBFS(problem, node,f-limit) returns a solution, or failure and a new f-cost limit
if GOAL-TEST[problem](state) then return node
successors — EXPAND(node, problem)
if successors 1s empty, then return failure, co
for each s in successors do f[s] —max(g(s) + h(s), f[node))
repeat
best < the lowest f-value node in successors
if f[best] > f-limit then return failure, f[best]
alternative — the second-lowest f-value among successors
result, f[best] — RBFS(problem, best, min(f-limit, alternarivej))
if result = failure then return result
end

84

RBFS - Recursive Best-First Search

= More efficient than IDA* and still optimal

» Best-first Search based on next best f-contour:;
fewer regeneration of nodes

= Exploit results of search at a specific f-contour by
saving next f- countour associated with a node who
successors have been explored.

= Like IDA* still suffers from excessive node
regeneration IDA* and RBFS not good for graphs

= Can't check for repeated states other than those on
current path Both are hard to characterize in terms
of expected time complexity 84

SMA* Simplified Memory Bounded A*

= The implementation of SMA™ is very similar to
the one of A*, the only difference is that when
there isn't any space left, nodes with the highest
f are pruned away.

» Because those nodes are deleted, the SMA* also
has to remember the f of the best forgotten
child with the parent node.

= When it seems that all explored paths are worse
than such a forgotten path, the path is re-
generated. 84

SMA* Simplified Memory Bounded A*

A
0+12=12
10 8
B G
10+5=15 8+5=13
10 \QO 8 \QG
C D H I
20+5=25 (:) 20+0=20 16+2=18 (:) 24+0=24

30+5=35 30+0=30 24+0=24 24+5=29

&4

A A A A
12 O 12 O 13|10 13(15) O
B B G G
15 15 13 13
H
8
inf
A 0419212 Update A Remember next
0 . based on lowest cost f node
. . lowest cost f B that is removed
15 8+5=13 successor?
7\ /N
D H I
20+0=20 16+2=18 Q)| 24+0=24

84

~_
or

24+5=29

30+0=30 24+0=24

A A A A
O 15(15) 15 O 1524) O 2024) O
\G B G B B
O 24(inf)| |15 24 | 15 20(inf)
| g & \D
24 . b 20
inf
Reach goal Regenerate node B, A
node | butit remember that there 0+12=12
is not the was node with f =15 10 8
cheapestso that had been 5 o
continue removed, remember 10+5=15 O 8+5-13
search successor of G has 10 &0 8 &e
f=24 C D H |
20+5=25)| 20+0=20 16+2=18 Q) 24
10 \o 7 8
E F J K
30+5=35 O)| 30+0=30 24+0=24 24+5=2

A A A A
O15(15) 15 Q) 1524) O || 2024) O
\G B G B B
O 24(inf)| |15 24 | 15 20(inf)
\\I - C \D
24 . b 20
inf
A : ,
0419212 C is not Why don'’t
goa| node we need to
10 \ and it is at :i?/:rc:gre
10+5=15 : : 8+5=13 max depth after finding
10 xo 8 &6 D.
C D H |
20+5=25 O) 20+0=20 16+2=18 Q)| 24+0=24
10 \o 7 x;
E F J K
5=35 O)| 30+0=30 24+0=24 24+5=29 84

SMA* Simplified Memory Bounded A*

= It is complete, provided the available memory is sufficient
to store the shallowest solution path.

= It is optimal, if enough memory is available to store the
shallowest optimal solution path. Otherwise, it returns the
best solution (if any) that can be reached with the available
memory.

= Can keep switching back and forth between a set of
candidate solution paths, only a few of which can fit in
memory (thrashing)

= Memory limitations can make a problem intractable wrt time
= With enough memory for the entire tree, same as A*

84

Memory-bounded heuristic search

= IDA* - Iterative-deepening A*

» Use f-cost as cutoff - at each iteration, the cutoff value is the
smallest f-cost of any node that exceeded the cutoff on the previous
iteration

= Recursive best-first search (RBFS)
= Best-first search with only linear space
= Keep track of the f-value of the best alternative

= As the recursion unwinds, it forgets the sub-tree and back-up the f-
value of the best leaf as its parent’s f-value.

= SMA*
= Expanding the best leaf until memory is full
= Drop the worst leaf, and back-up the value of this node to its parent.
= Complete IF there is any reachable solution.
= Optimal IF any optimal solution is reachable. 84

Steepest Descent

1) S € initial state
2) Repeat:
a) S € arg ming.qccessors(sth(S)}
b) if GOAL?(S') return S'
c) if h(S') <h(S) then S € S' else return failure

Similar to:
- hill climbing with -h
- gradient descent over continuous space

86

Application: 8-Queen

1) Pick an initial state S at random with one queen in each column
2) Repeat k times:

a) If GOAL?(S) thenreturn S

b) Pick an attacked queen Q at random

c) Move Q inits column to minimize the number of attacking
queens 2> hew S [min-conflicts heuristic]

3) Return failure

+ T +

+ + +

-

waw+n\>|—\

+
NN D
+

Application: 8-Queen

R4Why does it work ???

D[1) There are many goal states that are

Y well-distributed over the state space

2) If no solution has been found after a few
steps, it's better to start it all over again.
Building a search tree would be much less |
efficient because of the high branching
factor

|3) Running time almost independent of the

number of queens |
3 ; ; 2 ;

—

g9

Steepest Descent

1) S < initial state
2) Repeat:
a) S < arg minS'ESUCCESSORS(S){h(S')}
b) if GOAL?(S') return S
c) if h(S) <h(S) then S €« S’ else return failure

may easily get stuck in local minima
a Random restart (as in n-queen example)
a Monte Carlo descent

89

Monte Carlo Descent

1) S < initial state

2) Repeat k times:
a) If GOAL?(S) thenreturnS

b) S' < successor of S picked at random
c) if h(S)<h(S) thenS « &'
d) else

~ Ah = h(8)-h(5)

- with probability ~ exp(-Ah/T), where T is called the "temperature”,
do: S & S [Metropolis criterion]

3) Return failure

Simulated annealing lowers T over the k iterations.

It starts with a large T and slowly decreases T
90

"Parallel” Local Search Techniques

They perform several local searches
concurrently, but not independently:

= Beam search

= Genetic algorithms

See R&N, pages 115-119

91

Search problems

N

Blind search

S

Heuristic search:
best-first and A*

Construction of heuristics Variants of A* Local search

92

When to Use Search Techniques?

1) The search space is small, and

* No other technique is available, or

+ Developing a more efficient technique is not
worth the effort

2) The search space is large, and
* No other available technique is available, and
* There exist "good" heuristics

93

