
Short introduction to motion planning and
control

Karel Zimmermann

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics

Center for Machine Perception
http://cmp.felk.cvut.cz/˜zimmerk, zimmerk@fel.cvut.cz

2/46
MDP definition

� States: x ∈ X

http://cmp.felk.cvut.cz

3/46
MDP definition

� States: x ∈ X

� Actions: u ∈ U

http://cmp.felk.cvut.cz

4/46
MDP definition

� States: x ∈ X

� Actions: u ∈ U

� Transition probability: p(x′|x,u) : X × U ×X → [0; 1]

http://cmp.felk.cvut.cz

5/46
MDP definition

� States: x ∈ X

� Actions: u ∈ U

� Transition probability: p(x′|x,u) : X × U ×X → [0; 1]

� Reward: r(x,u,x′) : X × U ×X → R

http://cmp.felk.cvut.cz

6/46
MDP definition

� States: x ∈ X

� Actions: u ∈ U

� Transition probability: p(x′|x,u) : X × U ×X → [0; 1]

� Reward: r(x,u,x′) : X × U ×X → R

� Policy: πθ(x) : X → U

http://cmp.felk.cvut.cz

7/46
MDP definition

� Trajectory is sequence of visited states and performed actions:
τ = (x0,u0, x1,u1, x2, . . .)

http://cmp.felk.cvut.cz

7/46
MDP definition

� Trajectory is sequence of visited states and performed actions:
τ = (x0,u0, x1,u1, x2, . . .)

� Sum of rewards with limited horizont:

r(τ) =

H∑
i=0

r(xi,ui,xi+1)

http://cmp.felk.cvut.cz

7/46
MDP definition

� Trajectory is sequence of visited states and performed actions:
τ = (x0,u0, x1,u1, x2, . . .)

� Sum of rewards with limited horizont:

r(τ) =

H∑
i=0

r(xi,ui,xi+1)

� Sum of discounted rewards:

r(τ) =

∞∑
i=0

γi · r(xi,ui,xi+1)

http://cmp.felk.cvut.cz

8/46
Different platforms

� Many different robots with various complexity of dynamics and
dimensionality of state-action space:

• triple pendulum,

• two-arm manipulator,

• mobile platform with auxiliary articulated sub-tracks and lockable
differential.

http://cmp.felk.cvut.cz

9/46
Different problems

� Find the shortest collision-free trajectory in configuration space from start
state(s) xs to goal state(s) xg which respect dynamic constraints of the
robot (e.g. Dijkstra, A∗, RRT, PRM, LQR-trees or Guided Policy Search)

http://cmp.felk.cvut.cz

9/46
Different problems

� Find the shortest collision-free trajectory in configuration space from start
state(s) xs to goal state(s) xg which respect dynamic constraints of the
robot (e.g. Dijkstra, A∗, RRT, PRM, LQR-trees or Guided Policy Search)

� Find the shortest surveillance trajectory which covers all dangerous states
(e.g. TSP, RITA)

http://cmp.felk.cvut.cz

9/46
Different problems

� Find the shortest collision-free trajectory in configuration space from start
state(s) xs to goal state(s) xg which respect dynamic constraints of the
robot (e.g. Dijkstra, A∗, RRT, PRM, LQR-trees or Guided Policy Search)

� Find the shortest surveillance trajectory which covers all dangerous states
(e.g. TSP, RITA)

� Find policy that determines hidden state (active perception, exploration)

http://cmp.felk.cvut.cz

9/46
Different problems

� Find the shortest collision-free trajectory in configuration space from start
state(s) xs to goal state(s) xg which respect dynamic constraints of the
robot (e.g. Dijkstra, A∗, RRT, PRM, LQR-trees or Guided Policy Search)

� Find the shortest surveillance trajectory which covers all dangerous states
(e.g. TSP, RITA)

� Find policy that determines hidden state (active perception, exploration)

http://cmp.felk.cvut.cz

10/46
Outline

Planning vs motion control

� Planning requires transition probability, policy is sequence of actions.

