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Motivation

� You are given two images of an object captured by two cameras P and Q

from different view-points.
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Motivation

� Given pair of corresponding pixels (u,v) (i.e. pixels corresponding to the
same unknown 3D point X on the object), you can easily compute X.
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same unknown 3D point X on the object), you can easily compute X.
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Motivation

� The only problem is, that you do not have the correspondence (u,v) and
naïve matching of pixel neighbourhoods does not work.
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Motivation

� This lesson is about
• how to get 3D points from images captured by known cameras and
• how to use this knowledge to built state-of-the-art depth sensors.
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Outline

� Epipolar geometry

• Epipolar line, essential and fundamental matrix

• L2 estimation of the essential matrix

� Depth sensors: Stereo, Kinect and RealSense

� Depth from a single camera and the robust estimation of the essential
matrix (RANSAC).
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Projection of the 3D point to a single camera

� You are given 3× 4 camera matrix P =

 p>1
p>2
p>3


� 3D point with homogeneous coordinates X projects on pixel u
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Projection of the 3D point to a single camera

� You are given 3× 4 camera matrix P =

 p>1
p>2
p>3


� 3D point with homogeneous coordinates X projects on pixel u

u1 =
p>1 X

p>3 X
, u2 =

p>2 X

p>3 X
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Projection of the 3D point to a single camera

� What if u is known? Which X correspond to u?
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Projection of the 3D point to a single camera
� What if u is known? Which X correspond to u?
� All 3D points corresponding to pixel u lies in 1D linear subspace (ray) of 3D
space (2 linear equations with 3 unknowns):

u1p
>
3 X = p>1 X,

u2p
>
3 X = p>2 X

⇒
[
u1p

>
3 − p>1

u2p
>
3 − p>2

]
x

y

z

1

 = 0
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Fundamental matrix

� Projection of the ray from u into a second camera is called epipolar line

{v | u>Fv = 0},

� where matrix F = K>(R× t)K is called fundamental matrix.
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Essential matrix

� We assume that K is known (i.e. the camera is calibrated).
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Essential matrix

� We assume that K is known (i.e. the camera is calibrated).

� We normalize coordinates un = K−1u, vn = K−1v and pretend that K is
identity.
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Essential matrix

� We assume that K is known (i.e. the camera is calibrated).

� We normalize coordinates un = K−1u, vn = K−1v and pretend that K is
identity.

� Epipolar line wrt normalized coordinates is {vn | u>n Evn = 0}, where
matrix E = R× t is called essential matrix.
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What is the essential matrix good for?

� Important result 1:

• If camera motion is known (e.g. stereo), then

• all possible correspondences of point u lie on the epipolar line (i.e.
either {v | u>Fv = 0} or {vn | un

>Evn = 0}).
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• all possible correspondences of point u lie on the epipolar line (i.e.
either {v | u>Fv = 0} or {vn | un

>Evn = 0}).

� Important result 2:

• If camera motion is unknown (e.g. motion of a single camera), then

• the essential matrix determines relative position of cameras (i.e.
motion), since there exist unique decomposition E = R× t.
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What is the essential matrix good for?

� Important result 1:

• If camera motion is known (e.g. stereo), then

• all possible correspondences of point u lie on the epipolar line (i.e.
either {v | u>Fv = 0} or {vn | un

>Evn = 0}).

� Important result 2:

• If camera motion is unknown (e.g. motion of a single camera), then

• the essential matrix determines relative position of cameras (i.e.
motion), since there exist unique decomposition E = R× t.

� From now on, we drop the index n in normalized coordinates.

� How do we obtain the essential/fundamental matrix?
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Compute essential matrix by minimizing L2-norm

� Let us assume that we have several correct correspondences.
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Compute essential matrix by minimizing L2-norm

� Let us assume that we have several correct correspondences.

� Essential matrix E is just a solution of (overdetermined) homogeneous
system of linear equations.

http://cmp.felk.cvut.cz


14/69
Compute essential matrix by minimizing L2-norm

� Let us assume that we have several correct correspondences.

� Essential matrix E is just a solution of (overdetermined) homogeneous
system of linear equations.

� For each correspondence pair u,v, the following holds:

u>Ev = u>

e>1e>2
e>3

 v = u>

e>1 ve>2 v

e>3 v

 = [u1e
>
1 v + u2e

>
2 v + u3e

>
3 v] =
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Compute essential matrix by minimizing L2-norm

� Let us assume that we have several correct correspondences.

