Short introduction to motion planning and control

Karel Zimmermann

Czech Technical University in Prague Faculty of Electrical Engineering, Department of Cybernetics Center for Machine Perception http://cmp.felk.cvut.cz/~zimmerk, zimmerk@fel.cvut.cz

x o

- States: $\mathbf{x} \in X$
- Actions: $\mathbf{u} \in U$

- States: $\mathbf{x} \in X$
- Actions: $\mathbf{u} \in U$
- Transition probability: $p(\mathbf{x}'|\mathbf{x}, \mathbf{u}) : X \times U \times X \rightarrow [0; 1]$

- Actions: $\mathbf{u} \in U$
- Transition probability: $p(\mathbf{x}'|\mathbf{x}, \mathbf{u}) : X \times U \times X \rightarrow [0; 1]$
- Reward: $r(\mathbf{x}, \mathbf{u}, \mathbf{x}') : X \times U \times X \to \mathbb{R}$

- Actions: $\mathbf{u} \in U$
- Transition probability: $p(\mathbf{x}'|\mathbf{x}, \mathbf{u}) : X \times U \times X \rightarrow [0; 1]$
- Reward: $r(\mathbf{x}, \mathbf{u}, \mathbf{x'}) : X \times U \times X \to \mathbb{R}$
- Policy: $\pi_{\theta}(\mathbf{x}) : X \to U$

• Trajectory is sequence of visited states and performed actions: $\tau = (\mathbf{x}_0, \mathbf{u}_0, \mathbf{x}_1, \mathbf{u}_1, \mathbf{x}_2, ...)$

- Trajectory is sequence of visited states and performed actions: $\tau = (\mathbf{x}_0, \mathbf{u}_0, \mathbf{x}_1, \mathbf{u}_1, \mathbf{x}_2, ...)$
- Sum of rewards with limited horizont:

$$r(\tau) = \sum_{i=0}^{H} r(\mathbf{x}_i, \mathbf{u}_i, \mathbf{x}_{i+1})$$

- Trajectory is sequence of visited states and performed actions: $\tau = (\mathbf{x}_0, \mathbf{u}_0, \mathbf{x}_1, \mathbf{u}_1, \mathbf{x}_2, ...)$
- Sum of rewards with limited horizont:

$$r(\tau) = \sum_{i=0}^{H} r(\mathbf{x}_i, \mathbf{u}_i, \mathbf{x}_{i+1})$$

• Sum of discounted rewards:

$$r(\tau) = \sum_{i=0}^{\infty} \gamma^{i} \cdot r(\mathbf{x}_{i}, \mathbf{u}_{i}, \mathbf{x}_{i+1})$$

Different platforms

- Many different robots with various complexity of dynamics and dimensionality of state-action space:
 - triple pendulum,
 - two-arm manipulator,
 - mobile platform with auxiliary articulated sub-tracks and lockable differential.

Find the shortest collision-free trajectory in configuration space from start state(s) x_s to goal state(s) x_g which respect dynamic constraints of the robot (e.g. Dijkstra, A*, RRT, PRM, LQR-trees or Guided Policy Search)

9/46

Find the shortest collision-free trajectory in configuration space from start state(s) x_s to goal state(s) x_g which respect dynamic constraints of the robot (e.g. Dijkstra, A*, RRT, PRM, LQR-trees or Guided Policy Search)

9/46

 Find the shortest surveillance trajectory which covers all dangerous states (e.g. TSP, RITA)

Find the shortest collision-free trajectory in configuration space from start state(s) x_s to goal state(s) x_g which respect dynamic constraints of the robot (e.g. Dijkstra, A*, RRT, PRM, LQR-trees or Guided Policy Search)

9/46

- Find the shortest surveillance trajectory which covers all dangerous states (e.g. TSP, RITA)
- Find policy that determines hidden state (active perception, exploration)

Find the shortest collision-free trajectory in configuration space from start state(s) x_s to goal state(s) x_g which respect dynamic constraints of the robot (e.g. Dijkstra, A*, RRT, PRM, LQR-trees or Guided Policy Search)

9/46

- Find the shortest surveillance trajectory which covers all dangerous states (e.g. TSP, RITA)
- Find policy that determines hidden state (active perception, exploration)

Outline

Planning vs motion control

- Planning requires transition probability, policy is sequence of actions.
- Motion control can use but does not necessarily requires transition probability, it learns policy function.

