
C++ Constructs by Examples

Jan Faigl

Department of Computer Science
Faculty of Electrical Engineering

Czech Technical University in Prague

Lecture 12

B3B36PRG – C Programming Language

Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 1 / 64



Overview of the Lecture

Part 1 – C++ constructs in class Matrix example

Class and Object – Matrix

Operators

Relationship

Inheritance

Polymorphism

Inheritance and Composition

Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 2 / 64



Class and Object – Matrix Operators Relationship Inheritance Polymorphism Inheritance and Composition

Part I

Part 1 – C++ constructs in class Matrix
example

Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 3 / 64



Class and Object – Matrix Operators Relationship Inheritance Polymorphism Inheritance and Composition

Outline

Class and Object – Matrix

Operators

Relationship

Inheritance

Polymorphism

Inheritance and Composition

Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 4 / 64



Class and Object – Matrix Operators Relationship Inheritance Polymorphism Inheritance and Composition

Class as an Extended Data Type with Encapsulation
Data hidding is utilized to encapsulate implementation of matrix

class Matrix {
private:

const int ROWS;
const int COLS;
double *vals;

}; 1D array is utilized to have a continuous memory.
2D dynamic array can be used in C++11.

In the example, it is shown
How initialize and free required memory in constructor and
destructor
How to report an error using exception and try-catch statement
How to use references
How to define a copy constructor
How to define (overload) an operator for our class and objects
How to use C function and header files in C++
How to print to standard output and stream
How to define stream operator for output
How to define assignment operator

Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 5 / 64



Class and Object – Matrix Operators Relationship Inheritance Polymorphism Inheritance and Composition

Example – Class Matrix – Constructor

Class Matrix encapsulate dimension of the matrix
Dimensions are fixed for the entire life of the object (const)

class Matrix {
public:

Matrix(int rows, int cols);
~Matrix();

private:
const int ROWS;
const int COLS;
double *vals;

};

Matrix::Matrix(int rows, int cols) :
ROWS(rows), COLS(cols)

{
vals = new double[ROWS * COLS];

}

Matrix::~Matrix()
{

delete[] vals;
}

Notice, for simplicity we do not test validity of the matrix dimensions.

Constant data fields ROWS and COLS must be initialized in the
constructor, i.e., in the initializer list

We should also preserve the order of the initialization as the variables
are defined

Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 6 / 64



Class and Object – Matrix Operators Relationship Inheritance Polymorphism Inheritance and Composition

Example – Class Matrix – Hidding Data Fields
Primarily we aim to hide direct access to the particular data fields
For the dimensions, we provide the so-called “accessor” methods
The methods are declared as const to assure they are read only
methods and do not modify the object (compiler checks that)
Private method at() is utilized to have access to the particular
cell at r row and c column

inline is used to instruct compiler to avoid function call and rather
put the function body directly at the calling place.

class Matrix {
public:

inline int rows(void) const { return ROWS; } // const method cannot
inline int cols(void) const { return COLS; } // modify the object

private:
// returning reference to the variable allows to set the variable
// outside, it is like a pointer but automatically dereferenced
inline double& at(int r, int c) const
{

return vals[COLS * r + c];
}

};
Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 7 / 64



Class and Object – Matrix Operators Relationship Inheritance Polymorphism Inheritance and Composition

Example – Class Matrix – Using Reference
The at() method can be used to fill the matrix randomly
The random() function is defined in <stdlib.h>, but in C++ we
prefer to include C libraries as <cstdlib>

class Matrix {
public:

void fillRandom(void);
private:

inline double& at(int r, int c) const { return vals[COLS * r + c]; }
};

#include <cstdlib>

void Matrix::fillRandom(void)
{

for (int r = 0; r < ROWS; ++r) {
for (int c = 0; c < COLS; ++c) {

at(r, c) = (rand() % 100) / 10.0; // set vals[COLS * r + c]
}

}
}

In this case, it is more straightforward to just fill 1D array of vals for
i in 0..(ROWS * COLS).

Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 8 / 64



Class and Object – Matrix Operators Relationship Inheritance Polymorphism Inheritance and Composition

Example – Class Matrix – Getters/Setters
Access to particular cell
of the matrix is provided
through the so-called
getter and setter methods

class Matrix {
public:

double getValueAt(int r, int c) const;
void setValueAt(double v, int r, int c);

};

The methods are based on the private at() method but will throw
an exception if a cell out of ROWS and COLS would be requested

#include <stdexcept>
double Matrix::getValueAt(int r, int c) const
{

if (r < 0 or r >= ROWS or c < 0 or c >= COLS) {
throw std::out_of_range("Out of range at Matrix::getValueAt");

}
return at(r, c);

}
void Matrix::setValueAt(double v, int r, int c)
{

if (r < 0 or r >= ROWS or c < 0 or c >= COLS) {
throw std::out_of_range("Out of range at Matrix::setValueAt");

}
at(r, c) = v;

}

Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 9 / 64



Class and Object – Matrix Operators Relationship Inheritance Polymorphism Inheritance and Composition

Example – Class Matrix – Exception Handling
The code where an exception can be raised is put into the
try-catch block
The particular exception is specified in the catch by the class name
We use the program standard output denoted as std::cout

We can avoid std:: by using namespace std;