� Essential matrix E is just a solution of (overdetermined) homogeneous
system of linear equations.

� For each correspondence pair u,v, the following holds:

u>Ev = u>

e>1e>2
e>3

 v = u>

e>1 ve>2 v

e>3 v

 = [u1e
>
1 v + u2e

>
2 v + u3e

>
3 v] =

= [u1v
> u2v

> u3v
>]

e1e2
e3

 = 0

� It must hold for all correspondece pairs ui, vi, therefore:u11v>1 u12v
>
1 u13v

>
1

u21v
>
2 u22v

>
2 u23v

>
2

.........


e1e2
e3

 = 0
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Compute essential matrix by minimizing L2-norm

� It is just homogeneous set of linear equations:u11v>1 u12v
>
1 u13v

>
1

u21v
>
2 u22v

>
2 u23v

>
2

.........


︸ ︷︷ ︸

A

e1e2
e3


︸ ︷︷ ︸

e

= 0

� We want to avoid trivial solution e1 = e2 = e3 = 0,

� therefore the following optimization task (constrained LSQ) is solved:

argmin
e
‖Ae‖ subject to ‖e‖ = 1

� the solution is singular vector of matrix A corresponding to the smallest
singular value (can be found via SVD or eigenvectors/eigenvalues of AA>)
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Compute essential matrix by minimizing L2-norm

� The same is valid for the estimation of the fundamental matrix from not
normalized coordinates.
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Compute essential matrix by minimizing L2-norm

� The same is valid for the estimation of the fundamental matrix from not
normalized coordinates.

� L2-norm works only in a controlled environment (e.g. offline stereo
calibration).
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Compute essential matrix by minimizing L2-norm

� The same is valid for the estimation of the fundamental matrix from not
normalized coordinates.

� L2-norm works only in a controlled environment (e.g. offline stereo
calibration).

� I will show how essential/fundamental matrix allows to estimate
correspondences in state-of-the-art depth (3D) sensors.
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Stereo

� Pair of cameras mounted on a rigid body, which provides depth (3D points)
of the scene (simulates human binocular vision).

� Relative position of cameras fixed

0Courtesy of prof.Boris Flach for original stereo images and depth images
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Stereo

� Pair of cameras mounted on a rigid body, which provides depth (3D points)
of the scene (simulates human binocular vision).

� Relative position of cameras fixed

� offline: fundamental matrix estimated from known correspondences.

0Courtesy of prof.Boris Flach for original stereo images and depth images
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Stereo

� Pair of cameras mounted on a rigid body, which provides depth (3D points)
of the scene (simulates human binocular vision).

� Relative position of cameras fixed

� offline: fundamental matrix estimated from known correspondences.
� online: correspondences searched along epipolar lines.
0Courtesy of prof.Boris Flach for original stereo images and depth images
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Stereo

Block-matching energy function: E(u) =
∑

x∈W (IL(x)− IR(x+ u))2
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Stereo

Block-matching energy function: E(u) =
∑

x∈W (IL(x)− IR(x+ u))2
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Stereo

Correspondence for each pixel estimated separately: u∗ = argminuE(u)
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Stereo

Correspondence for each pixel estimated separately: u∗ = argminuE(u)
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Stereo

How can we improve the result?
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Stereo

Energy with horizontal smoothness term: E(u1, u2)= E(u2)+C · (u2 − u1)2
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Stereo

Dynamic programming solves each line of N pixels separately:

U∗ = arg min
U∈RN

N−1∑
i=1

E(ui, ui+1)

http://cmp.felk.cvut.cz
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Stereo

What else can we do?

http://cmp.felk.cvut.cz
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Stereo

Enforce also vertical smoothness ⇒ graph energy minimization (computationally
demanding optimization solved on specialized chips).
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Stereo

Enforce also vertical smoothness ⇒ graph energy minimization (computationally
demanding optimization solved on specialized chips).

� Limitation: usually works only on sufficiently rich patterns and sufficiently
smooth depths.
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Stereo competition

� Do you have your own idea how to estimate the depth from stereo images?

� http://vision/middlebury.edu/stereo/data/2014/

http://cmp.felk.cvut.cz
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Kinect (structured-light approach)

� Stereo looks at the same object two-times and estimates the
correspondence from two passive RGB images.