� Motion control can use but does not necessarily requires transition
probability, it learns policy function.

Lecture plan:

1. Path planning via Rapidly Exploring Random Trees (RRT).

2. Reinforcement learning for robotics (with and without motion model).

http://cmp.felk.cvut.cz

11/46
Planning

� Open Motion Planning Library: http://wiki.ros.org/ompl

http://cmp.felk.cvut.cz
http://wiki.ros.org/ompl

11/46
Planning

� Open Motion Planning Library: http://wiki.ros.org/ompl

� The most direct approach to planning is to search: Depth-first search,
Breadth-first search, A*, Dijkstra

http://cmp.felk.cvut.cz
http://wiki.ros.org/ompl

11/46
Planning

� Open Motion Planning Library: http://wiki.ros.org/ompl

� The most direct approach to planning is to search: Depth-first search,
Breadth-first search, A*, Dijkstra

� Real robots usually operate in a continuous space.

http://cmp.felk.cvut.cz
http://wiki.ros.org/ompl

11/46
Planning

� Open Motion Planning Library: http://wiki.ros.org/ompl

� The most direct approach to planning is to search: Depth-first search,
Breadth-first search, A*, Dijkstra

� Real robots usually operate in a continuous space.

� Search in continuous high-dimensional space can get stuck in a local
minimum, since you can expand infinite number of nodes in a small region.

http://cmp.felk.cvut.cz
http://wiki.ros.org/ompl

11/46
Planning

� Open Motion Planning Library: http://wiki.ros.org/ompl

� The most direct approach to planning is to search: Depth-first search,
Breadth-first search, A*, Dijkstra

� Real robots usually operate in a continuous space.

� Search in continuous high-dimensional space can get stuck in a local
minimum, since you can expand infinite number of nodes in a small region.

� RRT [1] efficiently search non-convex, high-dimensional spaces by randomly
building a space-filling tree.

� Initial publication [1] has over 1200 citations.

[1] LaValle, Steven M. (October 1998). "Rapidly-exploring random trees: A new
tool for path planning". Technical Report (Computer Science Department, Iowa
State University) (TR 98-11).

http://cmp.felk.cvut.cz
http://wiki.ros.org/ompl

12/46
Algorithm of Rapidly Exploring Random Tree

Input: xs, xg

http://cmp.felk.cvut.cz

12/46
Algorithm of Rapidly Exploring Random Tree

Input: xs, xg

1. Initialize search tree by node xs

http://cmp.felk.cvut.cz

12/46
Algorithm of Rapidly Exploring Random Tree

Input: xs, xg

1. Initialize search tree by node xs

2. Pick a point x ∈ X at random.

http://cmp.felk.cvut.cz

12/46
Algorithm of Rapidly Exploring Random Tree

Input: xs, xg

1. Initialize search tree by node xs

2. Pick a point x ∈ X at random.

3. Check if x is admissible (e.g. collision-free via direct kinematics)

http://cmp.felk.cvut.cz

12/46
Algorithm of Rapidly Exploring Random Tree

Input: xs, xg

1. Initialize search tree by node xs

2. Pick a point x ∈ X at random.

3. Check if x is admissible (e.g. collision-free via direct kinematics)

4. Find the closest node to x (e.g. KD tree) y∗ = arg miny ‖y − x‖

http://cmp.felk.cvut.cz

12/46
Algorithm of Rapidly Exploring Random Tree

Input: xs, xg

1. Initialize search tree by node xs

2. Pick a point x ∈ X at random.

3. Check if x is admissible (e.g. collision-free via direct kinematics)

4. Find the closest node to x (e.g. KD tree) y∗ = arg miny ‖y − x‖

5. Try connect y∗ with x

� if possible: add node x and edge [y∗,x] to the search tree.

