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® States: x € X

¢ Actions: u € U
¢ Transition probability: p(x'|x,u) : X x U x X — [0; 1]
¢ Reward: r(x,u,x’) : X xU x X - R
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® States: x € X

¢ Actions: u € U

¢ Transition probability: p(x'|x,u) : X x U x X — [0; 1]
¢ Reward: r(x,u,x’) : X xU x X - R

¢ Policy: mg(x) : X — U
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¢ Trajectory is sequence of visited states and performed actions:
T — (Xo, Up, Xi,U1, X9,... )
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¢ Trajectory is sequence of visited states and performed actions:
T — (Xo, Up, Xi,U1, X9,... )

©® Sum of rewards with limited horizont:

® Sum of discounted rewards:

r(r) = ZVi -7 (X4, Wy, Xg1)
i=0
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¢ Many different robots with various complexity of dynamics and
dimensionality of state-action space:

e triple pendulum,
e two-arm manipulator,

e mobile platform with auxiliary articulated sub-tracks and lockable
differential.
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Different problems

® Find the shortest collision-free trajectory in configuration space from start

state(s) x to goal state(s) x, which respect dynamic constraints of the
robot (e.g. Dijkstra, A*, RRT, PRM, LQR-trees or Guided Policy Search)
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Planning vs motion control
Planning requires transition probability, policy is sequence of actions.

Motion control can use but does not necessarily requires transition
probability, it learns policy function.

Lecture plan:
1. Path planning via Rapidly Exploring Random Trees (RRT).

2. Reinforcement learning for robotics (with and without motion model).
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¢ Open Motion Planning Library: http://wiki.ros.org/ompl
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Open Motion Planning Library: http://wiki.ros.org/ompl

The most direct approach to planning is to search: Depth-first search,
Breadth-first search, A*, Dijkstra

Real robots usually operate in a continuous space.

Search in continuous high-dimensional space can get stuck in a local
minimum, since you can expand infinite number of nodes in a small region.

RRT [1] efficiently search non-convex, high-dimensional spaces by randomly
building a space-filling tree.

Initial publication [1] has over 1200 citations.

[1] LaValle, Steven M. (October 1998). "Rapidly-exploring random trees: A new
tool for path planning". Technical Report (Computer Science Department, lowa

State University) (TR 98-11).
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Input: x,, x,
1. Initialize search tree by node x
Pick a point x € X at random.
Check if x is admissible (e.g. collision-free via direct kinematics)

Find the closest node to x (e.g. KD tree) y* = arg miny, ||y — x|

o &~ W b

Try connect y* with x
@ if possible: add node x and edge [y, x| to the search tree.

¢ otherwise: throw x away.

6. Repeat from 2 until a feasible path is found.

Output: a collision-free path if exist (after infinite number of nodes expanded)
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¢ Bias to goal (greediness), e.g.

e with P = 0.95 choose x at random from X,

e with 7 = 0.05 choose x := x,,.
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¢ Bias to goal (greediness), e.g.
e with P = 0.95 choose x at random from X,

e with 7 = 0.05 choose x := x,,.

¢ Bi-directional search (e.g. RRT-connect)
¢ If optimality is important:

e informed-RRT [3]

o RRT* [2]

[2] Karaman, Sertac; Frazzoli, Emilio, "Incremental Sampling-based Algorithms
for Optimal Motion Planning", 2010

[3] J.D. Gammell, S.S. Srinivasa, T.D. Barfoot, "Informed RRT*", IROS, 2014
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¢ What might be time consuming?
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e Collision checker (grow with the number of modeling elements).

e Complicated dynamics (explicit motion model might not exist).
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Properties of Rapidly Exploring Random Tree

¢ What might be time consuming?
e Nearest neighbor search (grows with the size of the search tree).
e Collision checker (grow with the number of modeling elements).

e Complicated dynamics (explicit motion model might not exist).

® Voronoi bias: the search tree has bias to grow in large open regions.

Probabilistic completeness: if nodes number reaches infinity than RRT finds
a feasible path (if exists) with P = 1.

¢ Cost of the best path in the RRT converges almost surely (i.e. with P = 1)
to a non-optimal value [2].

