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Blind (Uninformed) 
Search 

(Where we systematically explore 
alternatives)

R&N: Chap. 3, Sect. 3.3–5
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Simple Problem-Solving-Agent 
Agent Algorithm

1. s0 ← sense/read initial state

2. GOAL? ← select/read goal test
3. Succ ← read successor function
4. solution ← search(s0, GOAL?, Succ) 
5. perform(solution)
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Search Tree

Search treeState graph
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Search Tree

Search tree

Note that some states may 
be visited multiple times

State graph

Sunday, February 26, 12



4

Search Nodes and States
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Search Nodes and States
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If states are allowed to be revisited,
the search tree may be infinite even

when the state space is finite
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Data Structure of a Node

PARENT-NODE

1

2
3 4
5 6

7
8

STATE

Depth of a node N  
        = length of path from root to N 

(depth of the root = 0) 

BOOKKEEPING

5Path-Cost
5Depth
RightAction

Expanded yes
...

CHILDREN
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Open List (OL) of Search Tree

§ The OL is the set of all search nodes that 
haven’t been expanded yet 
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Search Strategy

§ The OL is the set of all search nodes that 
haven’t been expanded yet 

§ The OL is implemented as a priority queue
• INSERT(node, OL)

• REMOVE(OL)

§ The ordering of the nodes in OL defines the 
search strategy
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Search Algorithm #1
SEARCH#1

1. If GOAL?(initial-state) then return initial-state

2. INSERT(initial-node,OL)

3. Repeat:
a. If empty(OL) then return failure

b. N ← REMOVE(OL)

c. s ← STATE(N)
d. For every state s’ in SUCCESSORS(s)

i. Create a new node N’ as a child of N
ii. If GOAL?(s’) then return path or goal state
iii. INSERT(N’,OL)
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Performance Measures

§ Completeness
A search algorithm is complete if it finds a solution 
whenever one exists
[What about the case when no solution exists?]

§ Optimality
A search algorithm is optimal if it returns a 
minimum-cost path whenever a solution exists

§ Complexity
It measures the time and amount of memory 
required by the algorithm
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Blind vs. Heuristic Strategies

§ Blind (or un-informed) strategies do not 
exploit state descriptions to order OL. They 
only exploit the positions of the nodes in the 
search tree

§ Heuristic (or informed) strategies exploit 
state descriptions to order OL (the most 
“promising” nodes are placed at the beginning 
of OL)
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Example

Goal state

N1

N2

STATE

STATE

1

2

3 4

5 6

7

8

1 2 3

4 5

67 8
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4 5 6

7 8
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Example
For a blind strategy, N1 and N2 are 
just two nodes (at some position in 
the search tree)

Goal state

N1

N2

STATE

STATE

1

2

3 4

5 6

7

8

1 2 3

4 5

67 8

1 2 3

4 5 6

7 8
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Example
For a heuristic strategy counting the 
number of misplaced tiles,  N2 is more 
promising than N1

Goal state

N1

N2

STATE

STATE

1

2

3 4

5 6

7

8

1 2 3

4 5

67 8

1 2 3

4 5 6

7 8
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Remark

§ Some search problems, such as the (n2-1)-
puzzle, are NP-hard

§ One can’t expect to solve all instances of such 
problems in less than exponential time (in n) 

§ One may still strive to solve each instance as 
efficiently as possible 

This is the purpose of the search strategy

Sunday, February 26, 12
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Blind Strategies
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Blind Strategies

Arc cost = 1
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Blind Strategies

§ Breadth-first
• Bidirectional

Arc cost = 1
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Blind Strategies

§ Breadth-first
• Bidirectional

§ Depth-first
• Depth-limited 
• Iterative deepening

Arc cost = 1
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Blind Strategies

§ Breadth-first
• Bidirectional

§ Depth-first
• Depth-limited 
• Iterative deepening

§ Uniform-Cost
(variant of breadth-first) 

Arc cost = 1

Arc cost 
= c(action) ≥ ε > 0 

Sunday, February 26, 12
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Breadth-First Strategy

  New nodes are inserted at the end of OL

2 3

4 5

1

6 7
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Breadth-First Strategy

  New nodes are inserted at the end of OL

2 3

4 5

1

6 7

OL = (1)
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Breadth-First Strategy

  New nodes are inserted at the end of OL

2 3

4 5

1

6 7

OL = (1)
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Breadth-First Strategy