� otherwise: throw x away.

http://cmp.felk.cvut.cz

12/46
Algorithm of Rapidly Exploring Random Tree

Input: xs, xg

1. Initialize search tree by node xs

2. Pick a point x ∈ X at random.

3. Check if x is admissible (e.g. collision-free via direct kinematics)

4. Find the closest node to x (e.g. KD tree) y∗ = arg miny ‖y − x‖

5. Try connect y∗ with x

� if possible: add node x and edge [y∗,x] to the search tree.

� otherwise: throw x away.

6. Repeat from 2 until a feasible path is found.

Output: a collision-free path if exist (after infinite number of nodes expanded)

http://cmp.felk.cvut.cz

13/46
Speed-ups of Rapidly Exploring Random Tree

� Bias to goal (greediness), e.g.

• with P = 0.95 choose x at random from X ,

• with P = 0.05 choose x := xg.

http://cmp.felk.cvut.cz

13/46
Speed-ups of Rapidly Exploring Random Tree

� Bias to goal (greediness), e.g.

• with P = 0.95 choose x at random from X ,

• with P = 0.05 choose x := xg.

� Bi-directional search (e.g. RRT-connect)

http://cmp.felk.cvut.cz

13/46
Speed-ups of Rapidly Exploring Random Tree

� Bias to goal (greediness), e.g.

• with P = 0.95 choose x at random from X ,

• with P = 0.05 choose x := xg.

� Bi-directional search (e.g. RRT-connect)

� If optimality is important:

http://cmp.felk.cvut.cz

13/46
Speed-ups of Rapidly Exploring Random Tree

� Bias to goal (greediness), e.g.

• with P = 0.95 choose x at random from X ,

• with P = 0.05 choose x := xg.

� Bi-directional search (e.g. RRT-connect)

� If optimality is important:

• informed-RRT [3]

http://cmp.felk.cvut.cz

13/46
Speed-ups of Rapidly Exploring Random Tree

� Bias to goal (greediness), e.g.

• with P = 0.95 choose x at random from X ,

• with P = 0.05 choose x := xg.

� Bi-directional search (e.g. RRT-connect)

� If optimality is important:

• informed-RRT [3]

• RRT* [2]

[2] Karaman, Sertac; Frazzoli, Emilio, "Incremental Sampling-based Algorithms
for Optimal Motion Planning", 2010

[3] J.D. Gammell, S.S. Srinivasa, T.D. Barfoot, "Informed RRT*", IROS, 2014

http://cmp.felk.cvut.cz

14/46
Properties of Rapidly Exploring Random Tree

� What might be time consuming?

http://cmp.felk.cvut.cz

14/46
Properties of Rapidly Exploring Random Tree

� What might be time consuming?
• Nearest neighbor search (grows with the size of the search tree).
• Collision checker (grow with the number of modeling elements).
• Complicated dynamics (explicit motion model might not exist).

http://cmp.felk.cvut.cz

14/46
Properties of Rapidly Exploring Random Tree

� What might be time consuming?
• Nearest neighbor search (grows with the size of the search tree).
• Collision checker (grow with the number of modeling elements).
• Complicated dynamics (explicit motion model might not exist).

� Voronoi bias: the search tree has bias to grow in large open regions.

http://cmp.felk.cvut.cz

14/46
Properties of Rapidly Exploring Random Tree

� What might be time consuming?
• Nearest neighbor search (grows with the size of the search tree).
• Collision checker (grow with the number of modeling elements).
• Complicated dynamics (explicit motion model might not exist).

� Voronoi bias: the search tree has bias to grow in large open regions.

� Probabilistic completeness: if nodes number reaches infinity than RRT finds
a feasible path (if exists) with P = 1.

http://cmp.felk.cvut.cz

14/46
Properties of Rapidly Exploring Random Tree

� What might be time consuming?
• Nearest neighbor search (grows with the size of the search tree).
• Collision checker (grow with the number of modeling elements).
• Complicated dynamics (explicit motion model might not exist).

� Voronoi bias: the search tree has bias to grow in large open regions.

� Probabilistic completeness: if nodes number reaches infinity than RRT finds
a feasible path (if exists) with P = 1.

