Epipolar Geometry and its application for the construction of state-of-the-art sensors.

Karel Zimmermann

Czech Technical University in Prague Faculty of Electrical Engineering, Department of Cybernetics Center for Machine Perception http://cmp.felk.cvut.cz/~zimmerk, zimmerk@fel.cvut.cz

 You are given two images of an object captured by two cameras P and Q from different view-points.

• Given pair of corresponding pixels (\mathbf{u}, \mathbf{v}) (i.e. pixels corresponding to the same unknown 3D point \mathbf{X} on the object), you can easily compute \mathbf{X} .

р

3/69

• Given pair of corresponding pixels (\mathbf{u}, \mathbf{v}) (i.e. pixels corresponding to the same unknown 3D point \mathbf{X} on the object), you can easily compute \mathbf{X} .

 The only problem is, that you do not have the correspondence (u, v) and naïve matching of pixel neighbourhoods does not work. р

m

5/69

This lesson is about

• how to get 3D points from images captured by known cameras and

р

m

6/69

• how to use this knowledge to built state-of-the-art depth sensors.

Outline

Epipolar geometry

- Epipolar line, essential and fundamental matrix
- L_2 estimation of the essential matrix
- Depth sensors: Stereo, Kinect and RealSense
- Depth from a single camera and the robust estimation of the essential matrix (RANSAC).

• You are given 3×4 camera matrix $P = \begin{bmatrix} \mathbf{p}_1^\top \\ \mathbf{p}_2^\top \\ \mathbf{p}_3^\top \end{bmatrix}$

ullet 3D point with homogeneous coordinates ${f X}$ projects on pixel ${f u}$

• You are given
$$3 \times 4$$
 camera matrix $P = \begin{bmatrix} \mathbf{p}_1^\top \\ \mathbf{p}_2^\top \\ \mathbf{p}_3^\top \end{bmatrix}$

ullet 3D point with homogeneous coordinates ${f X}$ projects on pixel ${f u}$

$$u_1 = \frac{\mathbf{p}_1^\top \mathbf{X}}{\mathbf{p}_3^\top \mathbf{X}}, \quad u_2 = \frac{\mathbf{p}_2^\top \mathbf{X}}{\mathbf{p}_3^\top \mathbf{X}}$$

• What if **u** is known? Which **X** correspond to **u**?

- What if ${f u}$ is known? Which ${f X}$ correspond to ${f u}$?
- All 3D points corresponding to pixel u lies in 1D linear subspace (ray) of 3D space (2 linear equations with 3 unknowns):

$$\begin{array}{l} u_1 \mathbf{p}_3^\top \mathbf{X} = \mathbf{p}_1^\top \mathbf{X}, \\ u_2 \mathbf{p}_3^\top \mathbf{X} = \mathbf{p}_2^\top \mathbf{X} \end{array} \Rightarrow \begin{bmatrix} u_1 \mathbf{p}_3^\top - \mathbf{p}_1^\top \\ u_2 \mathbf{p}_3^\top - \mathbf{p}_2^\top \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \mathbf{0}$$

Fundamental matrix

Projection of the ray from ${f u}$ into a second camera is called epipolar line

$$\{\mathbf{v} \mid \mathbf{u}^{\top} \mathbf{F} \, \mathbf{v} = 0\},\$$

• where matrix $\mathbf{F} = \mathbf{K}^{\top} (\mathbf{R} \times \mathbf{t}) \mathbf{K}$ is called fundamental matrix.

Essential matrix

• We assume that K is known (i.e. the camera is calibrated).

Essential matrix

- We assume that K is known (i.e. the camera is calibrated).
- We normalize coordinates $u_n = K^{-1}u$, $v_n = K^{-1}v$ and pretend that K is identity.

Essential matrix

- We assume that K is known (i.e. the camera is calibrated).
- We normalize coordinates $u_n = K^{-1}u$, $v_n = K^{-1}v$ and pretend that K is identity.

m p

12/69

• Epipolar line wrt normalized coordinates is $\{\mathbf{v_n} \mid \mathbf{u_n}^{\top} \mathbf{E} \mathbf{v_n} = 0\}$, where matrix $\mathbf{E} = \mathbf{R} \times \mathbf{t}$ is called essential matrix.

What is the essential matrix good for?

Important result 1:

- If camera motion is **known** (e.g. stereo), then
- all possible correspondences of point \mathbf{u} lie on the epipolar line (i.e. either $\{\mathbf{v} \mid \mathbf{u}^{\top} F \mathbf{v} = 0\}$ or $\{\mathbf{v}_n \mid \mathbf{u}_n^{\top} E \mathbf{v}_n = 0\}$).

What is the essential matrix good for?