  New nodes are inserted at the end of OL

OL = (2, 3)2 3

4 5

1

6 7
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Breadth-First Strategy

  New nodes are inserted at the end of OL

OL = (2, 3)2 3

4 5

1

6 7
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Breadth-First Strategy

  New nodes are inserted at the end of OL

OL = (3, 4, 5)2 3

4 5

1

6 7
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Breadth-First Strategy

  New nodes are inserted at the end of OL

OL = (3, 4, 5)2 3

4 5

1

6 7
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Breadth-First Strategy

  New nodes are inserted at the end of OL

OL = (4, 5, 6, 7)2 3

4 5

1

6 7
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Important Parameters

1) Maximum number of successors of any state

→ branching factor b of the search tree

2) Minimal length (≠ cost) of a path between the 
initial and a goal state

→ depth d of the shallowest goal node in the
    search tree

Sunday, February 26, 12
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Evaluation

§ b: branching factor
§ d: depth of shallowest goal node
§ Breadth-first search is: 

• Complete? Not complete?
• Optimal? Not optimal?
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Evaluation
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Evaluation

§ b: branching factor
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Evaluation

§ b: branching factor
§ d: depth of shallowest goal node
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Evaluation

§ b: branching factor
§ d: depth of shallowest goal node
§ Breadth-first search is: 

• Complete
• Optimal if step cost is 1
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Evaluation

§ b: branching factor
§ d: depth of shallowest goal node
§ Breadth-first search is: 

• Complete
• Optimal if step cost is 1

§ Number of nodes generated:
	

 ??? 

Sunday, February 26, 12



25

Evaluation

§ b: branching factor
§ d: depth of shallowest goal node
§ Breadth-first search is: 

• Complete
• Optimal if step cost is 1

§ Number of nodes generated:
 1 + b + b2 + … + bd    =  ??? 
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Evaluation

§ b: branching factor
§ d: depth of shallowest goal node
§ Breadth-first search is: 

• Complete
• Optimal if step cost is 1

§ Number of nodes generated:
 1 + b + b2 + … + bd    =  (bd+1-1)/(b-1)  =  O(bd) 

§ → Time and space complexity is O(bd) 
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Big O Notation

   g(n) = O(f(n)) if there exist two positive 
constants a and N such that:

	

 for all n > N:    g(n) ≤ af(n)
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Time and Memory Requirements

d # Nodes Time Memory
2 111 .01 msec 11 Kbytes
4 11,111 1 msec 1 Mbyte
6 ~106 1 sec 100 Mb
8 ~108 100 sec 10 Gbytes
10 ~1010 2.8 hours 1 Tbyte
12 ~1012 11.6 days 100 Tbytes
14 ~1014 3.2 years 10,000 Tbytes

Assumptions: b = 10; 1,000,000 nodes/sec; 100bytes/node
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Time and Memory Requirements

d # Nodes Time Memory
2 111 .01 msec 11 Kbytes
4 11,111 1 msec 1 Mbyte
6 ~106 1 sec 100 Mb
8 ~108 100 sec 10 Gbytes
10 ~1010 2.8 hours 1 Tbyte
12 ~1012 11.6 days 100 Tbytes
14 ~1014 3.2 years 10,000 Tbytes

Assumptions: b = 10; 1,000,000 nodes/sec; 100bytes/node
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Remark
If a problem has no solution, breadth-first may run for 
ever (if the state space is infinite or states can be 
revisited arbitrary many times)
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Bidirectional Strategy
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Bidirectional Strategy

2 fringe queues: FRINGE1 and FRINGE2
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Bidirectional Strategy
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Bidirectional Strategy
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Bidirectional Strategy

2 fringe queues: FRINGE1 and FRINGE2
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Bidirectional Strategy

2 fringe queues: FRINGE1 and FRINGE2
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Bidirectional Strategy

2 fringe queues: FRINGE1 and FRINGE2

s
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Bidirectional Strategy

2 fringe queues: FRINGE1 and FRINGE2

s
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Bidirectional Strategy

2 fringe queues: FRINGE1 and FRINGE2

s

Time and space complexity is O(bd/2) << O(bd) 
if both trees have the same branching factor b
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Bidirectional Strategy

2 fringe queues: FRINGE1 and FRINGE2

s

Time and space complexity is O(bd/2) << O(bd) 
if both trees have the same branching factor b
Question: What happens if the branching factor 
is different in each direction?
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Depth-First Strategy

 New nodes are inserted at the front of OL

1

2 3

4 5

OL = (1)
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Depth-First Strategy

 New nodes are inserted at the front of OL

1

2 3

4 5

OL = (2, 3)
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Depth-First Strategy

 New nodes are inserted at the front of OL

1

2 3

4 5

OL = (4, 5, 3)
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Depth-First Strategy

 New nodes are inserted at the front of OL

1

2 3

4 5
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Depth-First Strategy

 New nodes are inserted at the front of OL
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Depth-First Strategy

 New nodes are inserted at the front of OL
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Depth-First Strategy

 New nodes are inserted at the front of OL
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Depth-First Strategy

