Epipolar Geometry and its application for the construction of state-of-the-art sensors.

Karel Zimmermann

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics
Center for Machine Perception

http://cmp.felk.cvut.cz/~zimmerk, zimmerk@fel.cvut.cz

 You are given two images of an object captured by two cameras P and Q from different view-points.

Given pair of corresponding pixels (\mathbf{u}, \mathbf{v}) (i.e. pixels corresponding to the same unknown 3D point \mathbf{X} on the object), you can easily compute \mathbf{X} .

• Given pair of corresponding pixels (\mathbf{u}, \mathbf{v}) (i.e. pixels corresponding to the same unknown 3D point \mathbf{X} on the object), you can easily compute \mathbf{X} .

lacktriangle The only problem is, that you do not have the correspondence (\mathbf{u}, \mathbf{v}) and naïve matching of pixel neighbourhoods does not work.

- ♦ This lesson is about
 - how to get 3D points from images captured by known cameras and
 - how to use this knowledge to built state-of-the-art depth sensors.

Outline

- Epipolar geometry
 - Epipolar line, essential and fundamental matrix
 - ullet L_2 estimation of the essential matrix
- Depth sensors: Stereo, Kinect and RealSense
- Depth from a single camera and the robust estimation of the essential matrix (RANSAC).

m

Projection of the 3D point to a single camera

- You are given 3×4 camera matrix $\mathbf{P}=\begin{bmatrix} \mathbf{p}_1^\top\\ \mathbf{p}_2^\top\\ \mathbf{p}_3^\top \end{bmatrix}$
- lacktriangle 3D point with homogeneous coordinates X projects on pixel $\bf u$

Projection of the 3D point to a single camera

- You are given 3×4 camera matrix $\mathbf{P} = \begin{bmatrix} \mathbf{p}_1^\top \\ \mathbf{p}_2^\top \\ \mathbf{p}_3^\top \end{bmatrix}$
- lacktriangle 3D point with homogeneous coordinates ${f X}$ projects on pixel ${f u}$

$$u_1 = \frac{\mathbf{p}_1^{\top} \mathbf{X}}{\mathbf{p}_3^{\top} \mathbf{X}}, \quad u_2 = \frac{\mathbf{p}_2^{\top} \mathbf{X}}{\mathbf{p}_3^{\top} \mathbf{X}}$$

Projection of the 3D point to a single camera

lacktriangle What if ${f u}$ is known? Which ${f X}$ correspond to ${f u}$?

m p

Projection of the 3D point to a single camera

10/58

- lacktriangle What if ${f u}$ is known? Which ${f X}$ correspond to ${f u}$?
- ◆ All 3D points corresponding to pixel **u** lies in 1D linear subspace (ray) of 3D space (2 linear equations with 3 unknowns):

$$\begin{array}{c}
u_1 \mathbf{p}_3^{\top} \mathbf{X} = \mathbf{p}_1^{\top} \mathbf{X}, \\
u_2 \mathbf{p}_3^{\top} \mathbf{X} = \mathbf{p}_2^{\top} \mathbf{X}
\end{array} \Rightarrow \begin{bmatrix}
u_1 \mathbf{p}_3^{\top} - \mathbf{p}_1^{\top} \\
u_2 \mathbf{p}_3^{\top} - \mathbf{p}_2^{\top}
\end{bmatrix} \begin{vmatrix} x \\ y \\ z \\ 1 \end{vmatrix} = \mathbf{0}$$

Fundamental matrix

ullet Projection of the ray from ${f u}$ into a second camera is called epipolar line

$$\{\mathbf{v} \mid \mathbf{u}^{\mathsf{T}} \mathbf{F} \mathbf{v} = 0\},$$

lacktriangle where matrix $F = K^{\top}(R \times t)K$ is called fundamental matrix.

Essential matrix

• We assume that K is known (i.e. the camera is calibrated).

12/58

Essential matrix

- We assume that K is known (i.e. the camera is calibrated).
- We normalize coordinates $\mathbf{u_n} = K^{-1}\mathbf{u}$, $\mathbf{v_n} = K^{-1}\mathbf{v}$ and pretend that K is identity.

