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MDP definition

� States: x ∈ X

� Actions: u ∈ U

� Transition probability: p(x′|x,u) : X × U ×X → [0; 1]

� Reward: r(x,u,x′) : X × U ×X → R

� Policy: πθ(x) : X → U
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MDP definition

� Trajectory is sequence of visited states and performed actions:
τ = (x0,u0, x1,u1, x2, . . . )

� Sum of rewards with limited horizont:

r(τ) =

H∑
i=0

r(xi,ui,xi+1)

� Sum of discounted rewards:

r(τ) =

∞∑
i=0

γi · r(xi,ui,xi+1)
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Different platforms

� Many different robots with various complexity of dynamics and
dimensionality of state-action space:

• triple pendulum,

• two-arm manipulator,

• mobile platform with auxiliary articulated sub-tracks and lockable
differential.
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Different problems

� Find the shortest collision-free trajectory in configuration space from start
state(s) xs to goal state(s) xg which respect dynamic constraints of the
robot (e.g. Dijkstra, A∗, RRT, PRM, LQR-trees or Guided Policy Search)
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Outline

Planning vs motion control

� Planning requires transition probability, policy is sequence of actions.

� Motion control can use but does not necessarily requires transition
probability, it learns policy function.

Lecture plan:

1. Path planning via Rapidly Exploring Random Trees (RRT).

2. Reinforcement learning for robotics (with and without motion model).
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Planning

� Open Motion Planning Library: http://wiki.ros.org/ompl
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Planning

� Open Motion Planning Library: http://wiki.ros.org/ompl

� The most direct approach to planning is to search: Depth-first search,
Breadth-first search, A*, Dijkstra

� Real robots usually operate in a continuous space.

� Search in continuous high-dimensional space can get stuck in a local
minimum, since you can expand infinite number of nodes in a small region.

� RRT [1] efficiently search non-convex, high-dimensional spaces by randomly
building a space-filling tree.

� Initial publication [1] has over 1200 citations.

[1] LaValle, Steven M. (October 1998). "Rapidly-exploring random trees: A new
tool for path planning". Technical Report (Computer Science Department, Iowa
State University) (TR 98-11).
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Algorithm of Rapidly Exploring Random Tree

Input: xs, xg

1. Initialize search tree by node xs

2. Pick a point x ∈ X at random.

3. Check if x is admissible (e.g. collision-free via direct kinematics)

4. Find the closest node to x (e.g. KD tree) y∗ = arg miny ‖y − x‖

5. Try connect y∗ with x

� if possible: add node x and edge [y∗,x] to the search tree.

� otherwise: throw x away.

6. Repeat from 2 until a feasible path is found.

Output: a collision-free path if exist (after infinite number of nodes expanded)
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Speed-ups of Rapidly Exploring Random Tree

� Bias to goal (greediness), e.g.

• with P = 0.95 choose x at random from X ,

• with P = 0.05 choose x := xg.

http://cmp.felk.cvut.cz


13/46
Speed-ups of Rapidly Exploring Random Tree

� Bias to goal (greediness), e.g.

• with P = 0.95 choose x at random from X ,

• with P = 0.05 choose x := xg.

� Bi-directional search (e.g. RRT-connect)

http://cmp.felk.cvut.cz


13/46
Speed-ups of Rapidly Exploring Random Tree

� Bias to goal (greediness), e.g.

• with P = 0.95 choose x at random from X ,

• with P = 0.05 choose x := xg.

� Bi-directional search (e.g. RRT-connect)

� If optimality is important:

http://cmp.felk.cvut.cz


13/46
Speed-ups of Rapidly Exploring Random Tree

� Bias to goal (greediness), e.g.

• with P = 0.95 choose x at random from X ,

• with P = 0.05 choose x := xg.

� Bi-directional search (e.g. RRT-connect)

� If optimality is important:

• informed-RRT [3]

http://cmp.felk.cvut.cz


13/46
Speed-ups of Rapidly Exploring Random Tree

� Bias to goal (greediness), e.g.

• with P = 0.95 choose x at random from X ,

• with P = 0.05 choose x := xg.