¢ Cost of the best path in the RRT* converges almost surely (i.e. with P = 1)
to the optimal value [2].

@ If accurate dynamic motion model is known (X, X relations are determined),

then RRT searches for trajectory in lifted state-space [x, %, ¥|'.
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Smooth path interpolation
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Y(t)

@ If only kinematic model is available, discrete path is searched (i.e. N points
yvo € X,...yn_1 € X in configuration space).

¢ Trajectory is defined as a smooth interpolation of path

¢ Example of smooth interpolation is pair-wise cubic function Y, i.e sequence
of N — 1 cubic functions Y; (%) : |0, 1] — X such that:

e Y;(t) connects y; with y;. 1.

e Y has continuous first and second derivatives.
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1. Advantage: It has statistical guarantees of the optimality.

2. Drawback 1: Whenever results of action differs from the model (i.e.
everytime), you need to replan the whole trajectory.

3. Drawback 2: Accurate motion model is required.

For some problems, reinforcement learning trades-off optimality (1) for (2)-+(3).
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¢ Can you design a motion control algorithm without motion model?
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©® We have a robot and we have no idea how to control it.
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Problem definition

©® We have a robot and we have no idea how to control it.

Nevertheless, we know what is good and bad state - we have a definition of
rewards.

We control it somehow (e.g. with some initial policy) and record the
trajectory 7 (or several trajectories).

Given these trajectories, change the policy to increase expected sum of
rewards

J(0) = Exr(7)}
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Problem definition

¢ Denote p(7]6) probability of trajectory 7 occurs when following policy 7y
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J(0) = E{r(r)} = / p(r]0)r(r) dr

TET
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¢ Denote p(7]6) probability of trajectory 7 occurs when following policy 7y

¢ Criterion to be maximized is the expected sum of rewards

J(0) = E{r(r)} = / p(r]0)r(r) dr

TET

® We solve the following optimization problem

0" = arg max J(0)
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Problem solution

¢ As usually, you can:

e cither solve primal task e.g. by following gradient V.J to maximize
J(0) directly.

- primal is often solved in the optimal control community (e.g. LQR),

e or solve dual task to find state-action function Q)(x,u) : X x U — R
which tells expected sum rewards when choosing action u from state x.

- optimal policy 7* = arg max, Q(x, u)

- dual is often employed by Al community as heuristics for state-space
search

- Q-values could provide metrics for RRT [Tedrake-LQR-trees-2015]

Dual task provides alternative point-of-view (e.g. shadow prices in LP or
sparse feature selection for SVM)
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¢ Use mmp(x) to get several trajectories 7;.
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¢ Approximate criterion value in 0 as average reward of trajectories
7; ~ p(7|0) generated with policy 7y

1O =B} = [ slrirmar= 53 rin
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¢ Use 7mp(x) to get several trajectories 7;.

¢ Approximate criterion value in 0 as average reward of trajectories
7; ~ p(7|0) generated with policy 7y

1O =B} = [ slrirmar= 53 rin

TET

® We can approximate criterion value, what about gradient?
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¢ Can we obtain the gradient by computing also J(6 + A6)?
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dimensional 6).
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Primal task - approximating gradient

¢ Can we obtain the gradient by computing also J(6 + A6)?

¢ Of course, but doing it from one sample is quite unstable (especially for high
dimensional 6).

¢ Perform several small random perturbations Af; and compute J (6 + A#;).

¢ Relation to gradient V.J(€) is given by the first order Taylor polynom

JO+AG) = J(O)+ VIO AY;
ADVI) = J(H) J(0 + AG,)

AG] J(6) J(6+ Af))
: VJ(@) —
AH,,I J(0) — J(H + A6,))

e — 4 N —4
TV TV

matrix A vector b
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¢ Gradient is solution of overdetermined set of linear equations:

AT [J06) = J(0+ 26y))

V.J(6) =

_A:H;f _ | J(0) — J(:H + A8,,))
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¢ Gradient is solution of overdetermined set of linear equations:

AT [J06) = J(0+ 26y))

V.J(6) =

AG! J(O)— J(0+ Ab,))
¢ Algorithm is simple:

e Randomly initialize ¢

e Use my(x) to get trajectories.

e Compute V.J(#) using pseudo-inverse.

v.J(0)

o Update 0 < 0+ oy
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Dual task

@ State-action function Q(x,u) : X x U — R

¢ Expected sum of discounted rewards when choosing action u from state x.
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Dual task

@ State-action function Q(x,u) : X x U — R
¢ Expected sum of discounted rewards when choosing action u from state x.