Essential matrix

- We assume that K is known (i.e. the camera is calibrated).
- We normalize coordinates $\mathbf{u_n} = K^{-1}\mathbf{u}$, $\mathbf{v_n} = K^{-1}\mathbf{v}$ and pretend that K is identity.
- Epipolar line wrt normalized coordinates is $\{\mathbf{v_n} \mid \mathbf{u_n}^{\top} \mathbf{E} \mathbf{v_n} = 0\}$, where matrix $\mathbf{E} = \mathbf{R} \times \mathbf{t}$ is called essential matrix.

What is the essential matrix good for?

Important result 1:

- If camera motion is known (e.g. stereo), then
- all possible correspondences of point \mathbf{u} lie on the epipolar line (i.e. either $\{\mathbf{v} \mid \mathbf{u}^{\top} \mathbf{F} \mathbf{v} = 0\}$ or $\{\mathbf{v_n} \mid \mathbf{u_n}^{\top} \mathbf{E} \mathbf{v_n} = 0\}$).

Important result 1:

- If camera motion is known (e.g. stereo), then
- all possible correspondences of point \mathbf{u} lie on the epipolar line (i.e. either $\{\mathbf{v} \mid \mathbf{u}^{\top} \mathbf{F} \mathbf{v} = 0\}$ or $\{\mathbf{v_n} \mid \mathbf{u_n}^{\top} \mathbf{E} \mathbf{v_n} = 0\}$).

Important result 2:

- If camera motion is unknown (e.g. motion of a single camera), then
- the essential matrix determines relative position of cameras (i.e. motion), since there exist unique decomposition $E=R\times t$.

What is the essential matrix good for?

Important result 1:

- If camera motion is known (e.g. stereo), then
- all possible correspondences of point \mathbf{u} lie on the epipolar line (i.e. either $\{\mathbf{v} \mid \mathbf{u}^{\top} \mathbf{F} \mathbf{v} = 0\}$ or $\{\mathbf{v_n} \mid \mathbf{u_n}^{\top} \mathbf{E} \mathbf{v_n} = 0\}$).

Important result 2:

- If camera motion is unknown (e.g. motion of a single camera), then
- the essential matrix determines relative position of cameras (i.e. motion), since there exist unique decomposition $E=R\times {f t}$.
- lacktriangle From now on, we drop the index n in normalized coordinates.
- How do we obtain the essential/fundamental matrix?

14/58

Let us assume that we have several correct correspondences.

- Let us assume that we have several correct correspondences.
- Essential matrix E is just a solution of (overdetermined) homogeneous system of linear equations.

14/58

- Let us assume that we have several correct correspondences.
- Essential matrix E is just a solution of (overdetermined) homogeneous system of linear equations.
- \bullet For each correspondence pair \mathbf{u}, \mathbf{v} , the following holds:

$$\mathbf{u}^{\top} \mathbf{E} \, \mathbf{v} = \mathbf{u}^{\top} \begin{bmatrix} \mathbf{e}_{1}^{\top} \\ \mathbf{e}_{2}^{\top} \\ \mathbf{e}_{3}^{\top} \end{bmatrix} \, \mathbf{v} = \mathbf{u}^{\top} \begin{bmatrix} \mathbf{e}_{1}^{\top} \mathbf{v} \\ \mathbf{e}_{2}^{\top} \mathbf{v} \\ \mathbf{e}_{3}^{\top} \mathbf{v} \end{bmatrix} = [u_{1} \mathbf{e}_{1}^{\top} \mathbf{v} + u_{2} \mathbf{e}_{2}^{\top} \mathbf{v} + u_{3} \mathbf{e}_{3}^{\top} \mathbf{v}] =$$