Lecture plan:

- 1. Path planning via Rapidly Exploring Random Trees (RRT).
- 2. Reinforcement learning for robotics (with and without motion model).

Open Motion Planning Library: http://wiki.ros.org/ompl

- Open Motion Planning Library: http://wiki.ros.org/ompl
- The most direct approach to planning is to search: Depth-first search, Breadth-first search, A*, Dijkstra

- Open Motion Planning Library: http://wiki.ros.org/ompl
- The most direct approach to planning is to search: Depth-first search, Breadth-first search, A*, Dijkstra
- Real robots usually operate in a continuous space.

- Open Motion Planning Library: http://wiki.ros.org/ompl
- The most direct approach to planning is to search: Depth-first search, Breadth-first search, A*, Dijkstra
- Real robots usually operate in a continuous space.
- Search in continuous high-dimensional space can get stuck in a local minimum, since you can expand infinite number of nodes in a small region.

- Open Motion Planning Library: http://wiki.ros.org/ompl
- The most direct approach to planning is to search: Depth-first search, Breadth-first search, A*, Dijkstra
- Real robots usually operate in a continuous space.
- Search in continuous high-dimensional space can get stuck in a local minimum, since you can expand infinite number of nodes in a small region.
- RRT [1] efficiently search non-convex, high-dimensional spaces by randomly building a space-filling tree.
- Initial publication [1] has over 1200 citations.

[1] LaValle, Steven M. (October 1998). "Rapidly-exploring random trees: A new tool for path planning". Technical Report (Computer Science Department, Iowa State University) (TR 98-11).

Input: \mathbf{x}_s , \mathbf{x}_g

Input: \mathbf{x}_s , \mathbf{x}_g

1. Initialize search tree by node \mathbf{x}_s

Input: \mathbf{x}_s , \mathbf{x}_g

- 1. Initialize search tree by node \mathbf{x}_s
- 2. Pick a point $\mathbf{x} \in X$ at random.

Input: \mathbf{x}_s , \mathbf{x}_g

- 1. Initialize search tree by node \mathbf{x}_s
- 2. Pick a point $\mathbf{x} \in X$ at random.
- 3. Check if \mathbf{x} is admissible (e.g. collision-free via direct kinematics)

p

Input: \mathbf{x}_s , \mathbf{x}_q

- 1. Initialize search tree by node \mathbf{x}_s
- 2. Pick a point $\mathbf{x} \in X$ at random.
- 3. Check if \mathbf{x} is admissible (e.g. collision-free via direct kinematics)
- 4. Find the closest node to x (e.g. KD tree) $\mathbf{y}^* = \arg\min_{\mathbf{y}} \|\mathbf{y} \mathbf{x}\|$

p

12/46

Input: \mathbf{x}_s , \mathbf{x}_g

- 1. Initialize search tree by node \mathbf{x}_s
- 2. Pick a point $\mathbf{x} \in X$ at random.
- 3. Check if \mathbf{x} is admissible (e.g. collision-free via direct kinematics)
- 4. Find the closest node to \mathbf{x} (e.g. KD tree) $\mathbf{y}^* = \arg\min_{\mathbf{y}} \|\mathbf{y} \mathbf{x}\|$
- 5. Try connect \mathbf{y}^* with \mathbf{x}
 - igstarrow if possible: add node \mathbf{x} and edge $[\mathbf{y}^*, \mathbf{x}]$ to the search tree.
 - iglet otherwise: throw ${f x}$ away.