- If camera motion is **known** (e.g. stereo), then
- all possible correspondences of point \mathbf{u} lie on the epipolar line (i.e. either $\{\mathbf{v} \mid \mathbf{u}^{\top} \mathbf{F} \mathbf{v} = 0\}$ or $\{\mathbf{v}_n \mid \mathbf{u}_n^{\top} \mathbf{E} \mathbf{v}_n = 0\}$).

13/69

Important result 2:

- If camera motion is **unknown** (e.g. motion of a single camera), then
- the essential matrix determines relative position of cameras (i.e. motion), since there exist unique decomposition $E = R \times t$.

What is the essential matrix good for?

- If camera motion is **known** (e.g. stereo), then
- all possible correspondences of point \mathbf{u} lie on the epipolar line (i.e. either $\{\mathbf{v} \mid \mathbf{u}^{\top} \mathbf{F} \mathbf{v} = 0\}$ or $\{\mathbf{v}_n \mid \mathbf{u}_n^{\top} \mathbf{E} \mathbf{v}_n = 0\}$).

p

13/69

Important result 2:

- If camera motion is **unknown** (e.g. motion of a single camera), then
- the essential matrix determines relative position of cameras (i.e. motion), since there exist unique decomposition $E = R \times t$.
- + From now on, we drop the index n in normalized coordinates.
- How do we obtain the essential/fundamental matrix?

• Let us assume that we have several correct correspondences.

- Let us assume that we have several correct correspondences.
- Essential matrix E is just a solution of (overdetermined) homogeneous system of linear equations.

- Let us assume that we have several correct correspondences.
- Essential matrix E is just a solution of (overdetermined) homogeneous system of linear equations.

p

14/69

• For each correspondence pair \mathbf{u}, \mathbf{v} , the following holds:

$$\mathbf{u}^{\top} \mathbf{E} \, \mathbf{v} = \mathbf{u}^{\top} \begin{bmatrix} \mathbf{e}_{1}^{\top} \\ \mathbf{e}_{2}^{\top} \\ \mathbf{e}_{3}^{\top} \end{bmatrix} \mathbf{v} = \mathbf{u}^{\top} \begin{bmatrix} \mathbf{e}_{1}^{\top} \mathbf{v} \\ \mathbf{e}_{2}^{\top} \mathbf{v} \\ \mathbf{e}_{3}^{\top} \mathbf{v} \end{bmatrix} = \begin{bmatrix} u_{1} \mathbf{e}_{1}^{\top} \mathbf{v} + u_{2} \mathbf{e}_{2}^{\top} \mathbf{v} + u_{3} \mathbf{e}_{3}^{\top} \mathbf{v} \end{bmatrix} =$$

- Let us assume that we have several correct correspondences.
- Essential matrix E is just a solution of (overdetermined) homogeneous system of linear equations.

• For each correspondence pair \mathbf{u}, \mathbf{v} , the following holds:

$$\mathbf{u}^{\top} \mathbf{E} \, \mathbf{v} = \mathbf{u}^{\top} \begin{bmatrix} \mathbf{e}_{1}^{\top} \\ \mathbf{e}_{2}^{\top} \\ \mathbf{e}_{3}^{\top} \end{bmatrix} \mathbf{v} = \mathbf{u}^{\top} \begin{bmatrix} \mathbf{e}_{1}^{\top} \mathbf{v} \\ \mathbf{e}_{2}^{\top} \mathbf{v} \\ \mathbf{e}_{3}^{\top} \mathbf{v} \end{bmatrix} = [u_{1} \mathbf{e}_{1}^{\top} \mathbf{v} + u_{2} \mathbf{e}_{2}^{\top} \mathbf{v} + u_{3} \mathbf{e}_{3}^{\top} \mathbf{v}] = [u_{1} \mathbf{v}^{\top} \mathbf{v} + u_{2} \mathbf{e}_{2}^{\top} \mathbf{v} + u_{3} \mathbf{e}_{3}^{\top} \mathbf{v}] = [u_{1} \mathbf{v}^{\top} \mathbf{v} + u_{2} \mathbf{v}^{\top} \mathbf{v} + u_{3} \mathbf{e}_{3}^{\top} \mathbf{v}] = [u_{1} \mathbf{v}^{\top} \mathbf{v} + u_{2} \mathbf{v}^{\top} \mathbf{v} + u_{3} \mathbf{v}^{\top} \mathbf{v}] \begin{bmatrix} \mathbf{e}_{1} \\ \mathbf{e}_{2} \\ \mathbf{e}_{3} \end{bmatrix} = 0$$