14/58

- Let us assume that we have several correct correspondences.
- Essential matrix E is just a solution of (overdetermined) homogeneous system of linear equations.
- \bullet For each correspondence pair \mathbf{u}, \mathbf{v} , the following holds:

$$\mathbf{u}^{\top} \mathbf{E} \, \mathbf{v} = \mathbf{u}^{\top} \begin{bmatrix} \mathbf{e}_{1}^{\top} \\ \mathbf{e}_{2}^{\top} \\ \mathbf{e}_{3}^{\top} \end{bmatrix} \, \mathbf{v} = \mathbf{u}^{\top} \begin{bmatrix} \mathbf{e}_{1}^{\top} \mathbf{v} \\ \mathbf{e}_{2}^{\top} \mathbf{v} \\ \mathbf{e}_{3}^{\top} \mathbf{v} \end{bmatrix} = [u_{1} \mathbf{e}_{1}^{\top} \mathbf{v} + u_{2} \mathbf{e}_{2}^{\top} \mathbf{v} + u_{3} \mathbf{e}_{3}^{\top} \mathbf{v}] =$$

$$= [u_1 \mathbf{v}^\top u_2 \mathbf{v}^\top u_3 \mathbf{v}^\top] \begin{bmatrix} \mathbf{e}_1 \\ \mathbf{e}_2 \\ \mathbf{e}_3 \end{bmatrix} = 0$$

lack It must hold for all correspondece pairs \mathbf{u}_i , \mathbf{v}_i , therefore:

$$\begin{bmatrix} u_{11}\mathbf{v}_1^\top & u_{12}\mathbf{v}_1^\top & u_{13}\mathbf{v}_1^\top \\ u_{21}\mathbf{v}_2^\top & u_{22}\mathbf{v}_2^\top & u_{23}\mathbf{v}_2^\top \end{bmatrix} \begin{bmatrix} \mathbf{e}_1 \\ \mathbf{e}_2 \\ \mathbf{e}_3 \end{bmatrix} = \mathbf{0}$$

$$\vdots \vdots$$

It is just homogeneous set of linear equations:

- We want to avoid trivial solution $e_1 = e_2 = e_3 = 0$,
- therefore the following optimization task (constrained LSQ) is solved:

$$\operatorname{arg\,min}_{\mathbf{e}} \|\mathbf{Ae}\| \text{ subject to } \|\mathbf{e}\| = 1$$

• the solution is singular vector of matrix A corresponding to the smallest singular value (can be found via SVD or eigenvectors/eigenvalues of AA^{\top})

16/58

 The same is valid for the estimation of the fundamental matrix from not normalized coordinates.

 The same is valid for the estimation of the fundamental matrix from not normalized coordinates.

• L_2 -norm works only in a controlled environment (e.g. offline stereo calibration).

16/58

16/58

- The same is valid for the estimation of the fundamental matrix from not normalized coordinates.
- L_2 -norm works only in a controlled environment (e.g. offline stereo calibration).
- ◆ I will show how essential/fundamental matrix allows to estimate correspondences in state-of-the-art depth (3D) sensors.

- Pair of cameras mounted on a rigid body, which provides depth (3D points)
 of the scene (simulates human binocular vision).
- Relative position of cameras fixed

⁰Courtesy of prof.Boris Flach for original stereo images and depth images

- Pair of cameras mounted on a rigid body, which provides depth (3D points) of the scene (simulates human binocular vision).
- Relative position of cameras fixed
- offline: fundamental matrix estimated from known correspondences.

⁰Courtesy of prof.Boris Flach for original stereo images and depth images

- Pair of cameras mounted on a rigid body, which provides depth (3D points) of the scene (simulates human binocular vision).
- Relative position of cameras fixed
- offline: fundamental matrix estimated from known correspondences.
- online: correspondences searched along epipolar lines.

⁰Courtesy of prof.Boris Flach for original stereo images and depth images

Block-matching energy function: $E(u) = \sum_{x \in W} (I_L(x) - I_R(x+u))^2$

Block-matching energy function: $E(u) = \sum_{x \in W} (I_L(x) - I_R(x+u))^2$

20/58

Block-matching energy function: $E(u) = \sum_{x \in W} (I_L(x) - I_R(x+u))^2$

Correspondence for each pixel estimated separately: $u^* = \arg\min_u E(u)$

Correspondence for each pixel estimated separately: $u^* = \arg\min_u E(u)$

How can we improve the result?

