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Challenges of reinforcement learning for robotics
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Challenges of reinforcement learning for robotics
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Taxonomy of policy search methods

• Direct policy search 

⇡⇤
= argmax

a
Q(x,a)

e.g. search for Q(x,a) = r(x,a,x0
) + �max

a0
Q(x

0,a0)

• Value-based methods (dual function [Kober, 2013])

⇡⇤
= argmax

⇡
J⇡e.g. gradient ascent for

Episodic REPS [Peters, 2010]
PILCO [Deisenroth, ICML 2011]
Actor-critic (e.g. DPG [Silver,JMLR 2014])

Deep Q-learning (e.g. [Mnih,Nature 2015])gr
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• 2600 atari games 
• state space: pixels (e.g. VGA resolution) 
• action space: discrete joystic actions (8 direction + 

8 direction with button) 
• collection of control tasks: https://gym.openai.com

difficult and engaging for human players. We used the same network
architecture, hyperparameter values (see Extended Data Table 1) and
learning procedure throughout—taking high-dimensional data (210|160
colour video at 60 Hz) as input—to demonstrate that our approach
robustly learns successful policies over a variety of games based solely
on sensory inputs with only very minimal prior knowledge (that is, merely
the input data were visual images, and the number of actions available
in each game, but not their correspondences; see Methods). Notably,
our method was able to train large neural networks using a reinforce-
ment learning signal and stochastic gradient descent in a stable manner—
illustrated by the temporal evolution of two indices of learning (the
agent’s average score-per-episode and average predicted Q-values; see
Fig. 2 and Supplementary Discussion for details).

We compared DQN with the best performing methods from the
reinforcement learning literature on the 49 games where results were
available12,15. In addition to the learned agents, we also report scores for
a professional human games tester playing under controlled conditions
and a policy that selects actions uniformly at random (Extended Data
Table 2 and Fig. 3, denoted by 100% (human) and 0% (random) on y
axis; see Methods). Our DQN method outperforms the best existing
reinforcement learning methods on 43 of the games without incorpo-
rating any of the additional prior knowledge about Atari 2600 games
used by other approaches (for example, refs 12, 15). Furthermore, our
DQN agent performed at a level that was comparable to that of a pro-
fessional human games tester across the set of 49 games, achieving more
than 75% of the human score on more than half of the games (29 games;

Convolution Convolution Fully connected Fully connected

No input

Figure 1 | Schematic illustration of the convolutional neural network. The
details of the architecture are explained in the Methods. The input to the neural
network consists of an 84 3 84 3 4 image produced by the preprocessing
map w, followed by three convolutional layers (note: snaking blue line

symbolizes sliding of each filter across input image) and two fully connected
layers with a single output for each valid action. Each hidden layer is followed
by a rectifier nonlinearity (that is, max 0,xð Þ).
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Figure 2 | Training curves tracking the agent’s average score and average
predicted action-value. a, Each point is the average score achieved per episode
after the agent is run with e-greedy policy (e 5 0.05) for 520 k frames on Space
Invaders. b, Average score achieved per episode for Seaquest. c, Average
predicted action-value on a held-out set of states on Space Invaders. Each point

on the curve is the average of the action-value Q computed over the held-out
set of states. Note that Q-values are scaled due to clipping of rewards (see
Methods). d, Average predicted action-value on Seaquest. See Supplementary
Discussion for details.
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Mnih et al. Nature 2015

see Fig. 3, Supplementary Discussion and Extended Data Table 2). In
additional simulations (see Supplementary Discussion and Extended
Data Tables 3 and 4), we demonstrate the importance of the individual
core components of the DQN agent—the replay memory, separate target
Q-network and deep convolutional network architecture—by disabling
them and demonstrating the detrimental effects on performance.