It must hold for all correspondece pairs \mathbf{u}_i , \mathbf{v}_i , therefore:

$$\begin{bmatrix} u_{11}\mathbf{v}_1^\top & u_{12}\mathbf{v}_1^\top & u_{13}\mathbf{v}_1^\top \\ u_{21}\mathbf{v}_2^\top & u_{22}\mathbf{v}_2^\top & u_{23}\mathbf{v}_2^\top \\ \vdots \vdots \end{bmatrix} \begin{bmatrix} \mathbf{e}_1 \\ \mathbf{e}_2 \\ \mathbf{e}_3 \end{bmatrix} = \mathbf{0}$$

• It is just homogeneous set of linear equations:

$$\underbrace{\begin{bmatrix} u_{11}\mathbf{v}_1^\top & u_{12}\mathbf{v}_1^\top & u_{13}\mathbf{v}_1^\top \\ u_{21}\mathbf{v}_2^\top & u_{22}\mathbf{v}_2^\top & u_{23}\mathbf{v}_2^\top \\ \vdots \vdots \\ \mathbf{A} & \mathbf{e} \end{bmatrix}}_{\mathbf{A}} \begin{bmatrix} \mathbf{e}_1 \\ \mathbf{e}_2 \\ \mathbf{e}_3 \end{bmatrix} = \mathbf{0}$$

- We want to avoid trivial solution $\mathbf{e}_1 = \mathbf{e}_2 = \mathbf{e}_3 = \mathbf{0}$,
- therefore the following optimization task (constrained LSQ) is solved:

$$\arg\min_{\mathbf{e}} \|\mathbf{A}\mathbf{e}\| \text{ subject to } \|\mathbf{e}\| = 1$$

 the solution is singular vector of matrix A corresponding to the smallest singular value (can be found via SVD or eigenvectors/eigenvalues of AA^T)

 The same is valid for the estimation of the fundamental matrix from not normalized coordinates.

- The same is valid for the estimation of the fundamental matrix from not normalized coordinates.
- L_2 -norm works only in a controlled environment (e.g. offline stereo calibration).

- The same is valid for the estimation of the fundamental matrix from not normalized coordinates.
- L_2 -norm works only in a controlled environment (e.g. offline stereo calibration).
- I will show how essential/fundamental matrix allows to estimate correspondences in state-of-the-art depth (3D) sensors.

- Pair of cameras mounted on a rigid body, which provides depth (3D points) of the scene (simulates human binocular vision).
- Relative position of cameras fixed

⁰Courtesy of prof.Boris Flach for original stereo images and depth images

- Pair of cameras mounted on a rigid body, which provides depth (3D points) of the scene (simulates human binocular vision).
- Relative position of cameras fixed
- offline: fundamental matrix estimated from known correspondences.

⁰Courtesy of prof.Boris Flach for original stereo images and depth images

- Relative position of cameras fixed
- offline: fundamental matrix estimated from known correspondences.
- **online**: correspondences searched along epipolar lines.

⁰Courtesy of prof.Boris Flach for original stereo images and depth images

Block-matching energy function: $E(u) = \sum_{x \in W} (I_L(x) - I_R(x+u))^2$

Block-matching energy function: $E(u) = \sum_{x \in W} (I_L(x) - I_R(x+u))^2$

Block-matching energy function: $E(u) = \sum_{x \in W} (I_L(x) - I_R(x+u))^2$

Correspondence for each pixel estimated separately: $u^* = \arg \min_u E(u)$

Correspondence for each pixel estimated separately: $u^* = \arg \min_u E(u)$

How can we improve the result?

Stereo

Energy with horizontal smoothness term: $E(u_1, u_2) = E(u_2) + C \cdot (u_2 - u_1)^2$

Stereo

Dynamic programming solves each line of N pixels separately:

$$U^* = \arg\min_{U \in \mathcal{R}^{\mathcal{N}}} \sum_{i=1}^{N-1} E(u_i, u_{i+1})$$

Image

Block matching

Dynamic programming

What else can we do?

Image

Block matching

Dynamic programming

Stereo

Enforce also vertical smoothness \Rightarrow graph energy minimization (computationally demanding optimization solved on specialized chips).

Block matching

Dynamic programming

(Min,+) solution

Stereo

Enforce also vertical smoothness \Rightarrow graph energy minimization (computationally demanding optimization solved on specialized chips).

Block matching

Dynamic programming

(Min,+) solution

Limitation: usually works only on sufficiently rich patterns and sufficiently smooth depths.

Stereo competition

Do you have your own idea how to estimate the depth from stereo images?
 http://vision/middlebury.edu/stereo/data/2014/

m p

28/69

Kinect (structured-light approach)

- Stereo looks at the same object two-times and estimates the correspondence from two passive RGB images.
- Kinect avoids ambiguity by actively projecting a unique IR pattern on the surface and search for its known appearance in the IR camera.

 Since camera-projector relative position is known, correspondence between projected pixel and observed pixel lies again on epipolar lines.