р

12/46

Input: \mathbf{x}_s , \mathbf{x}_g

- 1. Initialize search tree by node \mathbf{x}_s
- 2. Pick a point $\mathbf{x} \in X$ at random.
- 3. Check if \mathbf{x} is admissible (e.g. collision-free via direct kinematics)
- 4. Find the closest node to \mathbf{x} (e.g. KD tree) $\mathbf{y}^* = \arg\min_{\mathbf{y}} \|\mathbf{y} \mathbf{x}\|$
- 5. Try connect \mathbf{y}^* with \mathbf{x}
 - igstarrow if possible: add node \mathbf{x} and edge $[\mathbf{y}^*, \mathbf{x}]$ to the search tree.
 - \bullet otherwise: throw x away.
- 6. Repeat from 2 until a feasible path is found.

Output: a collision-free path if exist (after infinite number of nodes expanded)

- Bias to goal (greediness), e.g.
 - with P = 0.95 choose \mathbf{x} at random from X,
 - with P = 0.05 choose $\mathbf{x} := \mathbf{x}_g$.

- Bias to goal (greediness), e.g.
 - with P = 0.95 choose \mathbf{x} at random from X,
 - with P = 0.05 choose $\mathbf{x} := \mathbf{x}_g$.
- Bi-directional search (e.g. RRT-connect)

- Bias to goal (greediness), e.g.
 - with P = 0.95 choose \mathbf{x} at random from X,
 - with P = 0.05 choose $\mathbf{x} := \mathbf{x}_g$.
- Bi-directional search (e.g. RRT-connect)
- If optimality is important:

- Bias to goal (greediness), e.g.
 - with P = 0.95 choose ${f x}$ at random from X,
 - with P = 0.05 choose $\mathbf{x} := \mathbf{x}_g$.
- Bi-directional search (e.g. RRT-connect)
- If optimality is important:
 - informed-RRT [3]

- Bias to goal (greediness), e.g.
 - with P = 0.95 choose ${f x}$ at random from X,
 - with P = 0.05 choose $\mathbf{x} := \mathbf{x}_g$.
- Bi-directional search (e.g. RRT-connect)
- If optimality is important:
 - informed-RRT [3]
 - RRT* [2]

[2] Karaman, Sertac; Frazzoli, Emilio, "Incremental Sampling-based Algorithms for Optimal Motion Planning", 2010

[3] J.D. Gammell, S.S. Srinivasa, T.D. Barfoot, "Informed RRT*", IROS, 2014

• What might be time consuming?

(14/46)

- What might be time consuming?
 - Nearest neighbor search (grows with the size of the search tree).
 - Collision checker (grow with the number of modeling elements).
 - Complicated dynamics (explicit motion model might not exist).

- What might be time consuming?
 - Nearest neighbor search (grows with the size of the search tree).

14/46

- Collision checker (grow with the number of modeling elements).
- Complicated dynamics (explicit motion model might not exist).

Voronoi bias: the search tree has bias to grow in large open regions.

- What might be time consuming?
 - Nearest neighbor search (grows with the size of the search tree).

14/46

- Collision checker (grow with the number of modeling elements).
- Complicated dynamics (explicit motion model might not exist).
- Voronoi bias: the search tree has bias to grow in large open regions.
- Probabilistic completeness: if nodes number reaches infinity than RRT finds a feasible path (if exists) with P = 1.
Properties of Rapidly Exploring Random Tree

- What might be time consuming?
 - Nearest neighbor search (grows with the size of the search tree).
 - Collision checker (grow with the number of modeling elements).
 - Complicated dynamics (explicit motion model might not exist).
- Voronoi bias: the search tree has bias to grow in large open regions.
- Probabilistic completeness: if nodes number reaches infinity than RRT finds a feasible path (if exists) with P = 1.
- Cost of the best path in the RRT converges almost surely (i.e. with P = 1) to a non-optimal value [2].
- Cost of the best path in the RRT* converges almost surely (i.e. with P = 1) to the optimal value [2].