� Bi-directional search (e.g. RRT-connect)

� If optimality is important:

• informed-RRT [3]

• RRT* [2]

[2] Karaman, Sertac; Frazzoli, Emilio, "Incremental Sampling-based Algorithms
for Optimal Motion Planning", 2010

[3] J.D. Gammell, S.S. Srinivasa, T.D. Barfoot, "Informed RRT*", IROS, 2014
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Properties of Rapidly Exploring Random Tree

� What might be time consuming?
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Properties of Rapidly Exploring Random Tree

� What might be time consuming?
• Nearest neighbor search (grows with the size of the search tree).
• Collision checker (grow with the number of modeling elements).
• Complicated dynamics (explicit motion model might not exist).

� Voronoi bias: the search tree has bias to grow in large open regions.

� Probabilistic completeness: if nodes number reaches infinity than RRT finds
a feasible path (if exists) with P = 1.

� Cost of the best path in the RRT converges almost surely (i.e. with P = 1)
to a non-optimal value [2].

� Cost of the best path in the RRT* converges almost surely (i.e. with P = 1)
to the optimal value [2].

� If accurate dynamic motion model is known (ẋ, ẍ relations are determined),
then RRT searches for trajectory in lifted state-space [x, ẋ, ẍ]>.
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Smooth path interpolation

� If only kinematic model is available, discrete path is searched (i.e. N points
y0 ∈ X, . . .yN−1 ∈ X in configuration space).

� Trajectory is defined as a smooth interpolation of path
� Example of smooth interpolation is pair-wise cubic function Y , i.e sequence
of N − 1 cubic functions Yi(t) : [0, 1]→ X such that:
• Yi(t) connects yi with yi+1.
• Y has continuous first and second derivatives.
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Planning summary

1. Advantage: It has statistical guarantees of the optimality.

2. Drawback 1: Whenever results of action differs from the model (i.e.
everytime), you need to replan the whole trajectory.

3. Drawback 2: Accurate motion model is required.

For some problems, reinforcement learning trades-off optimality (1) for (2)+(3).
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What if motion model is unknown

� Can you design a motion control algorithm without motion model?
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Problem definition

� We have a robot and we have no idea how to control it.

� Nevertheless, we know what is good and bad state - we have a definition of
rewards.

� We control it somehow (e.g. with some initial policy) and record the
trajectory τ (or several trajectories).

� Given these trajectories, change the policy to increase expected sum of
rewards

J(θ) = E{r(τ)}
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� Denote p(τ |θ) probability of trajectory τ occurs when following policy πθ
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Problem definition

� Denote p(τ |θ) probability of trajectory τ occurs when following policy πθ
� Criterion to be maximized is the expected sum of rewards

J(θ) = E{r(τ)} =

∫
τ∈T

p(τ |θ)r(τ) dτ

� We solve the following optimization problem

θ∗ = arg max
θ
J(θ)
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Problem solution

� As usually, you can:

• either solve primal task e.g. by following gradient ∇J to maximize
J(θ) directly.

- primal is often solved in the optimal control community (e.g. LQR),

• or solve dual task to find state-action function Q(x,u) : X ×U → R
which tells expected sum rewards when choosing action u from state x.

- optimal policy π∗ = arg maxuQ(x,u)

- dual is often employed by AI community as heuristics for state-space
search

- Q-values could provide metrics for RRT [Tedrake-LQR-trees-2015]

Dual task provides alternative point-of-view (e.g. shadow prices in LP or
sparse feature selection for SVM)
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Primal task - approximating criterion.

� Use πθ(x) to get several trajectories τi.
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Primal task - approximating criterion.

� Use πθ(x) to get several trajectories τi.

� Approximate criterion value in θ as average reward of trajectories
τi ∼ p(τ |θ) generated with policy πθ

J(θ) = E{r(τ)} =

∫
τ∈T

p(τ |θ)r(τ) dτ ≈ 1

N

N∑
i=1

r(τi)

� We can approximate criterion value, what about gradient?
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Primal task - approximating gradient

� Can we obtain the gradient by computing also J(θ + ∆θ)?
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Primal task - approximating gradient

� Can we obtain the gradient by computing also J(θ + ∆θ)?

� Of course, but doing it from one sample is quite unstable (especially for high
dimensional θ).

� Perform several small random perturbations ∆θi and compute J(θ + ∆θi).

� Relation to gradient ∇J(θ) is given by the first order Taylor polynom

J(θ + ∆θi) = J(θ) +∇J(θ)>∆θi

∆θ>i ∇J(θ) = J(θ)− J(θ + ∆θi)∆θ>1
...

∆θ>n


︸ ︷︷ ︸
matrix A

∇J(θ) =

J(θ)− J(θ + ∆θ1))
...

