Operators — Arithmetic, Relational, Logical, Bitwise, and Other Associativity and Precedence Assignment
Overview of the Lecture
Writing Program in C u Part 1 — Expressions
Expressmns and Control Structures = Operators — Arithmetic, Relational, Logical, Bitwise, and Other
(Selection Statements and Loops) o
= Associativity and Precedence Part |
L] Assignment K. N. King: chapter 4 and 20)
Jan Faig| _ Part 1 — Expressions
m Part 2 — Control Structures: Selection Statements and Loops
Department of Computer Science = Statements and Coding Styles
Faculty of Electrical Engineering .
Czech Technical University in Prague = Selection Statements
= Loops
Lecture 02 P
B3B36PRG — C Programming Language = Conditional Expression K. N. King: chapters 5 and 6
m Part 3 — Assignment HW 02
Jan Faigl, 2018 B3B36PRG — Lecture 02: Writing your program in C 1/57 |Jan Faigl, 2018 B3B36PRG — Lecture 02: Writing your program in C 2 /57 | Jan Faigl, 2018 B3B36PRG — Lecture 02: Writing your program in C 3/57
Operators — Arithmetic, Relational, Logical, Bitwise, and Other Associativity and Precedence Assignment Operators — Arithmetic, Relational, Logical, Bitwise, and Other Associativity and Precedence Assignment Operators — Arithmetic, Relational, Logical, Bitwise, and Other Associativity and Precedence Assignment
Expressions Operators Arithmetic Operators
m Expression prescribes calculation using operands, operators, and m Operators are selected characters (or sequences of characters)
brackets dedicated for writting expressions m Operands of arlthme?c olperator‘s c_anh be of an’?/ a:tljmetlc ty_p:;= .
n EX ression consists Of . . - . The only exception is the operator for the integer reminder %
P m Five types of binary operators can be distinguished defined for the int type
m literals = unary and binary operators m Arithmetic operators — additive (addition/subtraction) and multi- % Multiplication X *y Multiplication of x and y
)) plicative (multiplication/division) . L £ d
m variables = function call m Relational operators — comparison of values (less than, ...) l{ DIVIS.IOH X n/ y D'V'S_'O” of x and y
m constants = brackets m Logical operators — logical AND and OR % Reminder x%hy Reminder from the x /'y
. L ! m Bitwise operators — bitwise AND, OR, XOR, bitwise shift (left, right + Addition x + Sum of x and
m The order of operation evaluation is prescribed by the operator . P o N . (v 118) . J . y
e m Assignment operator = — a variable (l-value) is on its left side - Subtraction X -y Subtraction x and y
precedence and associativity.
m Unary operators + Unary plus +x Value of x
10 + x *y // order of the evaluation 10 + (x * y) = Indicating positive/negative value: + and — - Unary minus -X Value of —x
10+ x +y // order of the evaluation (10 + x) +y Operator — modifies the sign of the expression ++ Increment ++X/X++ Incrementation before/after the
) * has h;:gher ;;lriolrig :haq;u m Modifying a variable : ++ and —— evaluation of the expression x
+ Is associative from the left-to-right . fome | .
A el der of evaluati b el bed b = Logical negation: ! -- Decrement --x/x-- Decrementation before/after the
|] particular or e.r of eva uat|c.>n can be precisely prescribed by m Bitwise negation: ~ evaluation of the expression x
fully parenthesized expression _ m Ternary operator — conditional expression 7 :
Simply: If you are not sure, use brackets.
Jan Faigl, 2018 B3B36PRG — Lecture 02: Writing your program in C 5 /57 |Jan Faigl, 2018 B3B36PRG — Lecture 02: Writing your program in C 6 /57 | Jan Faigl, 2018 B3B36PRG — Lecture 02: Writing your program in C 7/57

Associativity and Precedence

(¢ — Arith Relati I, Logical, Bitwise, and Other Associativity and Precedence

Integer Division

m The results of the division of the operands of the int type is the
integer part of the division
Eg. 7/3is2 and —7/3 is —2
m For the integer reminder, it holds x%y = x — (x/y) * y
Eg,7%3is1 -7 % 3is-1 7%-3is1 -7%-3is-1
m C99: The result of the integer division of negative values is the
value closer to 0
m It holds that (a/b)*b + a%b = a.