� Cost of the best path in the RRT converges almost surely (i.e. with P = 1)
to a non-optimal value [2].

� Cost of the best path in the RRT* converges almost surely (i.e. with P = 1)
to the optimal value [2].

http://cmp.felk.cvut.cz

14/46
Properties of Rapidly Exploring Random Tree

� What might be time consuming?
• Nearest neighbor search (grows with the size of the search tree).
• Collision checker (grow with the number of modeling elements).
• Complicated dynamics (explicit motion model might not exist).

� Voronoi bias: the search tree has bias to grow in large open regions.

� Probabilistic completeness: if nodes number reaches infinity than RRT finds
a feasible path (if exists) with P = 1.

� Cost of the best path in the RRT converges almost surely (i.e. with P = 1)
to a non-optimal value [2].

� Cost of the best path in the RRT* converges almost surely (i.e. with P = 1)
to the optimal value [2].

� If accurate dynamic motion model is known (ẋ, ẍ relations are determined),
then RRT searches for trajectory in lifted state-space [x, ẋ, ẍ]>.

http://cmp.felk.cvut.cz

15/46
Smooth path interpolation

� If only kinematic model is available, discrete path is searched (i.e. N points
y0 ∈ X, . . .yN−1 ∈ X in configuration space).

� Trajectory is defined as a smooth interpolation of path
� Example of smooth interpolation is pair-wise cubic function Y , i.e sequence
of N − 1 cubic functions Yi(t) : [0, 1]→ X such that:
• Yi(t) connects yi with yi+1.
• Y has continuous first and second derivatives.

http://cmp.felk.cvut.cz

16/46
Planning summary

1. Advantage: It has statistical guarantees of the optimality.

2. Drawback 1: Whenever results of action differs from the model (i.e.
everytime), you need to replan the whole trajectory.

3. Drawback 2: Accurate motion model is required.

For some problems, reinforcement learning trades-off optimality (1) for (2)+(3).

http://cmp.felk.cvut.cz

17/46
What if motion model is unknown

� Can you design a motion control algorithm without motion model?

http://cmp.felk.cvut.cz

18/46
Problem definition

� We have a robot and we have no idea how to control it.

http://cmp.felk.cvut.cz

18/46
Problem definition

� We have a robot and we have no idea how to control it.

� Nevertheless, we know what is good and bad state - we have a definition of
rewards.

http://cmp.felk.cvut.cz

18/46
Problem definition

� We have a robot and we have no idea how to control it.

� Nevertheless, we know what is good and bad state - we have a definition of
rewards.

� We control it somehow (e.g. with some initial policy) and record the
trajectory τ (or several trajectories).

http://cmp.felk.cvut.cz

18/46
Problem definition

� We have a robot and we have no idea how to control it.

� Nevertheless, we know what is good and bad state - we have a definition of
rewards.

� We control it somehow (e.g. with some initial policy) and record the
trajectory τ (or several trajectories).

� Given these trajectories, change the policy to increase expected sum of
rewards

J(θ) = E{r(τ)}

http://cmp.felk.cvut.cz

19/46
Problem definition

� Denote p(τ |θ) probability of trajectory τ occurs when following policy πθ

http://cmp.felk.cvut.cz

19/46
Problem definition

� Denote p(τ |θ) probability of trajectory τ occurs when following policy πθ
� Criterion to be maximized is the expected sum of rewards

J(θ) = E{r(τ)} =

∫
τ∈T

p(τ |θ)r(τ) dτ

http://cmp.felk.cvut.cz

19/46
Problem definition

� Denote p(τ |θ) probability of trajectory τ occurs when following policy πθ
� Criterion to be maximized is the expected sum of rewards

J(θ) = E{r(τ)} =

∫
τ∈T

p(τ |θ)r(τ) dτ

� We solve the following optimization problem

θ∗ = arg max
θ
J(θ)

http://cmp.felk.cvut.cz

20/46
Problem solution

� As usually, you can:

http://cmp.felk.cvut.cz

20/46
Problem solution

� As usually, you can:

• either solve primal task e.g. by following gradient ∇J to maximize
J(θ) directly.