Energy with horizontal smoothness term: $E(u_1, u_2) = E(u_2) + C \cdot (u_2 - u_1)^2$

Dynamic programming solves each line of N pixels separately:

$$U^* = \arg\min_{U \in \mathcal{R}^{\mathcal{N}}} \sum_{i=1}^{N-1} E(u_i, u_{i+1})$$

Image

Block matching

Dynamic programming

Stereo

What else can we do?

Image

Block matching

Dynamic programming

Stereo

Enforce also vertical smoothness \Rightarrow graph energy minimization (computationally demanding optimization solved on specialized chips).

Block matching

Dynamic programming

(Min,+) solution

Enforce also vertical smoothness \Rightarrow graph energy minimization (computationally demanding optimization solved on specialized chips).

Limitation: usually works only on sufficiently rich patterns and sufficiently smooth depths.

Stereo competition

- Do you have your own idea how to estimate the depth from stereo images?
- http://vision/middlebury.edu/stereo/data/2014/

- Stereo looks at the same object two-times and estimates the correspondence from two passive RGB images.
- Kinect avoids ambiguity by actively projecting a unique IR pattern on the surface and search for its known appearance in the IR camera.

30/58

 Since camera-projector relative position is known, correspondence between projected pixel and observed pixel lies again on epipolar lines.

- Unique IR speckle-pattern: no two sub-windows with the same pattern
- Energy along epipolar line has only one strong minimum.
- ♦ Kinect fusion: http://research.microsoft.com/en-us/projects/surfacerecon/
- Limitation: works only indoor.

RealSense

- Hybrid approach one IR projector and two IR cameras.
- Combines advantages of stereo and structured light approach. So far best solution for robotics.

Depth from a single camera

m p

◆ Is it possible to get the 3D points from a single camera?

Depth from a single camera

- Is it possible to get the 3D points from a single camera?
- Theoretically yes (if scene is static and the camera moves around sufficiently).

Depth from a single camera

- Is it possible to get the 3D points from a single camera?
- Theoretically yes (if scene is static and the camera moves around sufficiently).
- We have also two cameras. Main difference is that they have been captured in different times and the relative motion (i.e. epipolar geometry) is unknown.

- Is it possible to get the 3D points from a single camera?
- Theoretically yes (if scene is static and the camera moves around sufficiently).
- We have also two cameras. Main difference is that they have been captured in different times and the relative motion (i.e. epipolar geometry) is unknown.
- The second part of this lecture is about how to estimate online both the relative motion of the camera and the 3D model of the world from captured images.

- Is it possible to get the 3D points from a single camera?
- Theoretically yes (if scene is static and the camera moves around sufficiently).
- We have also two cameras. Main difference is that they have been captured in different times and the relative motion (i.e. epipolar geometry) is unknown.
- The second part of this lecture is about how to estimate online both the relative motion of the camera and the 3D model of the world from captured images.
- We assume, that at least the camera intrinsic parameters K has been calibrated offline.

- 1. Get image I_k .
- 2. Estimate tentative correspondences between I_{k-1} and I_k .
- 3. Find correct correspondences and robustly estimate essential matrix E
- 4. Decompose E into R_k and t_k .
- 5. Compute 3D model (points X).
- 6. Rescale t_k according to relative scale r.
- 7. k = k + 1

m p
35/58

Which points are suitable?

