Reinforcement learning in robotics
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Challenges of reinforcement learning for robotics
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Challenges of reinforcement learning for robotics
States: xeR" incomplete, noisy
Actions: a c R™ continuous high-dimensional
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Challenges of reinforcement learning for robotics

States: xeR" incomplete, noisy
Actions: a c R™ continuous high-dimensional
Model:  p(x|x,a) inaccurate model

Rewards: r(x,a,x’) € R

Policy:  m(alx)
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Challenges of reinforcement learning for robotics

States: xeR" incomplete, noisy
Actions: a c R™ continuous high-dimensional
Model:  p(x|x,a) inaccurate model

Rewards: r(x,a,x’) € R hard to engineer

Policy:  m(alx)
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Challenges of reinforcement learning for robotics

States: xeR" incomplete, noisy
Actions: a c R™ continuous high-dimensional
Model:  p(x|x,a) inaccurate model

Rewards: r(x,a,x’) € R hard to engineer

Policy:  m(alx) execution endanger the robot
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Taxonomy of policy search methods

* Direct policy search
e.g. gradient ascent for 7 = arg max ]

Episodic REPS [Peters, 2010
PILCO [Deisenroth, ICML 2011
Actor-critic (e.g. DPG [Silver,JMLR 2014])

Deep Q-learning (e.g. [Mnih,Nature 2015])

grey zone

e Value-based methods (dual function [Kober, 2013])
e.g. search for Q(x,a) =r(x,a,x’) +ymaxQ(x’,a’)
7 = arg max (J(x,a)
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Mnih et al. Nature 2015

e 2600 atari games

» state space: pixels (e.g. VGA resolution)

e action space: discrete |joystic actions (8 direction +
8 direction with button)

 collection of control tasks: https://gym.openai.com
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https://gym.openai.com

Mnih et al. Nature 2015
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Peters et al. NOW 2013

e mitation learning from human demonstration
e state space: |oint positions, velocities, acceler.

e action space: motor torgues
e gradient minimization in policy parameter space
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Abbeel et al. IJRR 2010

* inverse reinforcment learning

» state space: angular and euclidean position,
velocity, acceleration

e action space: motor torgues

e |earning reward function from expert pilot
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Levine et al IMLR 2016

e guides policy gradient method by optimal trajectories
» state space: RGB camera images
e action space: motor torgues

(a) hanger (b) cube (c) hammer (d) bottle
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Boston dynamics - big dog
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Taxonomy of policy search methods

 Model-free methods
- e.9. REINFORCE [Williams, 1992],
natural gradients [Peters, 2013]
- require many samples
- do not introduce model bias

e Model-based methods
- e.g. PILCO [Deisenroth, 2011],

GPREPS [Kupcsik, 2015]
- suffer from model bias

~§* 25 Czech Technical University in Prague
Y Faculty of Electrical Engineering, Department of Cybernetics

J
.»,,l\ :
=
p,



Search & Rescue mobile robotic platform

Flippers

Motion control of
thermal camera for

Motion and compliance control of

flippers for terrain smooth traversal . .
semantic segmentation
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Search & Rescue mobile robotic platform

Flippers

Motion control of
thermal camera for
semantic segmentation

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics

Motion and compliance control of
flippers for terrain smooth traversal

Z

(—*fl
e



Motion and compliance control of flippers

Actions:
e torques in flipper engines
 complience of flippers

Proprioceptive states: x”
* robot’s roll,pitch and current tlipper configuration
* torques in engines (4 flippers+2 main tracks)
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Motion and compliance control of flippers

Exteroceptive states: x°
* Incomplete local height map obtained by successive
mapping from depth data.
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Motion and compliance control of flippers
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Motion and compliance control of flippers

Proprioceptive states: x”
* robot’s roll,pitch and current tlipper configuration
e torques in engines (4 flippers+2 main tracks)

24 tactile sensors (6 per flipper)
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Motion and compliance control of flippers

* rich proprioceptive data often allows tactile reconstruction
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» offline: learn conditional probabilities p(x§|x< ,, xP)
from collected trajectories
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Motion and compliance control of flippers

* online: Gibbs sampling from conditional probabilities.
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Motion and compliance control of flippers

 pFlippers provides both the motion and the perception.
_earn perception-friendly policy for traversing obstacles.
Real robot, real danger, limited number of real-world trials
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Motion and compliance control of flippers
 We speed up and control the learning process by:
* |nitialize policy on physical simulator
* |Incorporating expert heuristics (feasible trajectories for
tough obstacles, motion roughness, safety in simulator)

Fast Simulation of Vehicles with Non-deformable Tracks

Martin Pecka
Karel Zimmermann
Tomas Svoboda

Visualizations of all tested methods
In selected scenarios using Gazebo simulator
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Motion and compliance control of flippers

We propose constrained policy gradient search.

(1] M.P

ecka, V.Salansky, K.Zimmermann, T.Svoboda.

Autonomous flipper control with safety constraints, IROS, 2016.

Gradient maximisation of rewards:
e forward speed

Subject to heuristic constraints:
* tactile reconstruction accuracy

e pitc
* MOt
* Optl

n/roll angle limit (preventing robot's flip-over)
lon roughness limit measured by accelerometers
mal action in a particular state given by an expert

Constraints allow for better control of learning process than
ad-hoc sum of penalties Iin the reward function.
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Search & Rescue mobile robotic platform

Flippers

Motion control of
thermal camera for

semantic segmentation
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Motion control of thermal camera tor segmentation

* Robot follows a known exploration
path into unknown environment

* Problem 1: Segment humans from
captured incomplete RGBDT data

* Problem 2: \Where to look with the
thermal sensor to minimize
segmentation error?

* Approach: Learn simultaneously
segmentation and policy deep
CNN
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Segmentation network RGBD->H

64 64

128(128
56 256 256

deconvolution

212 512 512 517 512 512 4006 4096
[ ) 1l Ic 1 g

e

\

256

\a

[Long CVPR 2015]'s segmentation network extended
by depth and thermal modalities.
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Segmentation network RGBD T->H
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Self-Supervised training of gain predicting network
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gain = expected per-pixel
reduction of the segmentation
error, when thermal measurement
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Gain predicting network RGBD->gain
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Policy network initialisation

FULLY CONNECTED NETWORK
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Initialize RGBD->Q by extending the RGBD->gain by fully
connected layers (outputs corresponds to actions)

Z Czech Technical University in Prague
A'NPS Faculty of Electrical Engineering, Department of Cybernetics

f
I/
(f
{f



Policy network guided learning
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Project gain on a complete voxel map and use MILP to get the optimal pan-
tilt control wrt the long-term sum of accumulated gains (i.e. Q-values).
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Policy network guided learning
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Use optimal trajectories to guide learning of the policy network.



Motion control of thermal camera tor segmentation
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