� Kinect avoids ambiguity by actively projecting a unique IR pattern on the
surface and search for its known appearance in the IR camera.
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Kinect

� Since camera-projector relative position is known, correspondence between
projected pixel and observed pixel lies again on epipolar lines.
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Kinect

� Unique IR speckle-pattern: no two sub-windows with the same pattern
� Energy along epipolar line has only one strong minimum.
� Kinect fusion: http://research.microsoft.com/en-us/projects/surfacerecon/

� Limitation: works only indoor.

http://cmp.felk.cvut.cz
http://research.microsoft.com/en-us/projects/surfacerecon/
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RealSense

� Hybrid approach one IR projector and two IR cameras.
� Combines advantages of stereo and structured light approach. So far best
solution for robotics.

http://cmp.felk.cvut.cz
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Depth from a single camera

� Is it possible to get the 3D points from a single camera?
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� Is it possible to get the 3D points from a single camera?

� Theoretically yes (if scene is static and the camera moves around
sufficiently).
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� Is it possible to get the 3D points from a single camera?
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sufficiently).

� We have also two cameras. Main difference is that they have been captured
in different times and the relative motion (i.e. epipolar geometry) is
unknown.
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� Is it possible to get the 3D points from a single camera?

� Theoretically yes (if scene is static and the camera moves around
sufficiently).

� We have also two cameras. Main difference is that they have been captured
in different times and the relative motion (i.e. epipolar geometry) is
unknown.

� The second part of this lecture is about how to estimate online both the
relative motion of the camera and the 3D model of the world from captured
images.
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Depth from a single camera

� Is it possible to get the 3D points from a single camera?

� Theoretically yes (if scene is static and the camera moves around
sufficiently).

� We have also two cameras. Main difference is that they have been captured
in different times and the relative motion (i.e. epipolar geometry) is
unknown.

� The second part of this lecture is about how to estimate online both the
relative motion of the camera and the 3D model of the world from captured
images.

� We assume, that at least the camera intrinsic parameters K has been
calibrated offline.
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Algorithm at glance

1. Get image Ik.

2. Estimate tentative correspondences between Ik−1 and Ik .

3. Find correct correspondences and robustly estimate essential matrix E

4. Decompose E into Rk and tk.

5. Compute 3D model (points X).

6. Rescale tk according to relative scale r.

7. k = k + 1
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Feature point detection

� Which points are suitable?

Selecting Good Features 

O1 and  O2 are large 

Selecting Good Features 

O1 and  O2 are large 
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Feature point detection

� Feature points must be well distinguishable from its neighbourhood.

E(u, v) =
∑

x,y

(
I(x+ u, y + v)− I(x, y)

)2
≈ [u v] M

[
u

v

]
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Feature point detection

� Feature points must be well distinguishable from its neighbourhood.

E(u, v) =
∑

x,y

(
I(x+ u, y + v)− I(x, y)

)2
≈ [u v] M

[
u

v

]
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Feature point detection

Harris Detector: Workflow 
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Feature point detection

Harris Detector: Workflow 
Compute corner response R 
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Feature point detection

Harris Detector: Workflow 
Find points with large corner response: R>threshold 
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Feature point detection

Harris Detector: Workflow 
Take only the points of local maxima of R 
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Feature point detection

Harris Detector: Workflow 
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Estimate tentative correspondences

� Estimate tentative correspondences by matching pixel neighbourhoods.
� Matching pixels: Tracking - for high temporal resolution
OpenCV Lucas-Kanade tracker

� Matching invariant descriptors: Detection - for high spatial resolution
OpenCV: SIFT, SURF etc ...

http://cmp.felk.cvut.cz
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Algorithm at glance

1. Get image Ik.

2. Estimate tentative correspondences between Ik−1 and Ik.

3. Find correct correspondences and robustly estimate essential matrix E

4. Decompose E into Rk and tk.

5. Compute 3D model (points X).

6. Rescale tk according to relative scale r.

7. k = k + 1
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Estimate essential matrix

� most of the tentative correspondences is incorrect,
� L2-norm is very sensitive to such incorrect correspondence (i.e. ouliers).
� Direct minimization of the L2-norm, yields poor essential matrix

e∗ = argmin
e
‖Ae‖

s.t. ‖e‖ = 1
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Estimate essential matrix by minimizing
box-penalty function

� We will use outlier-insensitive estimation which will find both:

• the correct essential matrix and

• the set of correct correspondences (i.e. inliers).
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Estimate essential matrix by minimizing
box-penalty function

� What makes the L2-norm outlier-sensitive?
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Estimate essential matrix by minimizing
box-penalty function

� What makes the L2-norm outlier-sensitive?