Or just using std::cout;#include <iostream>

#include "matrix.h"

int main(void)
{

int ret = 0;
try {

Matrix m1(3, 3);
m1.setValueAt(10.5, 2, 3); // col 3 raises the exception

m1.fillRandom();
} catch (std::out_of_range& e) {

std::cout << "ERROR: " << e.what() << std::endl;
ret = -1

}
return ret;

} lec10/demo-matrix.cc
Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 10 / 64



Class and Object – Matrix Operators Relationship Inheritance Polymorphism Inheritance and Composition

Example – Class Matrix – Printing the Matrix

We create a print() method to nicely print the matrix to the
standard output
Formatting is controlled by i/o stream manipulators defined in
<iomanip> header file

#include <iostream>
#include <iomanip>

#include "matrix.h"

void print(const Matrix& m)
{

std::cout << std::fixed << std::setprecision(1);
for (int r = 0; r < m.rows(); ++r) {

for (int c = 0; c < m.cols(); ++c) {
std::cout << (c > 0 ? " " : "") << std::setw(4);
std::cout << m.getValueAt(r, c);

}
std::cout << std::endl;

}
}

Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 11 / 64



Class and Object – Matrix Operators Relationship Inheritance Polymorphism Inheritance and Composition

Example – Class Matrix – Printing the Matrix
Notice, the matrix variable m1 is not copied when it is passed to
print() function because of passing reference
#include <iostream>
#include <iomanip>
#include "matrix.h"

void print(const Matrix& m);

int main(void)
{

int ret = 0;
try {

Matrix m1(3, 3);
m1.fillRandom();
std::cout << "Matrix m1" << std::endl;
print(m1);

...

Example of the output
clang++ --pedantic matrix.cc demo-matrix.cc && ./a.out
Matrix m1
1.3 9.7 9.8
1.5 1.2 4.3
8.7 0.8 9.8

lec10/matrix.h, lec10/matrix.cc, lec10/demo-matrix.cc
Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 12 / 64



Class and Object – Matrix Operators Relationship Inheritance Polymorphism Inheritance and Composition

Example – Class Matrix – Copy Constructor

We may overload the constructor to create a copy of the object
class Matrix {

public:
...
Matrix(const Matrix &m);
...

};

We create an exact copy of the matrix
Matrix::Matrix(const Matrix &m) : ROWS(m.ROWS), COLS(m.COLS)
{ // copy constructor

vals = new double[ROWS * COLS];
for (int i = 0; i < ROWS * COLS; ++i) {

vals[i] = m.vals[i];
}

}
Notice, access to private fields is allowed within in the class

We are implementing the class, and thus we are aware what are the
internal data fields

Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 13 / 64



Class and Object – Matrix Operators Relationship Inheritance Polymorphism Inheritance and Composition

Example – Class Matrix – Dynamic Object Allocation

We can create a new instance of the object by the new operator
We may also combine dynamic allocation with the copy constructor
Notice, the access to the methods of the object using the pointer
to the object is by the -> operator

ratrix m1(3, 3);
m1.fillRandom();
std::cout << "Matrix m1" << std::endl;
print(m1);

Matrix *m2 = new Matrix(m1);
Matrix *m3 = new Matrix(m2->rows(), m2->cols());
std::cout << std::endl << "Matrix m2" << std::endl;
print(*m2);
m3->fillRandom();
std::cout << std::endl << "Matrix m3" << std::endl;
print(*m3);

delete m2;
delete m3;

lec10/demo-matrix.cc

Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 14 / 64



Class and Object – Matrix Operators Relationship Inheritance Polymorphism Inheritance and Composition

Example – Class Matrix – Sum
The method to sum two matrices will return a new matrix

class Matrix {
public:

Matrix sum(const Matrix &m2);
}

The variable ret is passed using the copy constructor
Matrix Matrix::sum(const Matrix &m2)
{

if (ROWS != m2.ROWS or COLS != m2.COLS) {
throw std::invalid_argument("Matrix dimensions do not match at

Matrix::sum");
}
Matrix ret(ROWS, COLS);
for (int i = 0; i < ROWS * COLS; ++i) {

ret.vals[i] = vals[i] + m2.vals[i];
}
return ret;

}
We may also implement sum as addition to the particular matrix

The sum() method can be then used as any other method
Matrix m1(3, 3);
m1.fillRandom();
Matrix *m2 = new Matrix(m1);
Matrix m4 = m1.sum(*m2);

Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 15 / 64



Class and Object – Matrix Operators Relationship Inheritance Polymorphism Inheritance and Composition

Example – Class Matrix – Operator +
In C++, we can define our operators, e.g., + for sum of two
matrices
It will be called like the sum() method
class Matrix {

public:
Matrix sum(const Matrix &m2);
Matrix operator+(const Matrix &m2);

}

In our case, we can use the already implemented sum() method
Matrix Matrix::operator+(const Matrix &m2)
{

return sum(m2);
}

The new operator can be applied for the operands of the Matrix
type like as to default types
Matrix m1(3,3);
m1.fillRandom();
Matrix m2(m1), m3(m1 + m2); // use sum of m1 and m2 to init m3
print(m3);

Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 16 / 64



Class and Object – Matrix Operators Relationship Inheritance Polymorphism Inheritance and Composition

Example – Class Matrix – Output Stream Operator
An output stream operator << can be defined to pass Matrix
objects directly to the output stream

#include <ostream>
class Matrix { ... };
std::ostream& operator<<(std::ostream& out, const Matrix& m);

It is defined outside the Matrix
#include <iomanip>
std::ostream& operator<<(std::ostream& out, const Matrix& m)
{

if (out) {
out << std::fixed << std::setprecision(1);
for (int r = 0; r < m.rows(); ++r) {

for (int c = 0; c < m.cols(); ++c) {
out << (c > 0 ? " " : "") << std::setw(4);
out << m.getValueAt(r, c);

}
out << std::endl;

}
}
return out;

}

“Outside” operator can be used in an output stream pipeline with other
data types. In this case, we can use just the public methods. But, if
needed, we can declare the operator as a friend method to the class,
which can access the private fields.

Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 17 / 64



Class and Object – Matrix Operators Relationship Inheritance Polymorphism Inheritance and Composition

Example – Class Matrix – Example of Usage
Having the stream operator we can use + directly in the output
std::cout << "\nMatrix demo using operators" << std::endl;
Matrix m1(2, 2);
Matrix m2(m1);
m1.fillRandom();
m2.fillRandom();
std::cout << "Matrix m1" << std::endl << m1;
std::cout << "\nMatrix m2" << std::endl << m2;
std::cout << "\nMatrix m1 + m2" << std::endl << m1 + m2;

Example of the output operator
Matrix demo using operators
Matrix m1
0.8 3.1
2.2 4.6

Matrix m2
0.4 2.3
3.3 7.2

Matrix m1 + m2
1.2 5.4
5.5 11.8 lec10/demo-matrix.cc

Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 18 / 64



Class and Object – Matrix Operators Relationship Inheritance Polymorphism Inheritance and Composition

Example – Class Matrix – Assignment Operator =
We can defined the assignment operator =

class Matrix {
public:

Matrix& operator=(const Matrix &m)
{

if (this != &m) { // to avoid overwriting itself
if (ROWS != m.ROWS or COLS != m.COLS) {

throw std::out_of_range("Cannot assign matrix with
different dimensions");

}
for (int i = 0; i < ROWS * COLS; ++i) {

vals[i] = m.vals[i];
}

}
return *this; // we return reference not a pointer

}
};
// it can be then used as
Matrix m1(2,2), m2(2,2), m3(2,2);
m1.fillRandom();
m2.fillRandom();
m3 = m1 + m2;
std::cout << m1 << " + " << std::endl << m2 << " = " << std::endl

<< m3 << std::endl;
Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 19 / 64



Class and Object – Matrix Operators Relationship Inheritance Polymorphism Inheritance and Composition

Outline

Class and Object – Matrix

Operators

Relationship

Inheritance

Polymorphism

Inheritance and Composition

Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 20 / 64



Class and Object – Matrix Operators Relationship Inheritance Polymorphism Inheritance and Composition

Example of Encapsulation
Class Matrix encapsulates 2D matrix of double values

class Matrix {
public:

Matrix(int rows, int cols);
Matrix(const Matrix &m);
~Matrix();

inline int rows(void) const { return ROWS; }
inline int cols(void) const { return COLS; }
double getValueAt(int r, int c) const;
void setValueAt(double v, int r, int c);
void fillRandom(void);
Matrix sum(const Matrix &m2);
Matrix operator+(const Matrix &m2);
Matrix& operator=(const Matrix &m);

private:
inline double& at(int r, int c) const { return vals[COLS * r + c]; }

private:
const int ROWS;
const int COLS;
double *vals;

};
std::ostream& operator<<(std::ostream& out, const Matrix& m);

lec11/matrix.h
Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 21 / 64



Class and Object – Matrix Operators Relationship Inheritance Polymorphism Inheritance and Composition

Example – Matrix Subscripting Operator

For a convenient access to matrix cells, we can implement operator
() with two arguments r and c denoting the cell row and column

class Matrix {
public:

double& operator()(int r, int c);
double operator()(int r, int c) const;

};

// use the reference for modification of the cell value
double& Matrix::operator()(int r, int c)
{

return at(r, c);
}

// copy the value for the const operator
double Matrix::operator()(int r, int c) const
{

return at(r, c);
}

For simplicity and better readability, we do not check range of arguments.

Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 22 / 64



Class and Object – Matrix Operators Relationship Inheritance Polymorphism Inheritance and Composition

Example Matrix – Identity Matrix
Implementation of the function set the matrix to the identity using
the matrix subscripting operator

void setIdentity(Matrix& matrix)
{

for (int r = 0; r < matrix.rows(); ++r) {
for (int c = 0; c < matrix.cols(); ++c) {

matrix(r, c) = (r == c) ? 1.0 : 0.0;
}

}
}

Matrix m1(2, 2);
std::cout << "Matrix m1 -- init values: " << std::endl << m1;
setIdentity(m1);
std::cout << "Matrix m1 -- identity: " << std::endl << m1;

Example of output
Matrix m1 -- init values:
0.0 0.0
0.0 0.0

Matrix m1 -- identity:
1.0 0.0
0.0 1.0 lec11/demo-matrix.cc

Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 23 / 64



Class and Object – Matrix Operators Relationship Inheritance Polymorphism Inheritance and Composition