- primal is often solved in the optimal control community (e.g. LQR),

http://cmp.felk.cvut.cz

20/46
Problem solution

� As usually, you can:

• either solve primal task e.g. by following gradient ∇J to maximize
J(θ) directly.

- primal is often solved in the optimal control community (e.g. LQR),

• or solve dual task to find state-action function Q(x,u) : X ×U → R
which tells expected sum rewards when choosing action u from state x.

- optimal policy π∗ = arg maxuQ(x,u)

- dual is often employed by AI community as heuristics for state-space
search

- Q-values could provide metrics for RRT [Tedrake-LQR-trees-2015]

Dual task provides alternative point-of-view (e.g. shadow prices in LP or
sparse feature selection for SVM)

http://cmp.felk.cvut.cz

21/46
Primal task - approximating criterion.

� Use πθ(x) to get several trajectories τi.

http://cmp.felk.cvut.cz

21/46
Primal task - approximating criterion.

� Use πθ(x) to get several trajectories τi.

� Approximate criterion value in θ as average reward of trajectories
τi ∼ p(τ |θ) generated with policy πθ

J(θ) = E{r(τ)} =

∫
τ∈T

p(τ |θ)r(τ) dτ ≈ 1

N

N∑
i=1

r(τi)

http://cmp.felk.cvut.cz

21/46
Primal task - approximating criterion.

� Use πθ(x) to get several trajectories τi.

� Approximate criterion value in θ as average reward of trajectories
τi ∼ p(τ |θ) generated with policy πθ

J(θ) = E{r(τ)} =

∫
τ∈T

p(τ |θ)r(τ) dτ ≈ 1

N

N∑
i=1

r(τi)

� We can approximate criterion value, what about gradient?

http://cmp.felk.cvut.cz

22/46
Primal task - approximating gradient

� Can we obtain the gradient by computing also J(θ + ∆θ)?

http://cmp.felk.cvut.cz

22/46
Primal task - approximating gradient

� Can we obtain the gradient by computing also J(θ + ∆θ)?

� Of course, but doing it from one sample is quite unstable (especially for high
dimensional θ).

http://cmp.felk.cvut.cz

22/46
Primal task - approximating gradient

� Can we obtain the gradient by computing also J(θ + ∆θ)?

� Of course, but doing it from one sample is quite unstable (especially for high
dimensional θ).

� Perform several small random perturbations ∆θi and compute J(θ + ∆θi).

http://cmp.felk.cvut.cz

22/46
Primal task - approximating gradient

� Can we obtain the gradient by computing also J(θ + ∆θ)?

� Of course, but doing it from one sample is quite unstable (especially for high
dimensional θ).

� Perform several small random perturbations ∆θi and compute J(θ + ∆θi).

� Relation to gradient ∇J(θ) is given by the first order Taylor polynom

J(θ + ∆θi) = J(θ) +∇J(θ)>∆θi

∆θ>i ∇J(θ) = J(θ)− J(θ + ∆θi)∆θ>1
...

∆θ>n


︸ ︷︷ ︸
matrix A

∇J(θ) =

J(θ)− J(θ + ∆θ1))
...

J(θ)− J(θ + ∆θn))


︸ ︷︷ ︸

vector b

http://cmp.felk.cvut.cz

23/46
Primal task - solution

� Gradient is solution of overdetermined set of linear equations:

∇J(θ) =

∆θ>1
...

∆θ>n


+

·

J(θ)− J(θ + ∆θ1))
...

J(θ)− J(θ + ∆θn))



http://cmp.felk.cvut.cz

23/46
Primal task - solution

� Gradient is solution of overdetermined set of linear equations:

∇J(θ) =

∆θ>1
...

∆θ>n


+

·

J(θ)− J(θ + ∆θ1))
...

J(θ)− J(θ + ∆θn))



� Algorithm is simple:

• Randomly initialize θ

• Use πθ(x) to get trajectories.