For older versions of C, the results depends on the compiler.

Jan Faigl, 2018 B3B36PRG — Lecture 02: Writing your program in C

8 /57

op — Arithmetic, Relational, Logical, Bitwise, and Other

Implementation-Defined Behaviour

m The C standard deliberately leaves parts of the language
unspecified
m Thus, some parts depend on the implementation, i.e., compiler,
environment, computer architecture
E.g., Reminder behavior for negative values and version of the C prior C99.
m The reason for that is the focus of C on efficiency, i.e., match the
hardware behavior

m Having this in mind, it is best rather to avoid writing programs
that depend on implementation-defined behavior
K.N.King: Page 55

Jan Faigl, 2018 B3B36PRG — Lecture 02: Writing your program in C

Assignment

9 /57

Operators — Arithmetic, Relational, Logical, Bitwise, and Other Associativity and Precedence Assignment

Unary Arithmetic Operators

m Unary operator (++ and) change the value of its operand

The operand must be the 1-value, i.e., an expression that has memory
space, where the value of the expression is stored, e.g., a variable.

m It can be used as prefix operator, e.g., ++x and ——x
m or as postfix operator, e.g., x++ and x——
m In each case, the final value of the expression is different!

int i; int a; value of i value of a
i=1la=09; 1 9
a=it++; 2 1
a = ++i; 3 3

a = ++(i++); Not allowed! Value of i++ is not the |-value
For the unary operator i++, it is necessary to store the previous value
of i and then the variable i is incremented. The expression ++i only
increments the value of i. Therefore, ++i can be more efficient.

Jan Faigl, 2018 B3B36PRG — Lecture 02: Writing your program in C 10 / 57

[¢] — Aritt ic, Relati |, Logical, Bitwise, and Other Associativity and Precedence Assignment

Relational Operators

m Operands of relational operators can be of arithmetic type, pointers
(of the same type) or one operand can be NULL or pointer of the

void type

< Less than x <y 1lif xis less than y; otherwise 0

<= Less than or equal x <=y 1 if x is less then or equal to y;
otherwise 0

> Greater than x >y lifxis greater than y; otherwise 0

>= Greater than or equal x >= y 1if xis greater than or equal to y;
otherwise 0

== Equal x ==y 1if xis equal to y; otherwise 0

= Not equal x !=y 1lifxisnot equal to y; otherwise 0

Jan Faigl, 2018 B3B36PRG — Lecture 02: Writing your program in C 11/ 57

Operators — Arithmetic, Relational, Logical, Bitwise, and Other Associativity and Precedence Assignment

Logical operators

m Operands can be of arithmetic type or pointers

m Resulting value 1 means true, 0 means false

m In the expressions && (Logical AND) and || (Logical OR), the left
operand is evaluated first

m If the results is defined by the left operand, the right operand is
not evaluated

Short-circuiting behavior — it may speed evaluation of complex expressions in runtime.

&& Logical AND x & y 1ifxandyis not 0; other-
wise 0

|| Logical OR x ||y 1if at least one of x, y is
not 0; otherwise 0

! Logical NOT 'x 1 if x is 0; otherwise 0

m Operands && a || have the short-circuiting behavior, i.e., the
second operand is not evaluated if the result can be determined
from the value of the first operand.