Properties of Rapidly Exploring Random Tree

- What might be time consuming?
 - Nearest neighbor search (grows with the size of the search tree).

p

- Collision checker (grow with the number of modeling elements).
- Complicated dynamics (explicit motion model might not exist).
- Voronoi bias: the search tree has bias to grow in large open regions.
- Probabilistic completeness: if nodes number reaches infinity than RRT finds a feasible path (if exists) with P = 1.
- Cost of the best path in the RRT converges almost surely (i.e. with P = 1) to a non-optimal value [2].
- Cost of the best path in the RRT* converges almost surely (i.e. with P = 1) to the optimal value [2].
- If accurate dynamic motion model is known ($\dot{\mathbf{x}}$, $\ddot{\mathbf{x}}$ relations are determined), then RRT searches for trajectory in lifted state-space [\mathbf{x} , $\dot{\mathbf{x}}$, $\ddot{\mathbf{x}}$]^{\top}.

- If only kinematic model is available, discrete path is searched (i.e. N points $\mathbf{y}_0 \in X, \dots \mathbf{y}_{N-1} \in X$ in configuration space).
- Trajectory is defined as a smooth interpolation of path
- Example of smooth interpolation is pair-wise cubic function Y, i.e sequence of N-1 cubic functions $Y_i(t) : [0,1] \to X$ such that:
 - $Y_i(t)$ connects \mathbf{y}_i with \mathbf{y}_{i+1} .
 - Y has continuous first and second derivatives.

Planning summary

- 1. Advantage: It has statistical guarantees of the optimality.
- 2. Drawback 1: Whenever results of action differs from the model (i.e. everytime), you need to replan the whole trajectory.
- 3. Drawback 2: Accurate motion model is required.

For some problems, reinforcement learning trades-off optimality (1) for (2)+(3).

What if motion model is unknown

• Can you design a motion control algorithm without motion model?

• We have a robot and we have no idea how to control it.

- We have a robot and we have no idea how to control it.
- Nevertheless, we know what is good and bad state we have a definition of rewards.

- We have a robot and we have no idea how to control it.
- Nevertheless, we know what is good and bad state we have a definition of rewards.
- We control it somehow (e.g. with some initial policy) and record the trajectory τ (or several trajectories).

- We have a robot and we have no idea how to control it.
- Nevertheless, we know what is good and bad state we have a definition of rewards.
- We control it somehow (e.g. with some initial policy) and record the trajectory τ (or several trajectories).
- Given these trajectories, change the policy to increase expected sum of rewards

$$J(\theta) = E\{r(\tau)\}$$

• Denote $p(\tau|\theta)$ probability of trajectory τ occurs when following policy π_{θ}

• Denote $p(\tau|\theta)$ probability of trajectory au occurs when following policy $\pi_{ heta}$

Criterion to be maximized is the expected sum of rewards

$$J(\theta) = E\{r(\tau)\} = \int_{\tau \in \mathcal{T}} p(\tau|\theta)r(\tau) \,\mathrm{d}\tau$$

• Denote p(au| heta) probability of trajectory au occurs when following policy $\pi_{ heta}$

Criterion to be maximized is the expected sum of rewards

$$J(\theta) = E\{r(\tau)\} = \int_{\tau \in \mathcal{T}} p(\tau|\theta)r(\tau) \,\mathrm{d}\tau$$

We solve the following optimization problem

$$\theta^* = \arg \max_{\theta} J(\theta)$$

Problem solution

• As usually, you can:

Problem solution

- As usually, you can:
 - either solve primal task e.g. by following gradient ∇J to maximize $J(\theta)$ directly.
 - primal is often solved in the optimal control community (e.g. LQR),

Problem solution

- As usually, you can:
 - either solve primal task e.g. by following gradient ∇J to maximize $J(\theta)$ directly.
 - primal is often solved in the optimal control community (e.g. LQR),
 - or solve **dual task** to find state-action function $Q(\mathbf{x}, \mathbf{u}) : X \times U \to \mathbb{R}$ which tells expected sum rewards when choosing action \mathbf{u} from state \mathbf{x} .
 - optimal policy $\pi^* = \arg \max_{\mathbf{u}} Q(\mathbf{x}, \mathbf{u})$
 - dual is often employed by AI community as heuristics for state-space search
 - Q-values could provide metrics for RRT [Tedrake-LQR-trees-2015]

Dual task provides alternative point-of-view (e.g. shadow prices in LP or sparse feature selection for SVM) $\left(\frac{1}{2} \right)$

Primal task - approximating criterion.