• Compute ∇J(θ) using pseudo-inverse.

• Update θ ← θ + α ∇J(θ)
‖∇J(θ)‖

http://cmp.felk.cvut.cz

24/46
Dual task

� State-action function Q(x,u) : X × U → R

� Expected sum of discounted rewards when choosing action u from state x.

http://cmp.felk.cvut.cz

24/46
Dual task

� State-action function Q(x,u) : X × U → R

� Expected sum of discounted rewards when choosing action u from state x.

� Let us look at the grid world with stochastic transitions!
Canonical Example: Grid World

$  The agent lives in a grid
$  Walls block the agent’s path
$  The agent’s actions do not

always go as planned:
$  80% of the time, the action North

takes the agent North
(if there is no wall there)

$  10% of the time, North takes the
agent West; 10% East

$  If there is a wall in the direction
the agent would have been taken,
the agent stays put

$  Big rewards come at the end

http://cmp.felk.cvut.cz

25/46
Dual task

� State-action function Q(x,u) : X × U → R

� Mean sum of discounted rewards when choosing action u from state x.

� How can we learn from recorded trajectories and corresponding rewards?

http://cmp.felk.cvut.cz

26/46
Dual task - naive learning example

� State-action function Q(x,u) : X × U → R

� Mean sum of discounted rewards when choosing action u from state x.

� How can we learn from recorded trajectories and corresponding rewards?

� τ1 : (a,R,b,R, c,R,d), r(τ1) = 1

http://cmp.felk.cvut.cz

27/46
Dual task - naive learning example

� State-action function Q(x,u) : X × U → R

� Mean sum of discounted rewards when choosing action u from state x.

� How can we learn from recorded trajectories and corresponding rewards?

� τ1 : (a,R,b,R, c,R,d), r(τ1) = 1

� τ2 : (a,R,b,D, e,R, f,R, g), r(τ2) = −1

http://cmp.felk.cvut.cz

28/46
Dual task - naive learning example

� State-action function Q(x,u) : X × U → R

� Mean sum of discounted rewards when choosing action u from state x.

� How can we learn from recorded trajectories and corresponding rewards?

� τ1 : (a,R,b,R, c,R,d), r(τ1) = 1

� τ2 : (a,R,b,D, e,R, f,R, g), r(τ2) = −1

Q R - right D - down
a
b
c
e ?

http://cmp.felk.cvut.cz

29/46
Dual task - naive learning example

� State-action function Q(x,u) : X × U → R

� Mean sum of discounted rewards when choosing action u from state x.

� How can we learn from recorded trajectories and corresponding rewards?

� τ1 : (a,R,b,R, c,R,d), r(τ1) = 1

� τ2 : (a,R,b,D, e,R, f,R, g), r(τ2) = −1

Q R - right D - down
a
b
c
e -1

http://cmp.felk.cvut.cz

30/46
Dual task - naive learning example

� State-action function Q(x,u) : X × U → R

� Mean sum of discounted rewards when choosing action u from state x.

� How can we learn from recorded trajectories and corresponding rewards?

� τ1 : (a,R,b,R, c,R,d), r(τ1) = 1

� τ2 : (a,R,b,D, e,R, f,R, g), r(τ2) = −1

� What is wrong? Why I learned nothing about policy for a?

Q R - right D - down
a 0
b 1 -1
c 1
e -1

http://cmp.felk.cvut.cz

31/46
Dual task - naive learning example

� State-action function Q(x,u) : X × U → R

� Mean sum of discounted rewards when choosing action u from state x.

� How can we learn from recorded trajectories and corresponding rewards?

� τ1 : (a,R,b,R, c,R,d), r(τ1) = 1

� τ2 : (a,R,b,D, e,R, f,R, g), r(τ2) = −1

� I know that I can behave better from b, can I use it?