� L2-norm:
argmin

e
‖Ae‖

s.t. ‖e‖ = 1
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Estimate essential matrix by minimizing
box-penalty function

� What makes the L2-norm outlier-sensitive?

� L2-norm:
argmin

e
‖Ae‖

s.t. ‖e‖ = 1

� Box-penalty:
argmin

e
1− ρ(Ae)

s.t. ‖e‖ = 1
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RANSAC algorithm

� We solve the following not-convex and not-differentiable optimization task:

argmin
e

1− ρ(Ae)

s.t. ‖e‖ = 1

= argmax
e

ρ(Ae)

s.t. ‖e‖ = 1
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RANSAC algorithm

� We solve the following not-convex and not-differentiable optimization task:

argmin
e

1− ρ(Ae)

s.t. ‖e‖ = 1

= argmax
e

ρ(Ae)

s.t. ‖e‖ = 1

� RANSAC (RAndom SAmple Consensus) algorithm:
1. Randomly choose minimal subset of equations (rows) B from A.
2. Solve constrained LSQ problem by SVD decomposition:

e∗ = argmin
e
‖Be‖

s.t. ‖e‖ = 1

3. Estimate ρ(Ae∗) as the number of rows a>i of A which satisfy
|a>i e∗| < ε.

4. If ρmax > ρ(e∗) then ρmax = ρ(e∗) and emax = e∗.

5. Repeat from 1 until the optimum is found with sufficient probability.
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RANSAC properties

� Important result 3: Let us denote

• N . . . number of data points.

• w . . . fraction of inliers.

• s . . . size of the sample

• K . . . number of trials.

• p . . . probability to select uncontamined samples at least once

� then
K =

log(1− p)
log(1− ws)
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RANSAC properties

� Important result 3: Let us denote

• N . . . number of data points.

• w . . . fraction of inliers.

• s . . . size of the sample

• K . . . number of trials.

• p . . . probability to select uncontamined samples at least once

� then
K =

log(1− p)
log(1− ws)

� We search for 8 unknows (dim(e) = 9 minus scale) ⇒ at least 8
correspondences needed ⇒ s = 8 ⇒ K grows fast with s.

� However you want to find only camera translation (3 DoFs) and rotation (3
DoFs) minus scale ⇒ 5-point algorithm [Nister 2003].
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Algorithm at glance

1. Get image Ik.

2. Estimate tentative correspondences between Ik−1 and Ik .

3. Find correct correspondences and compute essential matrix E.

4. Decompose E into Rk and tk.

5. Compute 3D model (points X).

6. Rescale tk according to relative scale r.

7. k = k + 1
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Decompose E into R and t

� Once you find E, you can estimate camera motion by SVD (E = UΣV>) as
follows: [t]× = VWΣV>, R = UW−1V>, but !!!:
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Decompose E into R and t

� Once you find E, you can estimate camera motion by SVD (E = UΣV>) as
follows: [t]× = VWΣV>, R = UW−1V>, but !!!:

� Scale r is unknown (if ‖A · e∗‖ ≈ 0, then ‖A · (re∗)‖ ≈ 0).
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Decompose E into R and t

� Once you find E, you can estimate camera motion by SVD (E = UΣV>) as
follows: [t]× = VWΣV>, R = UW−1V>, but !!!:

� Scale r is unknown (if ‖A · e∗‖ ≈ 0, then ‖A · (re∗)‖ ≈ 0).
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Algorithm at glance

1. Get image Ik.

2. Estimate tentative correspondences between Ik−1 and Ik (either feature
matching or tracking).

3. Find correct correspondences and compute essential matrix E.

4. Decompose E into Rk and tk.

5. Compute 3D model (points X).

6. Rescale tk according to relative scale r.

7. k = k + 1
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Compute 3D model

� Scene point X is observed by two cameras P and Q.

� Let u = [u1 u2]
> and v = [v1 v2]

> are projections of X in P and Q,

� then
u1 =

p>1 X

p>3 X
⇒ u1p

>
3 X− p>1 X = 0
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Compute 3D model

� Scene point X is observed by two cameras P and Q.

� Let u = [u1 u2]
> and v = [v1 v2]

> be a correspondence pair (i.e.
projections of X in P and Q).