• Use $\pi_{\theta}(\mathbf{x})$ to get several trajectories τ_i .

Primal task - approximating criterion.

- Use $\pi_{\theta}(\mathbf{x})$ to get several trajectories τ_i .
- Approximate criterion value in θ as average reward of trajectories $\tau_i \sim p(\tau|\theta)$ generated with policy π_{θ}

$$J(\theta) = E\{r(\tau)\} = \int_{\tau \in \mathcal{T}} p(\tau|\theta)r(\tau) \,\mathrm{d}\tau \approx \frac{1}{N} \sum_{i=1}^{N} r(\tau_i)$$

p

Primal task - approximating criterion.

- Use $\pi_{\theta}(\mathbf{x})$ to get several trajectories τ_i .
- Approximate criterion value in θ as average reward of trajectories $\tau_i \sim p(\tau|\theta)$ generated with policy π_{θ}

$$J(\theta) = E\{r(\tau)\} = \int_{\tau \in \mathcal{T}} p(\tau|\theta)r(\tau) \,\mathrm{d}\tau \approx \frac{1}{N} \sum_{i=1}^{N} r(\tau_i)$$

21/46

• We can approximate criterion value, what about gradient?

• Can we obtain the gradient by computing also $J(\theta + \Delta \theta)$?

- Can we obtain the gradient by computing also $J(\theta + \Delta \theta)$?
- Of course, but doing it from one sample is quite unstable (especially for high dimensional θ).

- Can we obtain the gradient by computing also $J(\theta + \Delta \theta)$?
- Of course, but doing it from one sample is quite unstable (especially for high dimensional θ).
- Perform several small random perturbations $\Delta \theta_i$ and compute $J(heta + \Delta \theta_i)$.

- Can we obtain the gradient by computing also $J(\theta + \Delta \theta)$?
- Of course, but doing it from one sample is quite unstable (especially for high dimensional θ).
- Perform several small random perturbations $\Delta \theta_i$ and compute $J(heta + \Delta \theta_i)$.
- Relation to gradient $\nabla J(\theta)$ is given by the first order Taylor polynom

$$\begin{split} J(\theta + \Delta \theta_i) &= J(\theta) + \nabla J(\theta)^\top \Delta \theta_i \\ \Delta \theta_i^\top \nabla J(\theta) &= J(\theta) - J(\theta + \Delta \theta_i) \\ \begin{bmatrix} \Delta \theta_1^\top \\ \vdots \\ \Delta \theta_n^\top \end{bmatrix} \nabla J(\theta) &= \begin{bmatrix} J(\theta) - J(\theta + \Delta \theta_1)) \\ \vdots \\ J(\theta) - J(\theta + \Delta \theta_n)) \end{bmatrix} \\ \text{wettor b} \end{split}$$

Primal task - solution

• Gradient is solution of overdetermined set of linear equations:

$$\nabla J(\theta) = \begin{bmatrix} \Delta \theta_1^\top \\ \vdots \\ \Delta \theta_n^\top \end{bmatrix}^+ \cdot \begin{bmatrix} J(\theta) - J(\theta + \Delta \theta_1)) \\ \vdots \\ J(\theta) - J(\theta + \Delta \theta_n)) \end{bmatrix}$$

Primal task - solution

Gradient is solution of overdetermined set of linear equations:

$$\nabla J(\theta) = \begin{bmatrix} \Delta \theta_1^\top \\ \vdots \\ \Delta \theta_n^\top \end{bmatrix}^+ \cdot \begin{bmatrix} J(\theta) - J(\theta + \Delta \theta_1)) \\ \vdots \\ J(\theta) - J(\theta + \Delta \theta_n)) \end{bmatrix}$$