Feature points must be well distinguishable from its neighbourhood.

$$E(u,v) = \sum_{x,y} \left(I(x+u,y+v) - I(x,y) \right)^2 \approx \left[u \ v \right] \, \mathbf{M} \, \begin{bmatrix} u \\ v \end{bmatrix}$$

 λ_1 and λ_2 are large

Feature points must be well distinguishable from its neighbourhood.

$$E(u,v) = \sum_{x,y} \left(I(x+u,y+v) - I(x,y) \right)^2 \approx \left[u \ v \right] \, \mathbf{M} \, \begin{bmatrix} u \\ v \end{bmatrix}$$

large λ_1 , small λ_2

Feature points must be well distinguishable from its neighbourhood.

$$E(u,v) = \sum_{x,y} \left(I(x+u,y+v) - I(x,y) \right)^2 \approx \left[u \ v \right] \, \mathbf{M} \, \begin{bmatrix} u \\ v \end{bmatrix}$$

small λ_1 , small λ_2

Estimate tentative correspondences

- 39/58
- Estimate tentative correspondences by matching pixel neighbourhoods.
- Matching pixels: Tracking for high temporal resolution
 OpenCV Lucas-Kanade tracker
- Matching invariant descriptors: Detection for high spatial resolution
 OpenCV: SIFT, SURF etc ...

- 1. Get image I_k .
- 2. Estimate tentative correspondences between I_{k-1} and I_k .
- 3. Find correct correspondences and robustly estimate essential matrix E
- 4. Decompose E into R_k and t_k .
- 5. Compute 3D model (points X).
- 6. Rescale t_k according to relative scale r.
- 7. k = k + 1

Estimate essential matrix

- most of the tentative correspondences is incorrect,
- \bullet L₂-norm is very sensitive to such incorrect correspondence (i.e. ouliers).
- lacktriangle Direct minimization of the L_2 -norm, yields poor essential matrix

$$\mathbf{e}^* = \arg\min_{\mathbf{e}} \|\mathbf{A}\mathbf{e}\|$$
s.t. $\|\mathbf{e}\| = 1$

Estimate essential matrix by minimizing box-penalty function

42/58

- We will use outlier-insensitive estimation which will find both:
 - the correct essential matrix and
 - the set of correct correspondences (i.e. inliers).

Estimate essential matrix by minimizing box-penalty function

43/58

lacktriangle What makes the L_2 -norm outlier-sensitive?

Estimate essential matrix by minimizing box-penalty function

43/58

- lacktriangle What makes the L_2 -norm outlier-sensitive?
- $lacktriangle L_2$ -norm:

$$\arg\min_{\mathbf{e}} \|\mathbf{Ae}\|$$

s.t. $\|\mathbf{e}\| = 1$

m p

43/58

Estimate essential matrix by minimizing box-penalty function

- lacktriangle What makes the L_2 -norm outlier-sensitive?
- lacktriangle L_2 -norm:

$$\arg\min_{\mathbf{e}} \|\mathbf{Ae}\|$$

s.t. $\|\mathbf{e}\| = 1$

Box-penalty:

$$\arg\min_{\mathbf{e}} 1 - \rho(\mathbf{A}\mathbf{e})$$

s.t. $\|\mathbf{e}\| = 1$

RANSAC algorithm

• We solve the following not-convex and not-differentiable optimization task:

$$\arg\min_{\mathbf{e}} \ 1 - \rho(\mathbf{A}\mathbf{e}) = \arg\max_{\mathbf{e}} \ \rho(\mathbf{A}\mathbf{e})$$
 s.t. $\|\mathbf{e}\| = 1$ s.t. $\|\mathbf{e}\| = 1$

RANSAC algorithm

• We solve the following not-convex and not-differentiable optimization task:

$$\arg\min_{\mathbf{e}} 1 - \rho(\mathbf{A}\mathbf{e}) = \arg\max_{\mathbf{e}} \rho(\mathbf{A}\mathbf{e})$$

s.t. $\|\mathbf{e}\| = 1$ s.t. $\|\mathbf{e}\| = 1$

- RANSAC (RAndom SAmple Consensus) algorithm:
 - 1. Randomly choose minimal subset of equations (rows) B from A.
 - 2. Solve constrained LSQ problem by SVD decomposition:

$$\mathbf{e}^* = \arg\min_{\mathbf{e}} \|\mathbf{B}\mathbf{e}\|$$

s.t. $\|\mathbf{e}\| = 1$

- 3. Estimate $\rho(\mathbf{A}\mathbf{e}^*)$ as the number of rows \mathbf{a}_i^{\top} of A which satisfy $|\mathbf{a}_i^{\top}\mathbf{e}^*| < \epsilon$.
- 4. If $\rho_{\max} > \rho(\mathbf{e}^*)$ then $\rho_{\max} = \rho(\mathbf{e}^*)$ and $\mathbf{e}_{\max} = \mathbf{e}^*$.
- 5. Repeat from 1 until the optimum is found with sufficient probability.