� Then
u1 =

p>1 X

p>3 X
⇒ u1p

>
3 X− p>1 X = 0

� and similarly ...

u2 =
p>2 X

p>3 X
⇒ u2p

>
3 X− p>2 X = 0

v1 =
q>1 X

q>3 X
⇒ v1q

>
3 X− q>1 X = 0

v2 =
q>2 X

q>3 X
⇒ v2q

>
3 X− q>2 X = 0
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Compute 3D model

� Which is 4× 4 homogeneous system of linear equations:
u1p

>
3 − p>1

u2p
>
3 − p>2

v1q
>
3 − q>1

v2q
>
3 − q>2

X = 0
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Algorithm at glance

1. Get image Ik.

2. Compute correspondences between Ik−1 and Ik (either feature matching or
tracking).

3. Find correct correspondences and compute essential matrix E.

4. Decompose E into Rk and tk.

5. Compute 3D model (points X).

6. Rescale tk according to relative scale r.

7. k = k + 1
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Estimating camera motion - relative scale

1. You cannot get absolute scale (without a calibration object).
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1. You cannot get absolute scale (without a calibration object).

2. If you estimate motion (and 3D model) from C1, C2
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Estimating camera motion - relative scale

1. You cannot get absolute scale (without calibration object).

2. If you estimate motion (and 3D model) from C1, C2 and then from C2, C3

you can have completely different scale.
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Estimating camera motion - relative scale

1. You cannot get absolute scale (without calibration object).
2. If you estimate motion (and 3D model) from C1, C2 and then from C2, C3

you can have completely different scale.
3. You want to keep the same relative scale r by rescaling t (and 3D)

r =
dk

dk−1
=

‖Xk − Yk‖
‖Xk−1 − Yk−1‖
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What we did not speak about.

� Result is usually improved by gradient descent of the reprojection error
(bundle adjustment).

� Error accumulates over time ⇒ drift ⇒ loop-closure needed.
� Avoid motion estimation for small motions or pure rotation (keyframe
detection)

� Single camera is usually fused with IMU (e.g. Google project Tango).
� Many papers about clever similarity measure for tentative correspondences.
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Mapping from depth sensors

� Given two depth scans of a rigid scene, what is the relative motion?1

1Slides based on Niloy J. Mitra presentation from Eurographics 2012
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Mapping from depth sensors

� Given two depth scans of a rigid scene, what is the relative motion?1

� Given set of correspondences p1,q1, . . .pn,qn, find R and t such that
Rpi + t ≈ qi, where R is orthonormal.

1Slides based on Niloy J. Mitra presentation from Eurographics 2012

http://cmp.felk.cvut.cz


63/69
Mapping from depth sensors

� Given two depth scans of a rigid scene, what is the relative motion?1

� Given set of correspondences p1,q1, . . .pn,qn, find R and t such that
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Mapping from depth sensors

� Given two depth scans of a rigid scene, what is the relative motion?1

� Given set of correspondences p1,q1, . . .pn,qn, find R and t such that
Rpi + t ≈ qi, where R is orthonormal.

� Closed form solution [Arun-TPAMI-87] of

argmin
R,t

∑
i

(Rpi + t− qi)
2 subject to R>R = E

� How to find correspondences?
1Slides based on Niloy J. Mitra presentation from Eurographics 2012
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Iterative Closest Point (ICP)

� If scans are sufficiently close (motion is almost know or sufficiently small),
then closest points can be considered.

� Iterative Closest Point (ICP) [Besl and McKay 92]
1. Randomly selest subset of points pi

2. Find closest points qj (e.g. KD-tree)
3. Reject correspondences with distance r× median
4. Solve [Arun-TPAMI-87]:

R∗, t∗ = argmin
R,t

∑
i

‖Rpi + t− qi‖2 subject to R>R = E

5. Transform pi := R∗pi + t∗ and repeat from 1.

Eurographics 2012, Cagliari, Italy

Aligning 3D Data
How to find correspondences:  

User input?
Feature detection?  
Signatures?

Eurographics 2012, Cagliari, Italy

Aligning 3D Data
... and iterate to find alignment

Iterative Closest Points (ICP) [Besl and McKay 92]

Converges if starting poses are close enough

http://cmp.felk.cvut.cz
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Cookbook: Closed-form solution of least-squares
rotation [Arun-TPAMI-87]

1. Shift centroids to origin:
p′i = pi − p

q′i = qi − q

2. Optimal rotation R∗ of p wrt q is same as optimal rotation of p′ wrt q′:

R∗ = argmin
R

∑
i

‖q′i − Rp′i‖2 = U>V

subj. to R>R = E

where USV> = H is SVD decomposition of 3× 3 matrix H =
∑

i p
′
iq
′>
i .