Outline

Class and Object – Matrix

Operators

Relationship

Inheritance

Polymorphism

Inheritance and Composition

Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 24 / 64



Class and Object – Matrix Operators Relationship Inheritance Polymorphism Inheritance and Composition

Relationship between Objects

Objects can be in relationship based on the
Inheritance – is the relationship of the type is

Object of descendant class is also the ancestor class

One class is derived from the ancestor class
Objects of the derived class extends the based class

Derived class contains all the field of the ancestor class
However, some of the fields may be hidden

New methods can be implemented in the derived class
New implementation override the previous one

Derived class (objects) are specialization of a more general
ancestor (super) class

An object can be part of the other objects – it is the has relation
Similarly to compound structures that contain other struct data
types as their data fields, objects can also compound of other objects
We can further distinguish

Aggregation – an object is a part of other object
Composition – inner object exists only within the compound object

Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 25 / 64



Class and Object – Matrix Operators Relationship Inheritance Polymorphism Inheritance and Composition

Example – Aggregation/Composition

Aggregation – relationship of the type “has” or “ it is composed
Let A be aggregation of B C , then objects B and C are contained
in A
It results that B and C cannot survive without A

In such a case, we call the relationship as composition

Example of implementation
class GraphComp { // composition

private:
std::vector<Edge> edges;

};

class GraphComp { // aggregation
public:

GraphComp(std::vector<Edge>& edges)
: edges(edges) {}

private:
const std::vector<Edge>& edges;

};

struct Edge {
Node v1;
Node v2;

};

struct Node {
Data data;

};

Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 26 / 64



Class and Object – Matrix Operators Relationship Inheritance Polymorphism Inheritance and Composition

Outline

Class and Object – Matrix

Operators

Relationship

Inheritance

Polymorphism

Inheritance and Composition

Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 27 / 64



Class and Object – Matrix Operators Relationship Inheritance Polymorphism Inheritance and Composition

Inheritance
Founding definition and implementation of one class on another
existing class(es)
Let class B be inherited from the class A, then

Class B is subclass or the derived class of A
Class A is superclass or the base class of B

The subclass B has two parts in general:
Derived part is inherited from A
New incremental part contains definitions and implementation
added by the class B

The inheritance is relationship of the type is-a
Object of the type B is also an instance of the object of the type A

Properties of B inherited from the A can be redefined
Change of field visibility (protected, public, private)
Overriding of the method implementation

Using inheritance we can create hierarchies of objects
Implement general function in superclasses or creating abstract classes
that are further specialized in the derived classes.

Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 28 / 64



Class and Object – Matrix Operators Relationship Inheritance Polymorphism Inheritance and Composition

Example MatrixExt – Extension of the Matrix

We will extend the existing class Matrix to have identity method
and also multiplication operator
We refer the superclass as the Base class using typedef

We need to provide a constructor for the MatrixExt; however, we
used the existing constructor in the base class
class MatrixExt : public Matrix {

typedef Matrix Base; // typedef for refering the superclass

public:
MatrixExt(int r, int c) : Base(r, c) {} // base constructor

void setIdentity(void);
Matrix operator*(const Matrix &m2);

}; lec11/matrix_ext.h

Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 29 / 64



Class and Object – Matrix Operators Relationship Inheritance Polymorphism Inheritance and Composition

Example MatrixExt – Identity and Multiplication Operator
We can use only the public (or protected) methods of Matrix class

Matrix does not have any protected members#include "matrix_ext.h"
void MatrixExt::setIdentity(void)
{

for (int r = 0; r < rows(); ++r) {
for (int c = 0; c < cols(); ++c) {

(*this)(r, c) = (r == c) ? 1.0 : 0.0;
}

}
}
Matrix MatrixExt::operator*(const Matrix &m2)
{

Matrix m3(rows(), m2.cols());
for (int r = 0; r < rows(); ++r) {

for (int c = 0; c < m2.cols(); ++c) {
m3(r, c) = 0.0;
for (int k = 0; k < cols(); ++k) {

m3(r, c) += (*this)(r, k) * m2(k, c);
}

}
}
return m3;

} lec11/matrix_ext.cc
Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 30 / 64



Class and Object – Matrix Operators Relationship Inheritance Polymorphism Inheritance and Composition

Example MatrixExt – Example of Usage 1/2
Objects of the class MatrixExt also have the methods of the
Matrix

#include <iostream>
#include "matrix_ext.h"

using std::cout;

int main(void)
{

int ret = 0;
MatrixExt m1(2, 1);
m1(0, 0) = 3; m1(1, 0) = 5;

MatrixExt m2(1, 2);
m2(0, 0) = 1; m2(0, 1) = 2;

cout << "Matrix m1:\n" << m1 << std::endl;
cout << "Matrix m2:\n" << m2 << std::endl;
cout << "m1 * m2 =\n" << m2 * m1 << std::endl;
cout << "m2 * m1 =\n" << m1 * m2 << std::endl;
return ret;

}

clang++ matrix.cc matrix_ext.
cc demo-matrix_ext.cc &&

./a.out
Matrix m1:
3.0
5.0

Matrix m2:
1.0 2.0

m1 * m2 =
13.0

m2 * m1 =
3.0 6.0
5.0 10.0

lec11/demo-matrix_ext.cc
Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 31 / 64



Class and Object – Matrix Operators Relationship Inheritance Polymorphism Inheritance and Composition