- Unique IR speckle-pattern: no two sub-windows with the same pattern
- Energy along epipolar line has only one strong minimum.
- Kinect fusion: http://research.microsoft.com/en-us/projects/surfacerecon/
- Limitation: works only indoor.

- Hybrid approach one IR projector and two IR cameras.
- Combines advantages of stereo and structured light approach. So far best solution for robotics.

• Is it possible to get the 3D points from a single camera?

- Is it possible to get the 3D points from a single camera?
- Theoretically yes (if scene is static and the camera moves around sufficiently).

- Is it possible to get the 3D points from a single camera?
- Theoretically yes (if scene is static and the camera moves around sufficiently).
- We have also two cameras. Main difference is that they have been captured in different times and the relative motion (i.e. epipolar geometry) is unknown.

- Is it possible to get the 3D points from a single camera?
- Theoretically yes (if scene is static and the camera moves around sufficiently).
- We have also two cameras. Main difference is that they have been captured in different times and the relative motion (i.e. epipolar geometry) is unknown.
- The second part of this lecture is about how to estimate online both the relative motion of the camera and the 3D model of the world from captured images.

- Is it possible to get the 3D points from a single camera?
- Theoretically yes (if scene is static and the camera moves around sufficiently).
- We have also two cameras. Main difference is that they have been captured in different times and the relative motion (i.e. epipolar geometry) is unknown.
- The second part of this lecture is about how to estimate online both the relative motion of the camera and the 3D model of the world from captured images.
- We assume, that at least the camera intrinsic parameters K has been calibrated offline.

Algorithm at glance

- 1. Get image I_k .
- 2. Estimate tentative correspondences between I_{k-1} and I_k .
- 3. Find correct correspondences and robustly estimate essential matrix ${\ensuremath{\text{E}}}$
- 4. Decompose E into R_k and t_k .
- 5. Compute 3D model (points X).
- 6. Rescale t_k according to relative scale r.
- 7. k = k + 1

• Which points are suitable?

 $\lambda_1 \text{ and } \lambda_2 \text{ are large}$

large λ_1 , small λ_2

small λ_1 , small λ_2

---.

•

Estimate tentative correspondences

- **(m p**) 44/69
- Estimate tentative correspondences by matching pixel neighbourhoods.
- Matching pixels: Tracking for high temporal resolution
 OpenCV Lucas-Kanade tracker
- Matching invariant descriptors: Detection for high spatial resolution
 OpenCV: SIFT, SURF etc ...

Algorithm at glance

- 1. Get image I_k .
- 2. Estimate tentative correspondences between I_{k-1} and I_k .
- 3. Find correct correspondences and robustly estimate essential matrix ${\bf E}$
- 4. Decompose E into R_k and t_k .
- 5. Compute 3D model (points X).
- 6. Rescale t_k according to relative scale r.
- 7. k = k + 1

Estimate essential matrix

- most of the tentative correspondences is incorrect,
- L_2 -norm is very sensitive to such incorrect correspondence (i.e. ouliers).
- Direct minimization of the L_2 -norm, yields poor essential matrix

 $\mathbf{e}^* = \arg\min_{\mathbf{e}} \|\mathbf{A}\mathbf{e}\|$ s.t. $\|\mathbf{e}\| = 1$

- We will use outlier-insensitive estimation which will find both:
 - the correct essential matrix and
 - the set of correct correspondences (i.e. inliers).

• What makes the L_2 -norm outlier-sensitive?

• What makes the L_2 -norm outlier-sensitive?

• L_2 -norm:

 $\arg\min_{\mathbf{e}} \|\mathbf{A}\mathbf{e}\|$ s.t. $\|\mathbf{e}\| = 1$

- What makes the L_2 -norm outlier-sensitive?
- L_2 -norm:

 $\arg\min_{\mathbf{e}} \|\mathbf{A}\mathbf{e}\|$
s.t. $\|\mathbf{e}\| = 1$

RANSAC algorithm

• We solve the following not-convex and not-differentiable optimization task:

$$\begin{aligned} \arg\min_{\mathbf{e}} \ 1 - \rho(\mathbf{A}\mathbf{e}) &= \arg\max_{\mathbf{e}} \ \rho(\mathbf{A}\mathbf{e}) \\ \text{s.t.} \ \|\mathbf{e}\| &= 1 \end{aligned} \qquad \text{s.t.} \ \|\mathbf{e}\| = 1 \end{aligned}$$

RANSAC algorithm

• We solve the following not-convex and not-differentiable optimization task:

$$\arg\min_{\mathbf{e}} 1 - \rho(\mathbf{A}\mathbf{e}) = \arg\max_{\mathbf{e}} \rho(\mathbf{A}\mathbf{e})$$

s.t. $\|\mathbf{e}\| = 1$ s.t. $\|\mathbf{e}\| = 1$

RANSAC (RAndom SAmple Consensus) algorithm:

- 1. Randomly choose minimal subset of equations (rows) B from A.
- 2. Solve constrained LSQ problem by SVD decomposition:

$$\mathbf{e}^* = \arg\min_{\mathbf{e}} \|\mathbf{B}\mathbf{e}\|$$

s.t. $\|\mathbf{e}\| = 1$

- 3. Estimate $\rho(\mathbf{A}\mathbf{e}^*)$ as the number of rows \mathbf{a}_i^{\top} of A which satisfy $|\mathbf{a}_i^{\top}\mathbf{e}^*| < \epsilon$.
- 4. If $\rho_{\max} > \rho(\mathbf{e}^*)$ then $\rho_{\max} = \rho(\mathbf{e}^*)$ and $\mathbf{e}_{\max} = \mathbf{e}^*$.
- 5. Repeat from 1 until the optimum is found with sufficient probability.

RANSAC properties

Important result 3: Let us denote

- $N \dots$ number of data points.
- $w \ldots$ fraction of inliers.
- s... size of the sample
- $K \dots$ number of trials.

 $\bullet \ p \dots$ probability to select uncontamined samples at least once

🔶 then

$$K = \frac{\log(1-p)}{\log(1-w^s)}$$

RANSAC properties

Important result 3: Let us denote

- $N \dots$ number of data points.
- $w \ldots$ fraction of inliers.
- s... size of the sample
- $K \dots$ number of trials.
- $\bullet \ p \ldots$ probability to select uncontamined samples at least once

🔸 then

$$K = \frac{\log(1-p)}{\log(1-w^s)}$$

р

50/69

- We search for 8 unknows $(\dim(\mathbf{e}) = 9 \text{ minus scale}) \Rightarrow \text{ at least 8}$ correspondences needed $\Rightarrow s = 8 \Rightarrow K$ grows fast with s.
- However you want to find only camera translation (3 DoFs) and rotation (3 DoFs) minus scale \Rightarrow 5-point algorithm [Nister 2003].

Algorithm at glance

- 1. Get image I_k .
- 2. Estimate tentative correspondences between I_{k-1} and I_k .
- 3. Find correct correspondences and compute essential matrix E.
- 4. Decompose E into R_k and t_k .
- 5. Compute 3D model (points X).
- 6. Rescale t_k according to relative scale r.
- 7. k = k + 1
Decompose E into R and t

• Once you find E, you can estimate camera motion by SVD ($E = U\Sigma V^{\top}$) as follows: $[t]_{\times} = VW\Sigma V^{\top}$, $R = UW^{-1}V^{\top}$, **but !!!**:

Decompose E into R and t

- Once you find E, you can estimate camera motion by SVD ($E = U\Sigma V^{\top}$) as follows: $[t]_{\times} = VW\Sigma V^{\top}, R = UW^{-1}V^{\top}, but !!!$:
- Scale r is unknown (if $\|\mathbf{A} \cdot \mathbf{e}^*\| \approx 0$, then $\|\mathbf{A} \cdot (r\mathbf{e}^*)\| \approx 0$).

Decompose E into R and t

- Once you find E, you can estimate camera motion by SVD ($E = U\Sigma V^{\top}$) as follows: $[t]_{\times} = VW\Sigma V^{\top}, R = UW^{-1}V^{\top}, but !!!$:
- Scale r is unknown (if $\|\mathbf{A} \cdot \mathbf{e}^*\| \approx 0$, then $\|\mathbf{A} \cdot (r\mathbf{e}^*)\| \approx 0$).

Algorithm at glance

- 1. Get image I_k .
- 2. Estimate tentative correspondences between I_{k-1} and I_k (either feature matching or tracking).
- 3. Find correct correspondences and compute essential matrix E.
- 4. Decompose E into R_k and t_k .
- 5. Compute 3D model (points X).
- 6. Rescale t_k according to relative scale r.
- 7. k = k + 1

Compute 3D model

Scene point X is observed by two cameras P and Q.
Let u = [u₁ u₂][⊤] and v = [v₁ v₂][⊤] are projections of X in P and Q,
then [⊤]--

$$u_1 = \frac{\mathbf{p}_1^{\top} \mathbf{X}}{\mathbf{p}_3^{\top} \mathbf{X}} \Rightarrow u_1 \mathbf{p}_3^{\top} \mathbf{X} - \mathbf{p}_1^{\top} \mathbf{X} = 0$$

Compute 3D model

- Scene point X is observed by two cameras P and Q.
- Let $\mathbf{u} = [u_1 \ u_2]^{\top}$ and $\mathbf{v} = [v_1 \ v_2]^{\top}$ be a correspondence pair (i.e. projections of X in P and Q).