 New nodes are inserted at the front of OL
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Depth-First Strategy

 New nodes are inserted at the front of OL
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Depth-First Strategy

 New nodes are inserted at the front of OL

1

2 3

4 5
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Depth-First Strategy

 New nodes are inserted at the front of OL

1

2 3

4 5
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Evaluation
§ b: branching factor
§ d: depth of shallowest goal node 
§ m: maximal depth of a leaf node
§ Depth-first search is:

§ Complete?
§ Optimal?
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Evaluation

Sunday, February 26, 12



44

Evaluation
§ b: branching factor
§ d: depth of shallowest goal node 
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Evaluation
§ b: branching factor
§ d: depth of shallowest goal node 
§ m: maximal depth of a leaf node
§ Depth-first search is:

§ Complete only for finite search tree
§ Not optimal
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Evaluation
§ b: branching factor
§ d: depth of shallowest goal node 
§ m: maximal depth of a leaf node
§ Depth-first search is:

§ Complete only for finite search tree
§ Not optimal

§ Number of nodes generated (worst case):
 1 + b + b2 + … + bm = O(bm) 
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Evaluation
§ b: branching factor
§ d: depth of shallowest goal node 
§ m: maximal depth of a leaf node
§ Depth-first search is:

§ Complete only for finite search tree
§ Not optimal

§ Number of nodes generated (worst case):
 1 + b + b2 + … + bm = O(bm) 

§ Time complexity is O(bm) 
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Depth-Limited Search

§ Depth-first with depth cutoff k (depth at 
which nodes are not expanded)

§ Three possible outcomes:
• Solution
• Failure (no solution)
• Cutoff (no solution within cutoff)
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Iterative Deepening Search

   Provides the best of both breadth-first and 
depth-first search

	

 Main idea: Totally horrifying !
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Iterative Deepening Search

   Provides the best of both breadth-first and 
depth-first search
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Iterative Deepening Search

   Provides the best of both breadth-first and 
depth-first search

	

 Main idea:

	

 IDS
	

 For k = 0, 1, 2, … do:
	

 	

 Perform depth-first search with 
	

 depth cutoff k
	

 	

 (i.e., only generate nodes with depth ≤ k)

Totally horrifying !
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Iterative Deepening
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Iterative Deepening
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Iterative Deepening
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Iterative Deepening
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Iterative Deepening
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Iterative Deepening
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Iterative Deepening

Sunday, February 26, 12



49

Iterative Deepening
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Iterative Deepening
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Iterative Deepening
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Iterative Deepening
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Iterative Deepening
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Iterative Deepening
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Iterative Deepening
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Performance

§ Iterative deepening search is:
• Complete
• Optimal if step cost =1

§ Time complexity is:
 (d+1)(1) + db + (d-1)b2 + … + (1) bd = O(bd)

§ Space complexity is: O(bd) or O(d)
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Calculation

db + (d-1)b2 + … + (1) bd

	

 = bd + 2bd-1 + 3bd-2 +… + db
	

 = (1 + 2b-1 + 3b-2 + … + db-d)×bd

	

 ≤ (Σi=1,…,∞ ib(1-i))×bd  =  bd (b/(b-1))2
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d = 5 and b = 2

BF ID
1 1 x 6 = 6
2 2 x 5 = 10
4 4 x 4 = 16
8 8 x 3 = 24
16 16 x 2 = 32
32 32 x 1 = 32
63 120 120/63 ~ 2

Number of Generated Nodes 
(Breadth-First & Iterative Deepening)
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Number of Generated Nodes 
(Breadth-First & Iterative Deepening)

d = 5 and b = 10

BF ID
1 6
10 50
100 400
1,000 3,000
10,000 20,000
100,000 100,000
111,111 123,456 123,456/111,111 ~ 1.111
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Comparison of Strategies

§ Breadth-first is complete and optimal, but has 
high space complexity

§ Depth-first is space efficient, but is neither 
complete, nor optimal

§ Iterative deepening is complete and optimal, 
with the same space complexity as depth-first 
and almost the same time complexity as 
breadth-first
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Revisited States
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Revisited States

8-queens

No
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Revisited States
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assembly 
planning

Few
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Revisited States

8-queens

No

assembly 
planning

Few

1 2 3
4 5

67 8

8-puzzle and robot navigation

Many

search tree is finite
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Revisited States

8-queens

No

assembly 
planning

Few

1 2 3
4 5

67 8

8-puzzle and robot navigation

Many

search tree is finite search tree is infinite
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Avoiding Revisited States

§  Requires comparing state descriptions 
§  Breadth-first search: 

• Store all states associated with generated nodes in 
CLOSED LIST (CL)