3. Optimal translation of p wrt q is

t∗ = q− R∗p

http://cmp.felk.cvut.cz
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Proof: Closed-form solution of least-squares
rotation [Arun-TPAMI-87]

� If R∗, t∗ are optimal, then centroids of p∗i = R∗pi + t∗ and qi are same (
p∗ = q).

� Assuming that t∗ is known, substitution p′i = pi − p, q′i = qi − q yields

R∗ = argmin
R

∑
i

‖Rpi + t∗ − qi‖2 = argmin
R

∑
i

‖q′i − Rp′i‖2 =

subj. to R>R = E subj. to R>R = E
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� If R∗, t∗ are optimal, then centroids of p∗i = R∗pi + t∗ and qi are same (
p∗ = q).

� Assuming that t∗ is known, substitution p′i = pi − p, q′i = qi − q yields

R∗ = argmin
R

∑
i

‖Rpi + t∗ − qi‖2 = argmin
R

∑
i

‖q′i − Rp′i‖2 =

subj. to R>R = E subj. to R>R = E

= argmin
R

∑
i

q′>i q′i − 2q′>i Rp′i + p′>i p′>i = argmax
R

∑
i

q′>i Rp′i

subj. to R>R = E subj. to R>R = E
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Proof: Closed-form solution of least-squares
rotation [Arun-TPAMI-87]

� If R∗, t∗ are optimal, then centroids of p∗i = R∗pi + t∗ and qi are same (
p∗ = q).

� Assuming that t∗ is known, substitution p′i = pi − p, q′i = qi − q yields

R∗ = argmin
R

∑
i

‖Rpi + t∗ − qi‖2 = argmin
R

∑
i

‖q′i − Rp′i‖2 =

subj. to R>R = E subj. to R>R = E

= argmin
R

∑
i

q′>i q′i − 2q′>i Rp′i + p′>i p′>i = argmax
R

∑
i

q′>i Rp′i

subj. to R>R = E subj. to R>R = E

= argmin
R

trace{
∑

i

Rp′iq
′>
i } = argmax

R
trace{RH}

subj. to R>R = E subj. to R>R = E
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Proof: Closed-form solution of least-squares
rotation [Arun-TPAMI-87]

� trace{AA>} =
∑

i a
>
i ai ≥

∑
i a
>
i (Rai) = trace{(RA)A>}

� We search for R∗ which turns RH into form AA>

R∗ = argmax
R

trace{RH} = argmin
R

trace{RUSV>} =

subj. to R>R = E subj. to R>R = E
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Proof: Closed-form solution of least-squares
rotation [Arun-TPAMI-87]

� trace{AA>} =
∑

i a
>
i ai ≥

∑
i a
>
i (Rai) = trace{(RA)A>}

� We search for R∗ which turns RH into form AA>

R∗ = argmax
R

trace{RH} = argmin
R

trace{RUSV>} =

subj. to R>R = E subj. to R>R = E

= VU>

� R∗ = VU> is better than any other rotation, because R
trace{R∗USV>} = trace{VSV>} = trace{AA>} ≥ trace{RAA>}
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Different variants of ICP

� Closest points are often bad correspondences - compatibility test needed
• Compatibility of colors [Godin et al. 94]
• Compatibility of normals [Pulli 99]

� Stable sampling [Gelfand et al. 2003] select points constraints all DOFs.

Eurographics 2012, Cagliari, Italy

Stable Sampling

Uniform$Sampling Stable$Sampling
� Searching for closest points is time consuming, simply project point [Blais
95] (10×−100× faster)

Eurographics 2012, Cagliari, Italy

Finding Corresponding Points
Finding closest point is most expensive stage of the ICP 
algorithm
• Brute force search – O(n)
• Spatial data structure (e.g., k-d tree) – O(log n)

Eurographics 2012, Cagliari, Italy

Projection to Find Correspondences
Idea: use a simpler algorithm to find correspondences

For range images, can simply project point  [Blais 95]

• Constant-time
• Does not require precomputing a spatial data structure

� Comparisons of many variants of ICP [Rusinkiewicz and Levoy, 3DIM 2001]

http://cmp.felk.cvut.cz


69/69
Different variants of ICP

� Kitty dataset
http://www.cvlibs.net/datasets/kitti/raw_data.php

� oxford robotcar datase http://robotcar-dataset.robots.ox.ac.uk

http://cmp.felk.cvut.cz
http://www.cvlibs.net/datasets/kitti/raw_data.php
http://robotcar-dataset.robots.ox.ac.uk
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