Example MatrixExt – Example of Usage 2/2

We may use objects of MatrixExt anywhere objects of Matrix can
be applied.
This is a result of the inheritance

And a first step towards polymorphism

void setIdentity(Matrix& matrix)
{

for (int r = 0; r < matrix.rows(); ++r) {
for (int c = 0; c < matrix.cols(); ++c) {

matrix(r, c) = (r == c) ? 1.0 : 0.0;
}

}
}

MatrixExt m1(2, 1);
cout << "Using setIdentity for Matrix" << std::endl;
setIdentity(m1);
cout << "Matrix m1:\n" << m1 << std::endl;

lec11/demo-matrix_ext.cc

Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 32 / 64



Class and Object – Matrix Operators Relationship Inheritance Polymorphism Inheritance and Composition

Categories of the Inheritance

Strict inheritance – derived class takes all of the superclass and
adds own methods and attributes. All members of the superclass
are available in the derived class. It strictly follows the is-a
hierarchy
Nonstrict inheritance – the subclass derives from the a superclass
only certain attributes or methods that can be further redefined
Multiple inheritance – a class is derived from several superclasses

Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 33 / 64



Class and Object – Matrix Operators Relationship Inheritance Polymorphism Inheritance and Composition

Inheritance – Summary

Inheritance is a mechanism that allows
Extend data field of the class and modify them
Extend or modify methods of the class

Inheritance allows to
Create hierarchies of classes
“Pass” data fields and methods for further extension and
modification
Specialize (specify) classes

The main advantages of inheritance are
It contributes essentially to the code reusability

Together with encapsulation!

Inheritance is foundation for the polymorphism

Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 34 / 64



Class and Object – Matrix Operators Relationship Inheritance Polymorphism Inheritance and Composition

Outline

Class and Object – Matrix

Operators

Relationship

Inheritance

Polymorphism

Inheritance and Composition

Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 35 / 64



Class and Object – Matrix Operators Relationship Inheritance Polymorphism Inheritance and Composition

Polymorphism

Polymorphism can be expressed as the ability to refer in a same way
to different objects

We can call the same method names on different objects

We work with an object whose actual content is determined at the
runtime
Polymorphism of objects - Let the class B be a subclass of A, then
the object of the B can be used wherever it is expected to be an
object of the class A
Polymorphism of methods requires dynamic binding, i.e., static vs.
dynamic type of the class

Let the class B be a subclass of A and redefines the method m()
A variable x is of the static type B, but its dynamic type can be A
or B
Which method is actually called for x.m() depends on the dynamic
type

Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 36 / 64



Class and Object – Matrix Operators Relationship Inheritance Polymorphism Inheritance and Composition

Example MatrixExt – Method Overriding 1/2

In MatrixExt, we may override a method implemented in the base
class Matrix, e.g., fillRandom() will also use negative values.

class MatrixExt : public Matrix {
...
void fillRandom(void);

}

void MatrixExt::fillRandom(void)
{

for (int r = 0; r < rows(); ++r) {
for (int c = 0; c < cols(); ++c) {

(*this)(r, c) = (rand() % 100) / 10.0;
if (rand() % 100 > 50) {

(*this)(r, c) *= -1.0; // change the sign
}

}
}

} lec11/matrix_ext.h, lec11/matrix_ext.cc

Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 37 / 64



Class and Object – Matrix Operators Relationship Inheritance Polymorphism Inheritance and Composition

Example MatrixExt – Method Overriding 2/2
We can call the method fillRandom() of the MatrixExt

MatrixExt *m1 = new MatrixExt(3, 3);
Matrix *m2 = new MatrixExt(3, 3);
m1->fillRandom(); m2->fillRandom();
cout << "m1: MatrixExt as MatrixExt:\n" << *m1 << std::endl;
cout << "m2: MatrixExt as Matrix:\n" << *m2 << std::endl;
delete m1; delete m2; lec11/demo-matrix_ext.cc

However, in the case of m2 the Matrix::fillRandom() is called
m1: MatrixExt as MatrixExt:
-1.3 9.8 1.2
8.7 -9.8 -7.9

-3.6 -7.3 -0.6

m2: MatrixExt as Matrix:
7.9 2.3 0.5
9.0 7.0 6.6
7.2 1.8 9.7

We need a dynamic way to identity the object type at runtime
for the polymorphism of the methods

Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 38 / 64



Class and Object – Matrix Operators Relationship Inheritance Polymorphism Inheritance and Composition

Virtual Methods – Polymorphism and Inheritance

We need a dynamic binding for polymorphism of the methods
It is usually implemented as a virtual method in object oriented
programming languages
Override methods that are marked as virtual has a dynamic
binding to the particular dynamic type

Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 39 / 64



Class and Object – Matrix Operators Relationship Inheritance Polymorphism Inheritance and Composition

Example – Overriding without Virtual Method 1/2
#include <iostream>
using namespace std;
class A {

public:
void info()
{

cout << "Object of the class A" << endl;
}

};
class B : public A {

public:
void info()
{

cout << "Object of the class B" << endl;
}

};

A* a = new A(); B* b = new B();
A* ta = a; // backup of a pointer
a->info(); // calling method info() of the class A
b->info(); // calling method info() of the class B
a = b; // use the polymorphism of objects
a->info(); // without the dynamic binding, method of the class A is called
delete ta; delete b;

clang++ demo-novirtual.cc
./a.out
Object of the class A
Object of the class B
Object of the class A

lec11/demo-novirtual.cc
Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 40 / 64