Then

$$u_1 = \frac{\mathbf{p}_1^\top \mathbf{X}}{\mathbf{p}_3^\top \mathbf{X}} \Rightarrow u_1 \mathbf{p}_3^\top \mathbf{X} - \mathbf{p}_1^\top \mathbf{X} = 0$$

and similarly ...

$$u_{2} = \frac{\mathbf{p}_{2}^{\top} \mathbf{X}}{\mathbf{p}_{3}^{\top} \mathbf{X}} \Rightarrow u_{2} \mathbf{p}_{3}^{\top} \mathbf{X} - \mathbf{p}_{2}^{\top} \mathbf{X} = 0$$
$$v_{1} = \frac{\mathbf{q}_{1}^{\top} \mathbf{X}}{\mathbf{q}_{3}^{\top} \mathbf{X}} \Rightarrow v_{1} \mathbf{q}_{3}^{\top} \mathbf{X} - \mathbf{q}_{1}^{\top} \mathbf{X} = 0$$
$$v_{2} = \frac{\mathbf{q}_{2}^{\top} \mathbf{X}}{\mathbf{q}_{3}^{\top} \mathbf{X}} \Rightarrow v_{2} \mathbf{q}_{3}^{\top} \mathbf{X} - \mathbf{q}_{2}^{\top} \mathbf{X} = 0$$

Compute 3D model

$$\begin{bmatrix} u_1 \mathbf{p}_3^\top - \mathbf{p}_1^\top \\ u_2 \mathbf{p}_3^\top - \mathbf{p}_2^\top \\ v_1 \mathbf{q}_3^\top - \mathbf{q}_1^\top \\ v_2 \mathbf{q}_3^\top - \mathbf{q}_2^\top \end{bmatrix} \mathbf{X} = \mathbf{0}$$

Algorithm at glance

- 1. Get image I_k .
- 2. Compute correspondences between I_{k-1} and I_k (either feature matching or tracking).
- 3. Find correct correspondences and compute essential matrix E.
- 4. Decompose E into R_k and t_k .
- 5. Compute 3D model (points X).
- 6. Rescale t_k according to relative scale r.
- 7. k = k + 1

1. You cannot get absolute scale (without a calibration object).

- 1. You cannot get absolute scale (without a calibration object).
- 2. If you estimate motion (and 3D model) from C_1, C_2

- 1. You cannot get absolute scale (without calibration object).
- 2. If you estimate motion (and 3D model) from C_1, C_2 and then from C_2, C_3 you can have completely different scale.

р

60/69

- 1. You cannot get absolute scale (without calibration object).
- 2. If you estimate motion (and 3D model) from C_1, C_2 and then from C_2, C_3 you can have completely different scale.
- 3. You want to keep the same relative scale r by rescaling t (and 3D)

$$r = \frac{d_k}{d_{k-1}} = \frac{\|X_k - Y_k\|}{\|X_{k-1} - Y_{k-1}\|}$$

What we did not speak about.

- **(2)** m p 62/69
- Result is usually improved by gradient descent of the reprojection error (bundle adjustment).
- Error accumulates over time \Rightarrow drift \Rightarrow loop-closure needed.
- Avoid motion estimation for small motions or pure rotation (keyframe detection)
- Single camera is usually fused with IMU (e.g. Google project Tango).
- Many papers about clever similarity measure for tentative correspondences.

Before loop closing

After loop closing

• Given two depth scans of a rigid scene, what is the relative motion?¹

¹Slides based on Niloy J. Mitra presentation from Eurographics 2012

Given two depth scans of a rigid scene, what is the relative motion?¹

Given set of correspondences $\mathbf{p}_1, \mathbf{q}_1, \dots, \mathbf{p}_n, \mathbf{q}_n$, find R and t such that $R\mathbf{p}_i + \mathbf{t} \approx \mathbf{q}_i$, where R is orthonormal.

¹Slides based on Niloy J. Mitra presentation from Eurographics 2012

Given two depth scans of a rigid scene, what is the relative motion?¹

- Given set of correspondences $\mathbf{p}_1, \mathbf{q}_1, \dots, \mathbf{p}_n, \mathbf{q}_n$, find R and t such that $R\mathbf{p}_i + \mathbf{t} \approx \mathbf{q}_i$, where R is orthonormal.
- Closed form solution [Arun-TPAMI-87] of

$$\arg\min_{\mathbf{R},\mathbf{t}}\sum_{i}(\mathbf{R}\mathbf{p}_{i}+\mathbf{t}-\mathbf{q}_{i})^{2}$$
 subject to $\mathbf{R}^{\top}\mathbf{R}=\mathbf{E}$

¹Slides based on Niloy J. Mitra presentation from Eurographics 2012

Given two depth scans of a rigid scene, what is the relative motion?¹

- Given set of correspondences $\mathbf{p}_1, \mathbf{q}_1, \dots, \mathbf{p}_n, \mathbf{q}_n$, find R and t such that $R\mathbf{p}_i + \mathbf{t} \approx \mathbf{q}_i$, where R is orthonormal.
- Closed form solution [Arun-TPAMI-87] of

$$\arg\min_{\mathbf{R},\mathbf{t}}\sum_{i}(\mathbf{R}\mathbf{p}_{i}+\mathbf{t}-\mathbf{q}_{i})^{2}$$
 subject to $\mathbf{R}^{\top}\mathbf{R}=\mathbf{E}$

How to find correspondences?