Q R - right D - down
a 0
b 1 -1
c 1
e -1

http://cmp.felk.cvut.cz

32/46
Dual task - naive learning example

� State-action function Q(x,u) : X × U → R
� Mean sum of discounted rewards when choosing action u from state x.
� How can we learn from recorded trajectories and corresponding rewards?
� τ1 : (a,R,b,R, c,R,d), r(τ1) = 1

� τ2 : (a,R,b,D, e,R, f,R, g), r(τ2) = −1

� I know that I can behave better from b, can I use it?
� Recursively: Q(a,R) = average(reward for a + best rewards from b)

Q R - right D - down
a 1
b 1 -1
c 1
e -1

http://cmp.felk.cvut.cz

33/46
recursive definition of Q

� Define Q(x,u) recursively:

• If model is unknown

Q(x,u) = r(x,u,x′) + γmax
u′

Q(x′,u′)

http://cmp.felk.cvut.cz

33/46
recursive definition of Q

� Define Q(x,u) recursively:

• If model is unknown

Q(x,u) = r(x,u,x′) + γmax
u′

Q(x′,u′)

• If a stochastic model is known

Q(x,u) =
∑
x′

p(x′|u,x)
[
r(x,u,x′) + γmax

u′
Q(x′,u′)

]
(Bellman equation)

http://cmp.felk.cvut.cz

34/46
Q-learning

� Initialize Q(x,u) = 0 ∀x,u

http://cmp.felk.cvut.cz

34/46
Q-learning

� Initialize Q(x,u) = 0 ∀x,u

� Drive the robot and record trajectories like that:

(x0,u0,x
′
0, r0), (x1 = x′0,u1,x

′
1, r1), . . .

http://cmp.felk.cvut.cz

34/46
Q-learning

� Initialize Q(x,u) = 0 ∀x,u

� Drive the robot and record trajectories like that:

(x0,u0,x
′
0, r0), (x1 = x′0,u1,x

′
1, r1), . . .

� For x ∈ X, u ∈ U

Q(x,u) =
1

n

∑
i∈{xi=x,ui=u}

ri + γmax
u′

Q(x′i,u
′)

� End

http://cmp.felk.cvut.cz

35/46
Q-learning

� Initialize Q(x,u) = 0 ∀x,u

� Drive the robot and record sequences:

(x0,u0,x
′
0, r0), (x1 = x′0,u1,x

′
1, r1), . . .

—————————— Iterate until convergence ——————————

� For x ∈ X, u ∈ U

Q(x,u) =
1

n

∑
i∈{xi=x,ui=u}

ri + γmax
u′

Q(x′i,u
′)

� End

——————(fixed point algorithm for system of lin. eq.)——————–

http://cmp.felk.cvut.cz

36/46
Q-learning

� Initialize Q(x,u) = 0 ∀x,u

————————– Iterate until good policy found ————————–

� Drive the robot and record sequences:

(x0,u0,x
′
0, r0), (x1 = x′0,u1,x

′
1, r1), . . .

� For x ∈ X, u ∈ U

Q(x,u) =
1

n

∑
i∈{xi=x,ui=u}

ri + γmax
u′

Q(x′i,u
′)

� End

—————————————————————————————–

http://cmp.felk.cvut.cz

37/46
State-value function example I - grid-world

� Q-learning for stochastic grid-world.

Canonical Example: Grid World

$  The agent lives in a grid
$  Walls block the agent’s path
$  The agent’s actions do not

always go as planned:
$  80% of the time, the action North

takes the agent North
(if there is no wall there)

$  10% of the time, North takes the
agent West; 10% East

$  If there is a wall in the direction
the agent would have been taken,
the agent stays put

$  Big rewards come at the end

http://cmp.felk.cvut.cz

38/46
State-value function example I - grid-world

http://cmp.felk.cvut.cz

39/46
Where is the catch?

http://cmp.felk.cvut.cz

39/46
Where is the catch?

� Curse of dimensionality - considered state space for pacman.

http://cmp.felk.cvut.cz

40/46
Where is the catch?

� Curse of dimensionality - are these states the same? Do we want it?

http://cmp.felk.cvut.cz

41/46
Where is the catch?