• Algorithm is simple:

- Randomly initialize θ
- Use $\pi_{\theta}(\mathbf{x})$ to get trajectories.
- Compute $\nabla J(\theta)$ using pseudo-inverse.
- Update $\theta \leftarrow \theta + \alpha \frac{\nabla J(\theta)}{\|\nabla J(\theta)\|}$

Dual task

• State-action function $Q(\mathbf{x}, \mathbf{u}) : X \times U \to \mathbb{R}$

igstarrow Expected sum of discounted rewards when choosing action ${f u}$ from state ${f x}.$

Dual task

- State-action function $Q(\mathbf{x}, \mathbf{u}) : X \times U \to \mathbb{R}$
- igstarrow Expected sum of discounted rewards when choosing action ${f u}$ from state ${f x}$.
- Let us look at the grid world with stochastic transitions!

Dual task

- State-action function $Q(\mathbf{x}, \mathbf{u}) : X \times U \to \mathbb{R}$
- igstarrow Mean sum of discounted rewards when choosing action ${f u}$ from state ${f x}$.
- How can we learn from recorded trajectories and corresponding rewards?

- State-action function $Q(\mathbf{x}, \mathbf{u}) : X \times U \to \mathbb{R}$
- igstarrow Mean sum of discounted rewards when choosing action ${f u}$ from state ${f x}.$
- + How can we learn from recorded trajectories and corresponding rewards?

• τ_1 : (a, R, b, R, c, R, d), $r(\tau_1) = 1$

- State-action function $Q(\mathbf{x}, \mathbf{u}) : X \times U \to \mathbb{R}$
- igstarrow Mean sum of discounted rewards when choosing action ${f u}$ from state ${f x}.$
- + How can we learn from recorded trajectories and corresponding rewards?
- τ_1 : (a, R, b, R, c, R, d), $r(\tau_1) = 1$
- τ_2 : (a, R, b, D, e, R, f, R, g), $r(\tau_2) = -1$

- State-action function $Q(\mathbf{x}, \mathbf{u}) : X \times U \to \mathbb{R}$
- igstarrow Mean sum of discounted rewards when choosing action ${f u}$ from state ${f x}.$
- How can we learn from recorded trajectories and corresponding rewards?
- τ_1 : (a, R, b, R, c, R, d), $r(\tau_1) = 1$
- τ_2 : (a, R, b, D, e, R, f, R, g), $r(\tau_2) = -1$

- State-action function $Q(\mathbf{x}, \mathbf{u}) : X \times U \to \mathbb{R}$
- ullet Mean sum of discounted rewards when choosing action ${f u}$ from state ${f x}.$

р

- How can we learn from recorded trajectories and corresponding rewards?
- τ_1 : (a, R, b, R, c, R, d), $r(\tau_1) = 1$
- τ_2 : (a, R, b, D, e, R, f, R, g), $r(\tau_2) = -1$

- State-action function $Q(\mathbf{x}, \mathbf{u}) : X imes U o \mathbb{R}$
- igstarrow Mean sum of discounted rewards when choosing action ${f u}$ from state ${f x}.$

m p

- How can we learn from recorded trajectories and corresponding rewards?
- τ_1 : (a, R, b, R, c, R, d), $r(\tau_1) = 1$
- τ_2 : (a, R, b, D, e, R, f, R, g), $r(\tau_2) = -1$
- What is wrong? Why I learned nothing about policy for a?

- State-action function $Q(\mathbf{x}, \mathbf{u}) : X \times U \to \mathbb{R}$
- igstarrow Mean sum of discounted rewards when choosing action ${f u}$ from state ${f x}.$

m p

- How can we learn from recorded trajectories and corresponding rewards?
- τ_1 : (a, R, b, R, c, R, d), $r(\tau_1) = 1$
- τ_2 : (a, R, b, D, e, R, f, R, g), $r(\tau_2) = -1$
- I know that I can behave better from b, can I use it?