® Let us look at the grid world with stochastic transitions!
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Dual task

@ State-action function Q(x,u) : X x U — R
® Mean sum of discounted rewards when choosing action u from state x.

® How can we learn from recorded trajectories and corresponding rewards?

+1
O«—>0«—0—>0—>0

I |

(o) O—0—>0

| | ]

Oc«——> Q<«—> 0 «——>0



http://cmp.felk.cvut.cz

CAm ¢

26,46

Dual task - naive learning example

@ State-action function Q(x,u) : X x U — R
® Mean sum of discounted rewards when choosing action u from state x.

® How can we learn from recorded trajectories and corresponding rewards?

4 T1 - (a, R,b,R,C,R, d), T(Tl) — 1

I | ]
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Dual task - naive learning example

@ State-action function Q(x,u) : X x U — R

® Mean sum of discounted rewards when choosing action u from state x.
® How can we learn from recorded trajectories and corresponding rewards?
¢® r: (a,R,b,R,c,R,d), r(71)
® n: (a,R,b,D,e,R,f,R,g), r(m)=-—1

1
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Dual task - naive learning example

@ State-action function Q(x,u) : X x U — R

® Mean sum of discounted rewards when choosing action u from state x.
® How can we learn from recorded trajectories and corresponding rewards?
¢® r: (a,R,b,R,c,R,d), r(m) =1

® n: (a,R,b,D,e,R,f,R,g), r(m)=-1

a b c +1 d

Q | R-right | D - down O«—>0«—>0—>0—0
: I |
b e f -1 g

(o O——0—>0
: I
e ?

Oc«——> Q0<«——> 0 «—>0
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Dual task - naive learning example

@ State-action function Q(x,u) : X x U — R

@

® Mean sum of discounted rewards when choosing action u from state x.

® How can we learn from recorded trajectories and corresponding rewards?

¢® r: (a,R,b,R,c,R,d),
® n: (a,R,b,D,e,R,f,R,g), r(m)=-1

R - right

D - down

|0 |T|o | O

r(71)

1

29/46
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Dual task - naive learning example

State-action function Q(x,u) : X x U — R

@

Mean sum of discounted rewards when choosing action u from state x.

How can we learn from recorded trajectories and corresponding rewards?

m1: (a,R,b,R,c,R,d),

7“(7'1):1

T . (a, R,b,D,e,R,f,R, g), 7“(’7'2) = —1

What is wrong? Why | learned nothing about policy for a?

Q | R-right | D - down
a 0

b 1 -1

C 1

e -1

a b c 41 d
O«——> 0«0 —> 0 > 0
I eI -1 9
(o) (0] = > 0O

30/46
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Dual task - naive learning example

@ State-action function Q(x,u) : X x U — R

® Mean sum of discounted rewards when choosing action u from state x.
® How can we learn from recorded trajectories and corresponding rewards?
¢® r: (a,R,b,R,c,R,d), r(71)
® n: (a,R,b,D,e,R,f,R,g), r(m)=-—1

1

® | know that | can behave better from b, can | use it?

a b c +1 d

Q| R-right | D-down| O«—0<«—0——>0 >0
I | 1

e -1 g

b 1 -1 0 0— >0—>0
— | |

e -1

Q——>Q0Q<«——>0Q0<«———>0
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Dual task - naive learning example

State-action function Q(x,u) : X x U — R

Mean sum of discounted rewards when choosing action u from state x.
How can we learn from recorded trajectories and corresponding rewards?
m1: (a,R,b,R,c,R,d), r(m) =1

m: (a,R,b,D,e,R,f,R,g), r(m)=-1

| know that | can behave better from b, can | use it?