We next examined the representations learned by DQN that under-
pinned the successful performance of the agent in the context of the game
Space Invaders (see Supplementary Video 1 for a demonstration of the
performance of DQN), by using a technique developed for the visual-
ization of high-dimensional data called ‘t-SNE’25 (Fig. 4). As expected,
the t-SNE algorithm tends to map the DQN representation of percep-
tually similar states to nearby points. Interestingly, we also found instances
in which the t-SNE algorithm generated similar embeddings for DQN
representations of states that are close in terms of expected reward but

perceptually dissimilar (Fig. 4, bottom right, top left and middle), con-
sistent with the notion that the network is able to learn representations
that support adaptive behaviour from high-dimensional sensory inputs.
Furthermore, we also show that the representations learned by DQN
are able to generalize to data generated from policies other than its
own—in simulations where we presented as input to the network game
states experienced during human and agent play, recorded the repre-
sentations of the last hidden layer, and visualized the embeddings gen-
erated by the t-SNE algorithm (Extended Data Fig. 1 and Supplementary
Discussion). Extended Data Fig. 2 provides an additional illustration of
how the representations learned by DQN allow it to accurately predict
state and action values.

It is worth noting that the games in which DQN excels are extremely
varied in their nature, from side-scrolling shooters (River Raid) to box-
ing games (Boxing) and three-dimensional car-racing games (Enduro).
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At human-level or above

Below human-level

0 100 200 300 400 4,500%500 1,000600

Best linear learner
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Figure 3 | Comparison of the DQN agent with the best reinforcement
learning methods15 in the literature. The performance of DQN is normalized
with respect to a professional human games tester (that is, 100% level) and
random play (that is, 0% level). Note that the normalized performance of DQN,
expressed as a percentage, is calculated as: 100 3 (DQN score 2 random play
score)/(human score 2 random play score). It can be seen that DQN

outperforms competing methods (also see Extended Data Table 2) in almost all
the games, and performs at a level that is broadly comparable with or superior
to a professional human games tester (that is, operationalized as a level of
75% or above) in the majority of games. Audio output was disabled for both
human players and agents. Error bars indicate s.d. across the 30 evaluation
episodes, starting with different initial conditions.
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• imitation learning from human demonstration 
• state space: joint positions, velocities, acceler. 
• action space: motor torques 
• gradient minimization in policy parameter space

Peters et al. NOW 2013
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• inverse reinforcment learning  
• state space: angular and euclidean position, 

velocity, acceleration  
• action space: motor torques 
• learning reward function from expert pilot

Abbeel et al. IJRR 2010



Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics

• guides policy gradient method by optimal trajectories 
• state space: RGB camera images  
• action space: motor torques

Levine et al JMLR 2016
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(a) hanger (b) cube (c) hammer (d) bottle

Figure 8: Illustration of the tasks in our visuomotor policy experiments, showing the vari-
ation in the position of the target for the hanger, cube, and bottle tasks, as well as two of
the three grasps for the hammer, which also included variation in position (not shown).

6.4 Deep Visuomotor Policy Evaluation

In this section, we present an evaluation of our full visuomotor policy training algorithm on
a PR2 robot. The aim of this evaluation is to answer the following question: does training
the perception and control systems in a visuomotor policy jointly end-to-end provide better
performance than training each component separately?

Experimental tasks. We trained policies for hanging a coat hanger on a clothes rack,
inserting a block into a shape sorting cube, fitting the claw of a toy hammer under a nail with
various grasps, and screwing on a bottle cap. The cost function for these tasks encourages
low distance between three points on the end-e↵ector and corresponding target points, low
torques, and, for the bottle task, spinning the wrist. The equations for these cost functions
and the details of each task are presented in Appendix B.2. The tasks are illustrated in
Figure 8. Each task involved variation of 10-20 cm in each direction in the position of the
target object (the rack, shape sorting cube, nail, and bottle). In addition, the coat hanger
and hammer tasks were trained with two and three grasps, respectively. The current angle
of the grasp was not provided to the policy, but had to be inferred from observing the
robot’s gripper in the camera images. All tasks used the same policy architecture and
model parameters.