- State-action function $Q(\mathbf{x}, \mathbf{u}) : X \times U \to \mathbb{R}$
- igstarrow Mean sum of discounted rewards when choosing action ${f u}$ from state ${f x}.$
- + How can we learn from recorded trajectories and corresponding rewards?
- τ_1 : (a, R, b, R, c, R, d), $r(\tau_1) = 1$
- τ_2 : (a, R, b, D, e, R, f, R, g), $r(\tau_2) = -1$
- I know that I can behave better from b, can I use it?
- Recursively: $Q(a, R) = average(reward_for_a + best_rewards_from_b)$

recursive definition of **Q**

- Define $Q(\mathbf{x}, \mathbf{u})$ recursively:
 - If model is unknown

$$Q(\mathbf{x}, \mathbf{u}) = r(\mathbf{x}, \mathbf{u}, \mathbf{x}') + \gamma \max_{\mathbf{u}'} Q(\mathbf{x}', \mathbf{u}')$$

recursive definition of **Q**

• If model is unknown

$$Q(\mathbf{x}, \mathbf{u}) = r(\mathbf{x}, \mathbf{u}, \mathbf{x}') + \gamma \max_{\mathbf{u}'} Q(\mathbf{x}', \mathbf{u}')$$

• If a stochastic model is known

$$Q(\mathbf{x}, \mathbf{u}) = \sum_{\mathbf{x}'} p(\mathbf{x}' | \mathbf{u}, \mathbf{x}) \left[r(\mathbf{x}, \mathbf{u}, \mathbf{x}') + \gamma \max_{\mathbf{u}'} Q(\mathbf{x}', \mathbf{u}') \right]$$

(Bellman equation)

 $\bullet \text{ Initialize } Q(\mathbf{x}, \mathbf{u}) = 0 \quad \forall_{\mathbf{x}, \mathbf{u}}$

- $\bullet \ \text{Initialize} \ Q(\mathbf{x},\mathbf{u}) = 0 \quad \forall_{\mathbf{x},\mathbf{u}}$
- Drive the robot and record trajectories like that:

 $(\mathbf{x}_0, \mathbf{u}_0, \mathbf{x}'_0, r_0), (\mathbf{x}_1 = \mathbf{x}'_0, \mathbf{u}_1, \mathbf{x}'_1, r_1), \dots$

- Initialize $Q(\mathbf{x}, \mathbf{u}) = 0 \quad \forall_{\mathbf{x}, \mathbf{u}}$
- Drive the robot and record trajectories like that:
 - $(\mathbf{x}_0, \mathbf{u}_0, \mathbf{x}'_0, r_0), (\mathbf{x}_1 = \mathbf{x}'_0, \mathbf{u}_1, \mathbf{x}'_1, r_1), \dots$

• For $\mathbf{x} \in X$, $\mathbf{u} \in U$

$$Q(\mathbf{x}, \mathbf{u}) = \frac{1}{n} \sum_{i \in \{\mathbf{x}_i = \mathbf{x}, \mathbf{u}_i = \mathbf{u}\}} r_i + \gamma \max_{\mathbf{u}'} Q(\mathbf{x}'_i, \mathbf{u}')$$

- Initialize $Q(\mathbf{x}, \mathbf{u}) = 0 \quad \forall_{\mathbf{x}, \mathbf{u}}$
- Drive the robot and record sequences:

 $(\mathbf{x}_0, \mathbf{u}_0, \mathbf{x}'_0, r_0), \quad (\mathbf{x}_1 = \mathbf{x}'_0, \mathbf{u}_1, \mathbf{x}'_1, r_1), \quad \dots$

— Iterate until convergence –

• For $\mathbf{x} \in X$, $\mathbf{u} \in U$

$$Q(\mathbf{x}, \mathbf{u}) = \frac{1}{n} \sum_{i \in \{\mathbf{x}_i = \mathbf{x}, \mathbf{u}_i = \mathbf{u}\}} r_i + \gamma \max_{\mathbf{u}'} Q(\mathbf{x}'_i, \mathbf{u}')$$