Class and Object – Matrix Operators Relationship Inheritance Polymorphism Inheritance and Composition

Example – Overriding with Virtual Method 2/2
#include <iostream>
using namespace std;
class A {

public:
virtual void info() // Virtual !!!
{

cout << "Object of the class A" << endl;
}

};
class B : public A {

public:
void info()
{

cout << "Object of the class B" << endl;
}

};

A* a = new A(); B* b = new B();
A* ta = a; // backup of a pointer
a->info(); // calling method info() of the class A
b->info(); // calling method info() of the class B
a = b; // use the polymorphism of objects
a->info(); // the dynamic binding exists, method of the class B is called
delete ta; delete b;

clang++ demo-virtual.cc
./a.out
Object of the class A
Object of the class B
Object of the class B

lec11/demo-virtual.cc
Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 41 / 64



Class and Object – Matrix Operators Relationship Inheritance Polymorphism Inheritance and Composition

Derived Classes, Polymorphism, and Practical Implications

Derived class inherits the methods and data fields of the
superclass, but it can also add new methods and data fields

It can extend and specialize the class
It can modify the implementation of the methods

An object of the derived class can be used instead of the object of
the superclass, e.g.,

We can implement more efficient matrix multiplication without
modification of the whole program

We may further need a mechanism to create new object based on the
dynamic type, i.e., using the newInstance virtual method

Virtual methods are important for the polymorphism
It is crucial to use a virtual destructor for a proper destruction of
the object

E.g., when a derived class allocate additional memory

Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 42 / 64



Class and Object – Matrix Operators Relationship Inheritance Polymorphism Inheritance and Composition

Example – Virtual Destructor 1/4

#include <iostream>
using namespace std;
class Base {

public:
Base(int capacity) {

cout << "Base::Base -- allocate data" << endl;
int *data = new int[capacity];

}
virtual ~Base() { // virtual destructor is important

cout << "Base::~Base -- release data" << endl;
}

protected:
int *data;

};

lec11/demo-virtual_destructor.cc

Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 43 / 64



Class and Object – Matrix Operators Relationship Inheritance Polymorphism Inheritance and Composition

Example – Virtual Destructor 2/4

class Derived : public Base {
public:

Derived(int capacity) : Base(capacity) {
cout << "Derived::Derived -- allocate data2" << endl;
int *data2 = new int[capacity];

}
~Derived() {

cout << "Derived::~Derived -- release data2" << endl;
int *data2;

}
protected:

int *data2;
};

lec11/demo-virtual_destructor.cc

Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 44 / 64



Class and Object – Matrix Operators Relationship Inheritance Polymorphism Inheritance and Composition

Example – Virtual Destructor 3/4
Using virtual destructor all allocated data are properly released

cout << "Using Derived " << endl;
Derived *object = new Derived(1000000);
delete object;
cout << endl;

cout << "Using Base" << endl;
Base *object = new Derived(1000000);
delete object; lec11/demo-virtual_destructor.cc

clang++ demo-virtual_destructor.cc && ./a.out
Using Derived
Base::Base -- allocate data
Derived::Derived -- allocate data2
Derived::~Derived -- release data2
Base::~Base -- release data

Using Base
Base::Base -- allocate data
Derived::Derived -- allocate data2
Derived::~Derived -- release data2
Base::~Base -- release data Both desctructors Derived and Base are called

Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 45 / 64



Class and Object – Matrix Operators Relationship Inheritance Polymorphism Inheritance and Composition

Example – Virtual Destructor 4/4
Without virtual destructor, e.g„
class Base {

...
~Base(); // without virtualdestructor

};
Derived *object = new Derived(1000000);
delete object;
Base *object = new Derived(1000000);
delete object;

Only both constructors are called, but only destructor of the Base
class in the second case Base *object = new Derived(1000000);
Using Derived
Base::Base -- allocate data
Derived::Derived -- allocate data2
Derived::~Derived -- release data2
Base::~Base -- release data

Using Base
Base::Base -- allocate data
Derived::Derived -- allocate data2
Base::~Base -- release data Only the desctructor of Base is called

Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 46 / 64



Class and Object – Matrix Operators Relationship Inheritance Polymorphism Inheritance and Composition

Outline

Class and Object – Matrix

Operators

Relationship

Inheritance

Polymorphism

Inheritance and Composition

Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 47 / 64



Class and Object – Matrix Operators Relationship Inheritance Polymorphism Inheritance and Composition

Inheritance and Composition

A part of the object oriented programming is the object oriented
design (OOD)

It aims to provide “a plan” how to solve the problem using objects
and their relationship
An important part of the design is identification of the particular
objects
their generalization to the classes
and also designing a class hierarchy

Sometimes, it may be difficult to decides
What is the common (general) object and what is the specializa-
tion, which is important step for class hierarchy and applying the
inheritance
It may also be questionable when to use composition

Let show the inheritance on an example of geometrical objects

Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 48 / 64



Class and Object – Matrix Operators Relationship Inheritance Polymorphism Inheritance and Composition

Example – Is Cuboid Extended Rectangle? 1/2

class Rectangle {
public:

Rectangle(double w, double h) : width(w), height(h) {}
inline double getWidth(void) const { return width; }
inline double getHeight(void) const { return height; }
inline double getDiagonal(void) const
{

return sqrt(width*width + height*height);
}

protected:
double width;
double height;

};

Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 49 / 64



Class and Object – Matrix Operators Relationship Inheritance Polymorphism Inheritance and Composition

Example – Is Cuboid Extended Rectangle? 2/2

class Cuboid : public Rectangle {
public:

Cuboid(double w, double h, double d) :
Rectangle(w, h), depth(d) {}

inline double getDepth(void) const { return depth; }
inline double getDiagonal(void) const
{

const double tmp = Rectangle::getDiagonal();
return sqrt(tmp * tmp + depth * depth);

}

protected:
double depth;

};

Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 50 / 64



Class and Object – Matrix Operators Relationship Inheritance Polymorphism Inheritance and Composition

Example – Inheritance Cuboid Extend Rectangle

Class Cuboid extends the class Rectangle by the depth
Cuboid inherits data fields width a height
Cuboid also inherits „getters” getWidth() and getHeight()
Constructor of the Rectangle is called from the Cuboid constructor

The descendant class Cuboid extends (override) the
getDiagonal() methods

It actually uses the method getDiagonal() of the ancestor
Rectangle::getDiagonal()

We create a “specialization” of the Rectangle as an extension
Cuboid class

Is it really a suitable extension?

What is the cuboid area? What is the cuboid circumference?

Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 51 / 64



Class and Object – Matrix Operators Relationship Inheritance Polymorphism Inheritance and Composition

Example – Inheritance Cuboid Extend Rectangle

Class Cuboid extends the class Rectangle by the depth
Cuboid inherits data fields width a height
Cuboid also inherits „getters” getWidth() and getHeight()
Constructor of the Rectangle is called from the Cuboid constructor

The descendant class Cuboid extends (override) the
getDiagonal() methods

It actually uses the method getDiagonal() of the ancestor
Rectangle::getDiagonal()

We create a “specialization” of the Rectangle as an extension
Cuboid class

Is it really a suitable extension?

What is the cuboid area? What is the cuboid circumference?

Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 51 / 64



Class and Object – Matrix Operators Relationship Inheritance Polymorphism Inheritance and Composition

Example – Inheritance Cuboid Extend Rectangle

Class Cuboid extends the class Rectangle by the depth
Cuboid inherits data fields width a height
Cuboid also inherits „getters” getWidth() and getHeight()
Constructor of the Rectangle is called from the Cuboid constructor

The descendant class Cuboid extends (override) the
getDiagonal() methods

It actually uses the method getDiagonal() of the ancestor
Rectangle::getDiagonal()

We create a “specialization” of the Rectangle as an extension
Cuboid class

Is it really a suitable extension?

What is the cuboid area? What is the cuboid circumference?

Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 51 / 64



Class and Object – Matrix Operators Relationship Inheritance Polymorphism Inheritance and Composition

Example – Inheritance – Rectangle is a Special Cuboid 1/2

Rectangle is a cuboid with zero depth
class Cuboid {

public:
Cuboid(double w, double h, double d) :

width(w), height(h), depth(d) {}

inline double getWidth(void) const { return width; }
inline double getHeight(void) const { return height; }
inline double getDepth(void) const { return depth; }

inline double getDiagonal(void) const
{

return sqrt(width*width + height*height + depth*depth);
}

protected:
double width;
double height;
double depth;

};

Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 52 / 64



Class and Object – Matrix Operators Relationship Inheritance Polymorphism Inheritance and Composition

Example – Inheritance – Rectangle is a Special Cuboid 2/2

class Rectangle : public Cuboid {

public:
Rectangle(double w, double h) : Cuboid(w, h, 0.0) {}

};

Rectangle is a “cuboid” with zero depth
Rectangle inherits all data fields: with, height, and depth

It also inherits all methods of the ancestor
Accessible can be only particular ones

The constructor of the Cuboid class is accessible and it used to
set data fields with the zero depth

Objects of the class Rectangle can use all variable and methods
of the Cuboid class

Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 53 / 64



Class and Object – Matrix Operators Relationship Inheritance Polymorphism Inheritance and Composition

Should be Rectangle Descendant of Cuboid or Cuboid be
Descendant of Rectangle?

1. Cuboid is descendant of the rectangle
“Logical” addition of the depth dimensions, but methods valid for
the rectangle do not work of the cuboid

E.g., area of the rectangle

2. Rectangle as a descendant of the cuboid
Logically correct reasoning on specialization

“All what work for the cuboid also work for the cuboid with zero
depth”
Inefficient implementation – every rectangle is represented by 3 di-
mensions

Specialization is correct
Everything what hold for the ancestor have to be valid for the descendant

However, in this particular case, usage of the inheritance is questionable.

Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 54 / 64



Class and Object – Matrix Operators Relationship Inheritance Polymorphism Inheritance and Composition

Should be Rectangle Descendant of Cuboid or Cuboid be
Descendant of Rectangle?

1. Cuboid is descendant of the rectangle
“Logical” addition of the depth dimensions, but methods valid for
the rectangle do not work of the cuboid

E.g., area of the rectangle

2. Rectangle as a descendant of the cuboid
Logically correct reasoning on specialization

“All what work for the cuboid also work for the cuboid with zero
depth”
Inefficient implementation – every rectangle is represented by 3 di-
mensions

Specialization is correct
Everything what hold for the ancestor have to be valid for the descendant

However, in this particular case, usage of the inheritance is questionable.

Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 54 / 64



Class and Object – Matrix Operators Relationship Inheritance Polymorphism Inheritance and Composition

Should be Rectangle Descendant of Cuboid or Cuboid be
Descendant of Rectangle?

1. Cuboid is descendant of the rectangle
“Logical” addition of the depth dimensions, but methods valid for
the rectangle do not work of the cuboid

E.g., area of the rectangle

2. Rectangle as a descendant of the cuboid
Logically correct reasoning on specialization

“All what work for the cuboid also work for the cuboid with zero
depth”
Inefficient implementation – every rectangle is represented by 3 di-
mensions

Specialization is correct
Everything what hold for the ancestor have to be valid for the descendant

However, in this particular case, usage of the inheritance is questionable.

Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 54 / 64



Class and Object – Matrix Operators Relationship Inheritance Polymorphism Inheritance and Composition

Relationship of the Ancestor and Descendant is of the type
“is-a”

Is a straight line segment descendant of the point?
Straight line segment does not use any method of a point
is-a?: segment is a point ? → NO → segment is not descendant
of the point

Is rectangle descendant of the straight line segment?
is-a?: NO

Is rectangle descendant of the square, or vice versa?
Rectangle “extends” square by one dimension, but it is not a square
Square is a rectangle with the width same as the height

Set the width and height in the constructor!

Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 55 / 64



Class and Object – Matrix Operators Relationship Inheritance Polymorphism Inheritance and Composition

Substitution Principle

Relationship between two derived classes
Policy

Derived class is a specialization of the superclass
There is the is-a relationship

Wherever it is possible to sue a class, it must be possible to use
the descendant in such a way that a user cannot see any difference

Polymorphism
Relationship is-a must be permanent

Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 56 / 64



Class and Object – Matrix Operators Relationship Inheritance Polymorphism Inheritance and Composition

Composition of Objects

If a class contains data fields of other object type, the relationship
is called composition
Composition creates a hierarchy of objects, but not by inheritance

Inheritance creates hierarchy of relationship in the sense of descendant / ancestor

Composition is a relationship of the objects – aggregation –
consists / is compound
It is a relationship of the type “has”

Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 57 / 64



Class and Object – Matrix Operators Relationship Inheritance Polymorphism Inheritance and Composition

Example – Composition 1/3

Each person is characterized by attributes of the Person class
name (string)
address (string)
birthDate (date)
graduationDate (date)

Date is characterized by three attributes Datum (class Date)
day (int)
month (int)
year (int)

Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 58 / 64



Class and Object – Matrix Operators Relationship Inheritance Polymorphism Inheritance and Composition

Example – Composition 2/3

#include <string>

class Person {
public:
std::string name;
std::string address;
Date birthDate;
Date graduationDate;

};

class Date {
public:

int day;
int month;
int year;

};

Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 59 / 64



Class and Object – Matrix Operators Relationship Inheritance Polymorphism Inheritance and Composition

Example – Composition 3/3

Person

std::string name std::string address

Date birthDate Date graduationDate

Date birthDate

int month int dayint year

Date graduationDate

int month int dayint year

Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 60 / 64



Class and Object – Matrix Operators Relationship Inheritance Polymorphism Inheritance and Composition

Inheritance vs Composition
Inheritance objects:

Creating a derived class (descendant, subclass, derived class)
Derived class is a specialization of the superclass

May add variables (data fields) Or overlapping variables (names)
Add or modify methods

Unlike composition, inheritance changes the properties of the
objects

New or modified methods
Access to variables and methods of the ancestor (base class,
superclass)

If access is allowed (public/protected)

Composition of objects is made of attributes (data fields) of the
object type

It consists of objects

A distinction between composition an inheritance
„Is” test – a symptom of inheritance (is-a)
„Has” test – a symptom of composition (has)

Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 61 / 64



Class and Object – Matrix Operators Relationship Inheritance Polymorphism Inheritance and Composition

Inheritance and Composition – Pitfalls

Excessive usage of composition and also inheritance in cases it is
not needed leads to complicated design
Watch on literal interpretations of the relationship is-a and has,
sometimes it is not even about the inheritance, or composition

E.g., Point2D and Point3D or Circle and Ellipse

Prefer composition and not the inheritance
One of the advantages of inheritance is the polymorphism

Using inheritance violates the encapsulation
Especially with the access rights set to the protected

Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 62 / 64



Topics Discussed

Summary of the Lecture

Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 63 / 64



Topics Discussed

Topics Discussed

2D Matrix – Examples of C++ constructs
Overloading constructors
References vs pointers
Data hidding – getters/setters
Exception handling
Operator definition
Stream based output

Operators
Subscripting operator

Relationship between objects
Aggregation
Composition

Inheritance – properties and usage in C++
Polymorphism – dynamic binding and virtual methods
Inheritance and Composition

Jan Faigl, 2018 B3B36PRG – Lecture 12: Quick Introduction to C++ (Part 2) 64 / 64


	1
	Class and Object – Matrix
	Operators
	Relationship
	Inheritance
	Polymorphism
	Inheritance and Composition

	Summary
	Topics Discussed