Experimental conditions. We evaluated the visuomotor policies in three conditions: (1)
the training target positions and grasps, (2) new target positions not seen during training
and, for the hammer, new grasps (spatial test), and (3) training positions with visual
distractors (visual test). A selection of these experiments is shown in the supplementary
video.3 For the visual test, the shape sorting cube was placed on a table rather than held in

3. The video can be viewed at http://sites.google.com/site/visuomotorpolicy

22
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Boston dynamics - big dog



Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics

Taxonomy of policy search methods

• Model-based methods 
- e.g. PILCO [Deisenroth, 2011],  

            GPREPS [Kupcsik, 2015] 
- suffer from model bias

• Model-free methods 
- e.g. REINFORCE [Williams, 1992],  

            natural gradients [Peters, 2013] 
- require many samples 
- do not introduce model bias
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Search & Rescue mobile robotic platform

Motion control of 
thermal camera for 

semantic segmentation

Motion and compliance control of 
flippers for terrain smooth traversal
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Motion and compliance control of flippers

Proprioceptive states:
• robot’s roll,pitch and current flipper configuration 
• torques in engines (4 flippers+2 main tracks)

x

p

Actions:
• torques in flipper engines 
• complience of flippers
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Motion and compliance control of flippers
Exteroceptive states:
• incomplete local height map  obtained by successive 

mapping from depth data.

x

e
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Motion and compliance control of flippers
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Motion and compliance control of flippers

Proprioceptive states:
• robot’s roll,pitch and current flipper configuration 
• torques in engines (4 flippers+2 main tracks) 
• 24 tactile sensors (6 per flipper)

x
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Motion and compliance control of flippers

• rich proprioceptive data often allows tactile reconstruction

Sensor element number
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Motion and compliance control of flippers

• online: Gibbs sampling from conditional probabilities.
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Motion and compliance control of flippers

• Learn perception-friendly policy for traversing obstacles.
• Flippers provides both the motion and the perception.

• Real robot, real danger, limited number of real-world trials
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Motion and compliance control of flippers
• We speed up and control the learning process by: 

• Initialize policy on physical simulator
• Incorporating expert heuristics (feasible trajectories for 

tough obstacles, motion roughness, safety in simulator)
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Motion and compliance control of flippers

Subject to heuristic constraints:
• tactile reconstruction accuracy 
• pitch/roll angle limit (preventing robot's flip-over) 
• motion roughness limit measured by accelerometers  
• optimal action in a particular state given by an expert

We propose constrained policy gradient search. 
[1] M.Pecka, V.Šalanský, K.Zimmermann, T.Svoboda. 

Autonomous flipper control with safety constraints, IROS, 2016.

Gradient maximisation of rewards:
• forward speed 

Constraints allow for better control of learning process than 
ad-hoc sum of penalties in the reward function.
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Search & Rescue mobile robotic platform

Motion control of 
thermal camera for 
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Motion control of thermal camera for segmentation

• Robot follows a known exploration 
path into unknown environment 

• Problem 1: Segment humans from 
captured incomplete RGBDT data 

• Problem 2: Where to look with the 
thermal sensor to minimize 
segmentation error? 

• Approach: Learn simultaneously 
segmentation and policy deep 
CNN 



Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics

Segmentation network RGBD->H
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[Long CVPR 2015]’s segmentation network extended 
by depth and thermal modalities.
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Segmentation network RGBDT->H
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Self-Supervised training of gain predicting network
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gain  = expected per-pixel 
reduction of the segmentation 
error, when thermal measurement 
is available.
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Gain predicting network RGBD->gain
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Policy network initialisation

Initialize RGBD->Q by extending the RGBD->gain by fully 
connected layers (outputs corresponds to actions)
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Policy network guided learning

Project gain on a complete voxel map and use MILP to get the optimal pan-
tilt control wrt the long-term sum of accumulated gains (i.e. Q-values).
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Policy network guided learning

Use optimal trajectories to guide learning of the policy network.
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Motion control of thermal camera for segmentation