• If the state of a new node is in CL, then discard the 
node
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Avoiding Revisited States
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Avoiding Revisited States

§  Depth-first search: 
Solution 1:

– Store all generated states in CL
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Avoiding Revisited States

§  Depth-first search: 
Solution 1:

– Store all generated states in CL
– If the state of a new node is in CL, then discard the 

node
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Avoiding Revisited States

§  Depth-first search: 
Solution 1:

– Store all generated states in CL
– If the state of a new node is in CL, then discard the 

node
→ Same space complexity as breadth-first !
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Avoiding Revisited States

§  Depth-first search: 
Solution 1:

– Store all generated states in CL
– If the state of a new node is in CL, then discard the 

node
→ Same space complexity as breadth-first !
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Avoiding Revisited States

§  Depth-first search: 
Solution 1:

– Store all generated states in CL
– If the state of a new node is in CL, then discard the 

node
→ Same space complexity as breadth-first !

Solution 2:

Sunday, February 26, 12



59

Avoiding Revisited States

§  Depth-first search: 
Solution 1:

– Store all generated states in CL
– If the state of a new node is in CL, then discard the 

node
→ Same space complexity as breadth-first !

Solution 2:
– Store all states associated with nodes in current path in 

CL
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Avoiding Revisited States

§  Depth-first search: 
Solution 1:

– Store all generated states in CL
– If the state of a new node is in CL, then discard the 

node
→ Same space complexity as breadth-first !

Solution 2:
– Store all states associated with nodes in current path in 

CL
– If the state of a new node is in CL, then discard the 

node

Sunday, February 26, 12



59

Avoiding Revisited States

§  Depth-first search: 
Solution 1:

– Store all generated states in CL
– If the state of a new node is in CL, then discard the 

node
→ Same space complexity as breadth-first !

Solution 2:
– Store all states associated with nodes in current path in 

CL
– If the state of a new node is in CL, then discard the 

node
à Only avoids loops
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Avoiding Revisited States

§  Depth-first search: 
Solution 1:

– Store all generated states in CL
– If the state of a new node is in CL, then discard the 

node
→ Same space complexity as breadth-first !

Solution 2:
– Store all states associated with nodes in current path in 

CL
– If the state of a new node is in CL, then discard the 

node
à Only avoids loops

Sunday, February 26, 12



60

Uniform-Cost Search
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Uniform-Cost Search
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Uniform-Cost Search
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Uniform-Cost Search
§ Each arc has some cost c ≥ ε > 0
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Uniform-Cost Search
§ Each arc has some cost c ≥ ε > 0
§ The cost of the path to each node N is
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Uniform-Cost Search
§ Each arc has some cost c ≥ ε > 0
§ The cost of the path to each node N is
                   g(N) = Σ costs of arcs
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Uniform-Cost Search
§ Each arc has some cost c ≥ ε > 0
§ The cost of the path to each node N is
                   g(N) = Σ costs of arcs
§ The goal is to generate a solution path of minimal cost
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Uniform-Cost Search
§ Each arc has some cost c ≥ ε > 0
§ The cost of the path to each node N is
                   g(N) = Σ costs of arcs
§ The goal is to generate a solution path of minimal cost
§ The nodes N in the queue OL are sorted in 
   increasing g(N)
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Uniform-Cost Search
§ Each arc has some cost c ≥ ε > 0
§ The cost of the path to each node N is
                   g(N) = Σ costs of arcs
§ The goal is to generate a solution path of minimal cost
§ The nodes N in the queue OL are sorted in 
   increasing g(N)

§ Need to modify search algorithm
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Search Algorithm #2

SEARCH#2

1. INSERT(initial-node,OL)

2. Repeat:

a. If empty(OL) then return failure

b. N ← REMOVE(OL)
c. s ← STATE(N)

d. If GOAL?(s) then return path or goal state
e. For every state s’ in SUCCESSORS(s)

i. Create a new node N’ as a child of N 
ii. INSERT(N’,OL)

The goal test is applied
to a node when this node is
expanded, not when it is
generated.
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Avoiding Revisited States in 
Uniform-Cost Search

§ For any state S, when the first node N such that 
STATE(N) = S is expanded, the path to N is the best path 
from the initial state to S

N

N’
N”

g(N)  ≤  g(N’)
g(N)  ≤  g(N”)
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Avoiding Revisited States in 
Uniform-Cost Search

§ For any state S, when the first node N such that 
STATE(N) = S is expanded, the path to N is the best path 
from the initial state to S

§ So:
• When a node is expanded, store its state into CL 
• When a new node N is generated:

– If STATE(N) is in CL, discard N
– If there exits a node N’ in OL such that STATE(N’) = 

STATE(N), discard the node −− N or N’ −− with the 
highest-cost path
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