J(θ)− J(θ + ∆θn))


︸ ︷︷ ︸

vector b
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Primal task - solution

� Gradient is solution of overdetermined set of linear equations:

∇J(θ) =

∆θ>1
...

∆θ>n


+

·

J(θ)− J(θ + ∆θ1))
...

J(θ)− J(θ + ∆θn))



http://cmp.felk.cvut.cz


23/46
Primal task - solution

� Gradient is solution of overdetermined set of linear equations:

∇J(θ) =

∆θ>1
...

∆θ>n


+

·

J(θ)− J(θ + ∆θ1))
...

J(θ)− J(θ + ∆θn))



� Algorithm is simple:

• Randomly initialize θ

• Use πθ(x) to get trajectories.

• Compute ∇J(θ) using pseudo-inverse.

• Update θ ← θ + α ∇J(θ)
‖∇J(θ)‖
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Dual task

� State-action function Q(x,u) : X × U → R

� Expected sum of discounted rewards when choosing action u from state x.
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Dual task

� State-action function Q(x,u) : X × U → R

� Expected sum of discounted rewards when choosing action u from state x.

� Let us look at the grid world with stochastic transitions!
Canonical Example: Grid World 

$  The agent lives in a grid 
$  Walls block the agent’s path 
$  The agent’s actions do not 

always go as planned: 
$  80% of the time, the action North 

takes the agent North  
(if there is no wall there) 

$  10% of the time, North takes the 
agent West; 10% East 

$  If there is a wall in the direction 
the agent would have been taken, 
the agent stays put 

$  Big rewards come at the end 
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Dual task

� State-action function Q(x,u) : X × U → R

� Mean sum of discounted rewards when choosing action u from state x.

� How can we learn from recorded trajectories and corresponding rewards?

http://cmp.felk.cvut.cz


26/46
Dual task - naive learning example

� State-action function Q(x,u) : X × U → R

� Mean sum of discounted rewards when choosing action u from state x.

� How can we learn from recorded trajectories and corresponding rewards?

� τ1 : (a,R,b,R, c,R,d), r(τ1) = 1
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� State-action function Q(x,u) : X × U → R

� Mean sum of discounted rewards when choosing action u from state x.

� How can we learn from recorded trajectories and corresponding rewards?

� τ1 : (a,R,b,R, c,R,d), r(τ1) = 1

� τ2 : (a,R,b,D, e,R, f,R, g), r(τ2) = −1

Q R - right D - down
a
b
c
e ?
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� State-action function Q(x,u) : X × U → R

� Mean sum of discounted rewards when choosing action u from state x.

� How can we learn from recorded trajectories and corresponding rewards?

� τ1 : (a,R,b,R, c,R,d), r(τ1) = 1
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Dual task - naive learning example

� State-action function Q(x,u) : X × U → R

� Mean sum of discounted rewards when choosing action u from state x.

� How can we learn from recorded trajectories and corresponding rewards?

� τ1 : (a,R,b,R, c,R,d), r(τ1) = 1

� τ2 : (a,R,b,D, e,R, f,R, g), r(τ2) = −1

� What is wrong? Why I learned nothing about policy for a?

Q R - right D - down
a 0
b 1 -1
c 1
e -1
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Dual task - naive learning example

� State-action function Q(x,u) : X × U → R

� Mean sum of discounted rewards when choosing action u from state x.

� How can we learn from recorded trajectories and corresponding rewards?

� τ1 : (a,R,b,R, c,R,d), r(τ1) = 1

� τ2 : (a,R,b,D, e,R, f,R, g), r(τ2) = −1

� I know that I can behave better from b, can I use it?

Q R - right D - down
a 0
b 1 -1
c 1
e -1
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Dual task - naive learning example

� State-action function Q(x,u) : X × U → R
� Mean sum of discounted rewards when choosing action u from state x.
� How can we learn from recorded trajectories and corresponding rewards?
� τ1 : (a,R,b,R, c,R,d), r(τ1) = 1

� τ2 : (a,R,b,D, e,R, f,R, g), r(τ2) = −1

� I know that I can behave better from b, can I use it?
� Recursively: Q(a,R) = average(reward for a + best rewards from b)

Q R - right D - down
a 1
b 1 -1
c 1
e -1
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recursive definition of Q

� Define Q(x,u) recursively:

• If model is unknown

Q(x,u) = r(x,u,x′) + γmax
u′

Q(x′,u′)
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recursive definition of Q

� Define Q(x,u) recursively:

• If model is unknown

Q(x,u) = r(x,u,x′) + γmax
u′

Q(x′,u′)

• If a stochastic model is known

Q(x,u) =
∑
x′

p(x′|u,x)
[
r(x,u,x′) + γmax

u′
Q(x′,u′)

]
(Bellman equation)
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Q-learning

� Initialize Q(x,u) = 0 ∀x,u
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Q-learning

� Initialize Q(x,u) = 0 ∀x,u

� Drive the robot and record trajectories like that:

(x0,u0,x
′
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Q-learning

� Initialize Q(x,u) = 0 ∀x,u

� Drive the robot and record trajectories like that:

(x0,u0,x
′
0, r0), (x1 = x′0,u1,x

′
1, r1), . . .

� For x ∈ X, u ∈ U

Q(x,u) =
1

n

∑
i∈{xi=x,ui=u}

ri + γmax
u′

Q(x′i,u
′)

� End
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Q-learning

� Initialize Q(x,u) = 0 ∀x,u

� Drive the robot and record sequences:

(x0,u0,x
′
0, r0), (x1 = x′0,u1,x

′
1, r1), . . .

—————————— Iterate until convergence ——————————

� For x ∈ X, u ∈ U

Q(x,u) =
1

n

∑
i∈{xi=x,ui=u}

ri + γmax
u′

Q(x′i,u
′)

� End

——————(fixed point algorithm for system of lin. eq.)——————–
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Q-learning

� Initialize Q(x,u) = 0 ∀x,u

————————– Iterate until good policy found ————————–

� Drive the robot and record sequences:

(x0,u0,x
′
0, r0), (x1 = x′0,u1,x

′
1, r1), . . .

� For x ∈ X, u ∈ U

Q(x,u) =
1

n

∑
i∈{xi=x,ui=u}

ri + γmax
u′

Q(x′i,u
′)

� End

—————————————————————————————–
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State-value function example I - grid-world

� Q-learning for stochastic grid-world.

Canonical Example: Grid World 

$  The agent lives in a grid 
$  Walls block the agent’s path 
$  The agent’s actions do not 

always go as planned: 
$  80% of the time, the action North 

takes the agent North  
(if there is no wall there) 

$  10% of the time, North takes the 
agent West; 10% East 

$  If there is a wall in the direction 
the agent would have been taken, 
the agent stays put 

$  Big rewards come at the end 
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State-value function example I - grid-world
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Where is the catch?
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Where is the catch?

� Curse of dimensionality - considered state space for pacman.
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Where is the catch?

� Curse of dimensionality - are these states the same? Do we want it?
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Where is the catch?

� Curse of dimensionality - we need to replace high-dimensional states x and
control u by low-dimensional features Φ(x,u).
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Where is the catch?

� Curse of dimensionality - Q-learning

———————– Iterate until convergence ———————–

• For x ∈ X, u ∈ U

Q(x,u) =
1

n

∑
i∈{xi=x,ui=u}

ri + γmax
u′

Q(x′i,u
′)

• End

——————————————————————————-
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Where is the catch?

� Curse of dimensionality - approximate Q-learning

———————– Iterate until convergence ———————–

• For all xi, ui
yi = ri + γmax

u′
[θ>Φ(x′i,u

′))]

• End

• Fit Q-function to approximate mapping between Φ(xi,ui) and yi

θ ← arg min
θ
‖θ>Φ(xi,ui)− yi‖

——————————————————————————-
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• ε-greedy exploration

• or exploration extension Q(Φ(x,u)) + k
N(Φ)
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Where is the catch?

� Curse of dimensionality

� Reward tuning

� Exploration vs exploitation

• ε-greedy exploration

• or exploration extension Q(Φ(x,u)) + k
N(Φ)

� Safe exploration, cooperative tasks, hierarchical reinforcment learning.
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Conclusions

� Primal Dual task

• convergence issues

• do we need to know sum of rewards?

� Do not forget features!

� What you can do?
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What you can do?

� Work with us on:

• real Search&Rescue platform

• better IRO tasks

� TORCS - Racing and demolishon derby simulator competition.
http://en.wikipedia.org/wiki/TORCS

� Starcraft competition
http://webdocs.cs.ualberta.ca/~cdavid/starcraftaicomp/

http://cmp.felk.cvut.cz
http://en.wikipedia.org/wiki/TORCS
http://webdocs.cs.ualberta.ca/~cdavid/starcraftaicomp/
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