(fixed point algorithm for system of lin. eq.)-

• Initialize $Q(\mathbf{x}, \mathbf{u}) = 0 \quad \forall_{\mathbf{x}, \mathbf{u}}$

Iterate until good policy found —

Drive the robot and record sequences:

 $(\mathbf{x}_0, \mathbf{u}_0, \mathbf{x}'_0, r_0), \quad (\mathbf{x}_1 = \mathbf{x}'_0, \mathbf{u}_1, \mathbf{x}'_1, r_1), \quad \dots$

• For $\mathbf{x} \in X$, $\mathbf{u} \in U$

$$Q(\mathbf{x}, \mathbf{u}) = \frac{1}{n} \sum_{i \in \{\mathbf{x}_i = \mathbf{x}, \mathbf{u}_i = \mathbf{u}\}} r_i + \gamma \max_{\mathbf{u}'} Q(\mathbf{x}'_i, \mathbf{u}')$$

State-value function example I - grid-world

• Q-learning for stochastic grid-world.

State-value function example I - grid-world

• Curse of dimensionality - considered state space for pacman.

Curse of dimensionality - are these states the same? Do we want it?

• Curse of dimensionality - we need to replace high-dimensional states \mathbf{x} and control \mathbf{u} by low-dimensional features $\Phi(\mathbf{x}, \mathbf{u})$.

Solution: describe a state using a vector of features (properties)

- Features are functions from states to real numbers (often 0/1) that capture important properties of the state
- Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - 1 / (dist to dot)²
 - Is Pacman in a tunnel? (0/1)
 - etc.
 - Is it the exact state on this slide?
- Can also describe a q-state (s, a) with features (e.g. action moves closer to food)

Curse of dimensionality - Q-learning

Iterate until convergence –

• For $\mathbf{x} \in X, \ \mathbf{u} \in U$

$$Q(\mathbf{x}, \mathbf{u}) = \frac{1}{n} \sum_{i \in \{\mathbf{x}_i = \mathbf{x}, \mathbf{u}_i = \mathbf{u}\}} r_i + \gamma \max_{\mathbf{u}'} Q(\mathbf{x}'_i, \mathbf{u}')$$

• End

Curse of dimensionality - approximate Q-learning

Iterate until convergence

• For all $\mathbf{x}_i, \mathbf{u}_i$

$$y_i = r_i + \gamma \max_{\mathbf{u}'} \left[\theta^\top \Phi(\mathbf{x}'_i, \mathbf{u}') \right)$$

- End
- Fit Q-function to approximate mapping between $\Phi(\mathbf{x}_i, \mathbf{u}_i)$ and y_i

$$\theta \leftarrow \arg\min_{\theta} \|\theta^{\top} \Phi(\mathbf{x}_i, \mathbf{u}_i) - y_i\|$$

- Curse of dimensionality
- Reward tuning

- Curse of dimensionality
- Reward tuning
- Exploration vs exploitation
 - ϵ -greedy exploration
 - or exploration extension $Q(\Phi(\mathbf{x},\mathbf{u})) + \frac{k}{N(\Phi)}$

р

44/46

- Curse of dimensionality
- Reward tuning
- Exploration vs exploitation
 - ϵ -greedy exploration
 - or exploration extension $Q(\Phi(\mathbf{x}, \mathbf{u})) + \frac{k}{N(\Phi)}$

Safe exploration, cooperative tasks, hierarchical reinforcment learning.

Conclusions

🔶 Primal Dual task

- convergence issues
- do we need to know sum of rewards?
- Do not forget features!
- What you can do?

What you can do?

- Work with us on:
 - real Search&Rescue platform
 - better IRO tasks
- TORCS Racing and demolishon derby simulator competition. http://en.wikipedia.org/wiki/TORCS
- Starcraft competition
 http://webdocs.cs.ualberta.ca/~cdavid/starcraftaicomp/