- Important result 3: Let us denote
 - ullet $N \dots$ number of data points.
 - w . . . fraction of inliers.
 - s... size of the sample
 - K... number of trials.
 - ullet $p \dots$ probability to select uncontamined samples at least once
- then

$$K = \frac{\log(1-p)}{\log(1-w^s)}$$

RANSAC properties

- Important result 3: Let us denote
 - N... number of data points.
 - w . . . fraction of inliers.
 - s... size of the sample
 - \bullet $K \dots$ number of trials.
 - ullet $p \dots$ probability to select uncontamined samples at least once
- then

$$K = \frac{\log(1-p)}{\log(1-w^s)}$$

- We search for 8 unknows $(\dim(\mathbf{e}) = 9 \text{ minus scale}) \Rightarrow \text{ at least } 8$ correspondences needed $\Rightarrow s = 8 \Rightarrow K$ grows fast with s.
- However you want to find only camera translation (3 DoFs) and rotation (3 DoFs) minus scale \Rightarrow 5-point algorithm [Nister 2003].

- 1. Get image I_k .
- 2. Estimate tentative correspondences between I_{k-1} and I_k .
- 3. Find correct correspondences and compute essential matrix E.
- 4. Decompose E into R_k and t_k .
- 5. Compute 3D model (points X).
- 6. Rescale t_k according to relative scale r.
- 7. k = k + 1

Decompose E into R and t

Once you find E, you can estimate camera motion by SVD ($E = U\Sigma V^{\top}$) as follows: $[\mathbf{t}]_{\times} = VW\Sigma V^{\top}$, $R = UW^{-1}V^{\top}$, but !!!:

47/58

Decompose E into R and t

47/58

- Once you find E, you can estimate camera motion by SVD (E = $U\Sigma V^{\top}$) as follows: $[\mathbf{t}]_{\times} = VW\Sigma V^{\top}$, $R = UW^{-1}V^{\top}$, **but !!!**:
- Scale r is unknown (if $\|\mathbf{A} \cdot \mathbf{e}^*\| \approx 0$, then $\|\mathbf{A} \cdot (r\mathbf{e}^*)\| \approx 0$).

Decompose E into R and t

- Once you find E, you can estimate camera motion by SVD (E = $U\Sigma V^{\top}$) as follows: $[\mathbf{t}]_{\times} = VW\Sigma V^{\top}$, $R = UW^{-1}V^{\top}$, **but !!!**:
- Scale r is unknown (if $\|\mathbf{A} \cdot \mathbf{e}^*\| \approx 0$, then $\|\mathbf{A} \cdot (r\mathbf{e}^*)\| \approx 0$).

- 1. Get image I_k .
- 2. Estimate tentative correspondences between I_{k-1} and I_k (either feature matching or tracking).
- 3. Find correct correspondences and compute essential matrix E.
- 4. Decompose E into R_k and t_k .
- 5. Compute 3D model (points X).
- 6. Rescale t_k according to relative scale r.
- 7. k = k + 1

Compute 3D model

- lacktriangle Scene point X is observed by two cameras P and Q.
- Let $\mathbf{u} = [u_1 \ u_2]^{\top}$ and $\mathbf{v} = [v_1 \ v_2]^{\top}$ are projections of X in P and Q,
- then

$$u_1 = \frac{\mathbf{p}_1^{\mathsf{T}} \mathbf{X}}{\mathbf{p}_3^{\mathsf{T}} \mathbf{X}} \Rightarrow u_1 \mathbf{p}_3^{\mathsf{T}} \mathbf{X} - \mathbf{p}_1^{\mathsf{T}} \mathbf{X} = 0$$