¹Slides based on Niloy J. Mitra presentation from Eurographics 2012

Iterative Closest Point (ICP)

 If scans are sufficiently close (motion is almost know or sufficiently small), then closest points can be considered.

64/69

- Iterative Closest Point (ICP) [Besl and McKay 92]
 - 1. Randomly selest subset of points \mathbf{p}_i
 - 2. Find closest points q_j (e.g. KD-tree)
 - 3. Reject correspondences with distance $r \times$ median
 - 4. Solve [Arun-TPAMI-87]:

$$\mathbf{R}^*, \mathbf{t}^* = \arg\min_{\mathbf{R}, \mathbf{t}} \sum_i \|\mathbf{R}\mathbf{p}_i + \mathbf{t} - \mathbf{q}_i\|^2 \text{ subject to } \mathbf{R}^\top \mathbf{R} = \mathbf{E}$$

5. Transform $\mathbf{p}_i := R^* \mathbf{p}_i + \mathbf{t}^*$ and repeat from 1.

 $\mathbf{p}_i' = \mathbf{p}_i - \overline{\mathbf{p}} \ \mathbf{q}_i' = \mathbf{q}_i - \overline{\mathbf{q}}$

2. Optimal rotation R^* of p wrt q is same as optimal rotation of p' wrt q':

$$\mathbf{R}^* = \arg\min_{\mathbf{R}} \sum_{i} \|\mathbf{q}'_i - \mathbf{R}\mathbf{p}'_i\|^2 = \mathbf{U}^\top \mathbf{V}$$

subj. to $\mathbf{R}^\top \mathbf{R} = \mathbf{E}$

where $USV^{\top} = H$ is SVD decomposition of 3×3 matrix $H = \sum_i \mathbf{p}'_i \mathbf{q}'^{\top}_i$.

3. Optimal translation of \mathbf{p} wrt \mathbf{q} is

$$\mathbf{t}^* = \overline{\mathbf{q}} - \mathtt{R}^* \overline{\mathbf{p}}$$

р

66/69

• Assuming that \mathbf{t}^* is known, substitution $\mathbf{p}'_i = \mathbf{p}_i - \overline{\mathbf{p}}$, $\mathbf{q}'_i = \mathbf{q}_i - \overline{\mathbf{q}}$ yields

$$\mathbf{R}^* = \arg\min_{\mathbf{R}} \sum_{i} \|\mathbf{R}\mathbf{p}_i + \mathbf{t}^* - \mathbf{q}_i\|^2 = \arg\min_{\mathbf{R}} \sum_{i} \|\mathbf{q}'_i - \mathbf{R}\mathbf{p}'_i\|^2 =$$
subj. to $\mathbf{R}^\top \mathbf{R} = \mathbf{E}$ subj. to $\mathbf{R}^\top \mathbf{R} = \mathbf{E}$

р

66/69

• Assuming that ${f t}^*$ is known, substitution ${f p}_i'={f p}_i-\overline{f p}$, ${f q}_i'={f q}_i-\overline{f q}$ yields

$$R^* = \arg\min_{\mathbf{R}} \sum_{i} ||\mathbf{R}\mathbf{p}_{i} + \mathbf{t}^* - \mathbf{q}_{i}||^2 = \arg\min_{\mathbf{R}} \sum_{i} ||\mathbf{q}_{i}' - \mathbf{R}\mathbf{p}_{i}'||^2 =$$

subj. to $\mathbf{R}^\top \mathbf{R} = \mathbf{E}$ subj. to $\mathbf{R}^\top \mathbf{R} = \mathbf{E}$
$$= \arg\min_{\mathbf{R}} \sum_{i} \mathbf{q}_{i}'^\top \mathbf{q}_{i}' - 2\mathbf{q}_{i}'^\top \mathbf{R}\mathbf{p}_{i}' + \mathbf{p}_{i}'^\top \mathbf{p}_{i}'^\top = \arg\max_{\mathbf{R}} \sum_{i} \mathbf{q}_{i}'^\top \mathbf{R}\mathbf{p}_{i}'$$

subj. to $\mathbf{R}^\top \mathbf{R} = \mathbf{E}$ subj. to $\mathbf{R}^\top \mathbf{R} = \mathbf{E}$