Recursively: Q(a, R) = average(reward_for_a + best_rewards_from_b)

a b c 41 d

Q| R-right | D-down| O«—>0<«—0—>0 >0
1 e |

e -1 g
b 1 -1 o o S 0
C
e
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¢ Define Q(x,u) recursively:

e |f model is unknown

Q(x,u) =r(x,u,x’) + Y max Q((x',u’)



http://cmp.felk.cvut.cz

recursive definition of Q

33/46

¢ Define Q(x,u) recursively:

e |f model is unknown

Q(x,u) =r(x,u,x’) + Y max Q((x',u’)

e If a stochastic model is known

Q(x,w) = Y p(x[u, x) [r(x, u,x) + 7 max Q(x', w)

(Bellman equation)
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¢ Initialize Q(x,u) =0 Vx4
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¢ Initialize Q(x,u) =0 Vx4

¢ Drive the robot and record trajectories like that:

(XO,UO,X/07T0)7 (X1 — X/Oaulax,larl)7
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Q-learning

34/46
¢ Initialize Q(x,u) =0 Vx4

¢ Drive the robot and record trajectories like that:

(XO,UO,X/07T0)7 (X1 — X/Oau17X,17T1)7

® Forxe X, uelU

1 / /
Qx,u) =~ y Z ) }Tz+7mua/JXQ(X27u)

¢ End
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Q-learning
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¢ Initialize Q(x,u) =0 Vx4

@ Drive the robot and record sequences:

(XO,UO,X/07T0)7 (X1 — X/Oaulax,larl)7

lterate until convergence

® Forxe X, uelU

1 / /
= — E ¢ T 7 i U
Q(x,u) - " | }r + IILE}XQ(X )

¢ End

(fixed point algorithm for system of lin. eq.)
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Q-learning

36,46
¢ Initialize Q(x,u) =0 Vi

lterate until good policy found
® Drive the robot and record sequences:

(%0, g, X0, 70), (X1 =x%xg,u1,x'1,71),
® Forxe X, uelU

Qw=— Y it ymax Q)

iE{xZ-:X,ui:u}

¢ End
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¢ Q-learning for stochastic grid-world.

3 .
2 .
| .
1 2

1

| |B|EG



http://cmp.felk.cvut.cz



http://cmp.felk.cvut.cz

Where is the catch?

39/46



http://cmp.felk.cvut.cz

39/46

Curse of dimensionality - considered state space for pacman.
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Curse of dimensionality - are these states the same? Do we want it?
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Curse of dimensionality - we need to replace high-dimensional states x and
control u by low-dimensional features ®(x, u).

= Solution: describe a state using a vector of
features (properties)
= Features are functions from states to real numbers (often
0/1) that capture important properties of the state

= Example features:
= Distance to closest ghost
= Distance to closest dot
= Number of ghosts
= 1 /({dist to dot)?
= |s Pacman in a tunnel? (0/1)

= |s it the exact state on this slide?

= Can also describe a g-state (s, a) with features (e.g.
action moves closer to food)
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¢ Curse of dimensionality - Q-learning

lterate until convergence

e Forxe X, ueU

Qew=" 3 it ymaxQu)

ie{x;=x,u;=u}

e End
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® Curse of dimensionality - approximate Q-learning

lterate until convergence

e For all x;, u;
Zh::Ti+”YH@X[9T¢WX%JUUH

u

e End

e Fit Q-function to approximate mapping between ®(x;, u;) and y;

0 + arg m@in 16" @(x;, w;) — i
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¢ Curse of dimensionality
¢ Reward tuning
¢ Exploration vs exploitation

e c-greedy exploration

_k__

e or exploration extension Q(®(x,u)) + N (D)
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Where is the catch?

44/46

¢ Curse of dimensionality

¢ Reward tuning

¢ Exploration vs exploitation
e c-greedy exploration

e or exploration extension Q(®(x,u)) + —Nl(ip)

¢ Safe exploration, cooperative tasks, hierarchical reinforcment learning.
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® Primal Dual task

® convergence Issues
e do we need to know sum of rewards?

® Do not forget features!

¢ What you can do?
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® Work with us on:
e real Search&Rescue platform
e better IRO tasks

® TORCS - Racing and demolishon derby simulator competition.
http://en.wikipedia.org/wiki/TORCS

¢ Starcraft competition
http://webdocs.cs.ualberta.ca/~cdavid/starcraftaicomp/
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