51/58

- lacktriangle Scene point X is observed by two cameras P and Q.
- Let $\mathbf{u} = [u_1 \ u_2]^{\top}$ and $\mathbf{v} = [v_1 \ v_2]^{\top}$ be a correspondence pair (i.e. projections of X in P and Q).
- Then

$$u_1 = \frac{\mathbf{p}_1^{\mathsf{T}} \mathbf{X}}{\mathbf{p}_3^{\mathsf{T}} \mathbf{X}} \Rightarrow u_1 \mathbf{p}_3^{\mathsf{T}} \mathbf{X} - \mathbf{p}_1^{\mathsf{T}} \mathbf{X} = 0$$

and similarly ...

$$u_2 = \frac{\mathbf{p}_2^{\top} \mathbf{X}}{\mathbf{p}_3^{\top} \mathbf{X}} \Rightarrow u_2 \mathbf{p}_3^{\top} \mathbf{X} - \mathbf{p}_2^{\top} \mathbf{X} = 0$$

$$v_1 = \frac{\mathbf{q}_1^{\top} \mathbf{X}}{\mathbf{q}_3^{\top} \mathbf{X}} \Rightarrow v_1 \mathbf{q}_3^{\top} \mathbf{X} - \mathbf{q}_1^{\top} \mathbf{X} = 0$$

$$v_2 = \frac{\mathbf{q}_2^{\top} \mathbf{X}}{\mathbf{q}_2^{\top} \mathbf{X}} \Rightarrow v_2 \mathbf{q}_3^{\top} \mathbf{X} - \mathbf{q}_2^{\top} \mathbf{X} = 0$$

Compute 3D model

lacktriangle Which is 4×4 homogeneous system of linear equations:

$$\begin{bmatrix} u_1 \mathbf{p}_3^\top - \mathbf{p}_1^\top \\ u_2 \mathbf{p}_3^\top - \mathbf{p}_2^\top \\ v_1 \mathbf{q}_3^\top - \mathbf{q}_1^\top \\ v_2 \mathbf{q}_3^\top - \mathbf{q}_2^\top \end{bmatrix} \mathbf{X} = \mathbf{0}$$

- 1. Get image I_k .
- 2. Compute correspondences between I_{k-1} and I_k (either feature matching or tracking).
- 3. Find correct correspondences and compute essential matrix E.
- 4. Decompose E into R_k and t_k .
- 5. Compute 3D model (points X).
- 6. Rescale t_k according to relative scale r.
- 7. k = k + 1

Estimating camera motion - relative scale

1. You cannot get absolute scale (without a calibration object).

Estimating camera motion - relative scale

- 1. You cannot get absolute scale (without a calibration object).
- 2. If you estimate motion (and 3D model) from C_1, C_2

Estimating camera motion - relative scale

- 1. You cannot get absolute scale (without calibration object).
- 2. If you estimate motion (and 3D model) from C_1, C_2 and then from C_2, C_3 you can have completely different scale.

m

56/58

Estimating camera motion - relative scale

- 1. You cannot get absolute scale (without calibration object).
- 2. If you estimate motion (and 3D model) from C_1, C_2 and then from C_2, C_3 you can have completely different scale.
- 3. You want to keep the same relative scale r by rescaling t (and 3D)

$$r = \frac{d_k}{d_{k-1}} = \frac{\|X_k - Y_k\|}{\|X_{k-1} - Y_{k-1}\|}$$

What we did not speak about.

- 57/58
- Result is usually improved by gradient descent of the reprojection error (bundle adjustment).
- Error accumulates over time \Rightarrow drift \Rightarrow loop-closure needed.
- Avoid motion estimation for small motions or pure rotation (keyframe detection)
- Single camera is usually fused with IMU (e.g. Google project Tango).
- Many papers about clever similarity measure for tentative correspondences.

Before loop closing

After loop closing