� Curse of dimensionality - we need to replace high-dimensional states x and
control u by low-dimensional features Φ(x,u).

http://cmp.felk.cvut.cz

42/46
Where is the catch?

� Curse of dimensionality - Q-learning

———————– Iterate until convergence ———————–

• For x ∈ X, u ∈ U

Q(x,u) =
1

n

∑
i∈{xi=x,ui=u}

ri + γmax
u′

Q(x′i,u
′)

• End

——————————————————————————-

http://cmp.felk.cvut.cz

43/46
Where is the catch?

� Curse of dimensionality - approximate Q-learning

———————– Iterate until convergence ———————–

• For all xi, ui
yi = ri + γmax

u′
[θ>Φ(x′i,u

′))]

• End

• Fit Q-function to approximate mapping between Φ(xi,ui) and yi

θ ← arg min
θ
‖θ>Φ(xi,ui)− yi‖

——————————————————————————-

http://cmp.felk.cvut.cz

44/46
Where is the catch?

� Curse of dimensionality

http://cmp.felk.cvut.cz

44/46
Where is the catch?

� Curse of dimensionality

� Reward tuning

http://cmp.felk.cvut.cz

44/46
Where is the catch?

� Curse of dimensionality

� Reward tuning

� Exploration vs exploitation

• ε-greedy exploration

• or exploration extension Q(Φ(x,u)) + k
N(Φ)

http://cmp.felk.cvut.cz

44/46
Where is the catch?

� Curse of dimensionality

� Reward tuning

� Exploration vs exploitation

• ε-greedy exploration

• or exploration extension Q(Φ(x,u)) + k
N(Φ)

� Safe exploration, cooperative tasks, hierarchical reinforcment learning.

http://cmp.felk.cvut.cz

45/46
Conclusions

� Primal Dual task

• convergence issues

• do we need to know sum of rewards?

� Do not forget features!

� What you can do?

http://cmp.felk.cvut.cz

46/46
What you can do?

� Work with us on:

• real Search&Rescue platform

• better IRO tasks

� TORCS - Racing and demolishon derby simulator competition.
http://en.wikipedia.org/wiki/TORCS

� Starcraft competition
http://webdocs.cs.ualberta.ca/~cdavid/starcraftaicomp/

http://cmp.felk.cvut.cz
http://en.wikipedia.org/wiki/TORCS
http://webdocs.cs.ualberta.ca/~cdavid/starcraftaicomp/

	First page
	ccmp MDP definition
	ccmp MDP definition
	ccmp MDP definition
	ccmp MDP definition
	ccmp MDP definition
	ccmp MDP definition
	ccmp Different platforms
	ccmp Different problems
	ccmp Outline
	ccmp Planning
	ccmp Algorithm of Rapidly Exploring Random Tree
	ccmp Speed-ups of Rapidly Exploring Random Tree
	ccmp Properties of Rapidly Exploring Random Tree
	ccmp Smooth path interpolation
	ccmp Planning summary
	ccmp What if motion model is unknown
	ccmp Problem definition
	ccmp Problem definition
	ccmp Problem solution
	ccmp Primal task - approximating criterion.
	ccmp Primal task - approximating gradient
	ccmp Primal task - solution
	ccmp Dual task
	ccmp Dual task
	ccmp Dual task - naive learning example
	ccmp Dual task - naive learning example
	ccmp Dual task - naive learning example
	ccmp Dual task - naive learning example
	ccmp Dual task - naive learning example
	ccmp Dual task - naive learning example
	ccmp Dual task - naive learning example
	ccmp recursive definition of Q
	ccmp Q-learning
	ccmp Q-learning
	ccmp Q-learning
	ccmp State-value function example I - grid-world
	ccmp State-value function example I - grid-world
	ccmp Where is the catch?
	ccmp Where is the catch?
	ccmp Where is the catch?
	ccmp Where is the catch?
	ccmp Where is the catch?
	ccmp Where is the catch?
	ccmp Conclusions
	ccmp What you can do?
	Last page