р

66/69

• Assuming that \mathbf{t}^* is known, substitution $\mathbf{p}'_i = \mathbf{p}_i - \overline{\mathbf{p}}$, $\mathbf{q}'_i = \mathbf{q}_i - \overline{\mathbf{q}}$ yields

$$\begin{aligned} \mathbf{R}^* &= \arg\min_{\mathbf{R}} \sum_{i} \|\mathbf{R}\mathbf{p}_{i} + \mathbf{t}^* - \mathbf{q}_{i}\|^{2} = \arg\min_{\mathbf{R}} \sum_{i} \|\mathbf{q}_{i}' - \mathbf{R}\mathbf{p}_{i}'\|^{2} = \\ &\text{subj. to } \mathbf{R}^{\top}\mathbf{R} = \mathbf{E} \\ &= \arg\min_{\mathbf{R}} \sum_{i} \mathbf{q}_{i}'^{\top}\mathbf{q}_{i}' - 2\mathbf{q}_{i}'^{\top}\mathbf{R}\mathbf{p}_{i}' + \mathbf{p}_{i}'^{\top}\mathbf{p}_{i}'^{\top} = \arg\max_{\mathbf{R}} \sum_{i} \mathbf{q}_{i}'^{\top}\mathbf{R}\mathbf{p}_{i}' \\ &\text{subj. to } \mathbf{R}^{\top}\mathbf{R} = \mathbf{E} \\ &= \arg\min_{\mathbf{R}} \operatorname{trace} \{\sum_{i} \mathbf{R}\mathbf{p}_{i}'\mathbf{q}_{i}'^{\top}\} = \arg\max_{\mathbf{R}} \operatorname{trace}\{\mathbf{R}\mathbf{H}\} \\ &\text{subj. to } \mathbf{R}^{\top}\mathbf{R} = \mathbf{E} \\ &\text{subj. to } \mathbf{R}^{\top}\mathbf{R} = \mathbf{E} \end{aligned}$$

• trace{ AA^{\top} } = $\sum_{i} \mathbf{a}_{i}^{\top} \mathbf{a}_{i} \ge \sum_{i} \mathbf{a}_{i}^{\top} (\mathbf{R}\mathbf{a}_{i}) = \operatorname{trace}\{(\mathbf{R}A)A^{\top}\}$

• We search for R^* which turns RH into form $AA^{ op}$

 $R^* = \arg \max_{R} \operatorname{trace} \{RH\} = \arg \min_{R} \operatorname{trace} \{RUSV^{\top}\} =$ subj. to $R^{\top}R = E$ subj. to $R^{\top}R = E$

• We search for R^* which turns RH into form $AA^{ op}$

 $R^* = \arg \max_{R} \operatorname{trace} \{RH\} = \arg \min_{R} \operatorname{trace} \{RUSV^{\top}\} =$ subj. to $R^{\top}R = E$ subj. to $R^{\top}R = E$

$$= \mathbf{V}\mathbf{U}^{ op}$$

- trace{ AA^{\top} } = $\sum_{i} \mathbf{a}_{i}^{\top} \mathbf{a}_{i} \ge \sum_{i} \mathbf{a}_{i}^{\top} (\mathbf{R}\mathbf{a}_{i}) = \operatorname{trace}\{(\mathbf{R}A)A^{\top}\}$
- igstarrow We search for \mathtt{R}^* which turns $\mathtt{R}\mathtt{H}$ into form $\mathtt{A}\mathtt{A}^ op$

 $R^* = \arg \max_{R} \operatorname{trace} \{RH\} = \arg \min_{R} \operatorname{trace} \{RUSV^{\top}\} =$ subj. to $R^{\top}R = E$ subj. to $R^{\top}R = E$

 $= \mathbf{V}\mathbf{U}^{\top}$

• $R^* = VU^{\top}$ is better than any other rotation, because R $\operatorname{trace}\{R^*USV^{\top}\} = \operatorname{trace}\{VSV^{\top}\} = \operatorname{trace}\{AA^{\top}\} \ge \operatorname{trace}\{RAA^{\top}\}$

Different variants of ICP

- Closest points are often bad correspondences compatibility test needed
 - Compatibility of colors [Godin et al. 94]
 - Compatibility of normals [Pulli 99]
- Stable sampling [Gelfand et al. 2003] select points constraints all DOFs.

• Searching for closest points is time consuming, simply project point [Blais 95] $(10 \times -100 \times \text{ faster})$

Comparisons of many variants of ICP [Rusinkiewicz and Levoy, 3DIM 2001]

Different variants of ICP

Kitty dataset http://www.cvlibs.net/datasets/kitti/raw_data.php

oxford robotcar datase http://robotcar-dataset.robots.ox.ac.uk