Jan Faigl, 2018 B3B36PRG — Lecture 02: Writing your program in C 12 / 57

Operators — Arithmetic, Relational, Logical, Bitwise, and Other Associativity and Precedence Assignment

Example — Short-Circuiting Behaviour 1/2

#include <stdio.h>
#include <stdlib.h>

int fce_b(int n);

1

2

3

4 int fce_a(int n);
5

6

7 int main(int argc, char *argv([])
8

{
9 if (arge > 1 && fce_a(atoi(argv[1])) && fce_b(atoi(argv[1])))
{

11 printf("Both functions fce_a and fce_b pass the test\n");
12 } else {

13 printf("One of the functions does not pass the test\n");
14

15 return 0;

16)

17

18 int fce_a(int n)

19 {

20 printf("Calling fce_a with the argument ’%d’\n", n);

21 return n % 2 == 0

22}

23

24 int fce_b(int n)

25

26 printf("Calling fce_b with the argument ’%d’\n", n);

27 return n > 2;

28}

lec02/demo-short_circuiting.c

Jan Faigl, 2018 B3B36PRG — Lecture 02: Writing your program in C 13 / 57

Operators — Arithmetic, Relational, Logical, Bitwise, and Other Associativity and Precedence Assignment

Example — Short-Circuiting Behaviour 2/2 — Tasks

In the example 1ec02/demo-short_circuiting.c

Operators — Arithmetic, Relational, Logical, Bitwise, and Other Associativity and Precedence Assignment

Bitwise Operators

m Bitwise operators treat operands as a series of bits
Low-Level Programming — A programming language is low level when its
programs require attention of the irrelevant. K.N.King: Chapter 20.

Operators — Arithmetic, Relational, Logical, Bitwise, and Other Associativity and Precedence Assignment

Bitwise Shift Operators

m Bitwise shift operators shift the binary representation by a given
number of bits to the left or right

m Left shift — Each bit shifted off a zero bit enters at the right

m Test how the logical expressions (a function call) are evaluated & Bitwise AND x &y 1ifxandyis equal to = Right shift — Each bit shift off
m Identify what functions fce_a() and fce_b() are implementing L . ! gbltibyiblt). B a zero bit enters at the left — for positive values or unsigned types
. . | Bitwise inclusive OR x |y 1lifxoryisequal tol . ; . : ?
m Rename the functions appropriately (bit-by-bit) m for negative values, the entered bit can be either 0 (logical shift)
. . N - . ~ . . 1 (arithmetic shift right). D d th iler.
m |dentify the function headers and why they have to be stated Bitwise exclusive or (XOR) x "y lifonlyxoronlyyisl o o_r (arithmetic shift right). Depends on the compiler))
above the main function o (bi.t-by-l.)it) m Bitwise shift operators have lower precedence than the arithmetic
. . . ~ Bitwise complement (NOT) ~x 1if x is O (bit-by-bit) operators!
m Try to split implementation of the functions to a separate module
<< Bitwise left shift x <<y Shift of x about y bits i << 24lmeansi << (2+41)
to the left Do not be surprise — parenthesized the expression!
>> Bitwise right shift x >> y Shift of x about y bits
to the right
Jan Faigl, 2018 B3B36PRG — Lecture 02: Writing your program in C 14 / 57 | Jan Faigl, 2018 B3B36PRG — Lecture 02: Writing your program in C 15 / 57 | Jan Faigl, 2018 B3B36PRG — Lecture 02: Writing your program in C 16 / 57
O — Arith Relati; |, Logical, Bitwise, and Other Associativity and Precedence Assignment Operators — Arithmetic, Relational, Logical, Bitwise, and Other Associativity and Precedence Assignment Operators — Arithmetic, Relational, Logical, Bitwise, and Other Associativity and Precedence Assignment
Example — Bitwise Expressions Operators for Accessing Memory Other Operators
' ' Here, for completeness, details in the further lectures. Operator Name Example Result
#include <inttypes.h> = In C, we can directly access the memory address of the variable - - -
. K X 0] Function call f(x) Call the function f with the ar-
) m The access is realized through a pointer gument x
uint8_t a = 4; It allows great options, but it also needs responsibility. (pre) C.aSt (int)x C_hange the type of x to int
uint8_t b = 5; sizeof Size of the sizeof(x) Size of x in bytes
Operator Name Example Result item
- ?7: Conditional xX?7y:z Do y if x !'= 0; otherwise z
. in- & Address & Pointer to x y y !
2 dec: 4 b}n. 0100 * Indirection *X Variable (or function) ad- ! Comma 7y Evaluate x and then y, the result
b dec: 5 bin: 0101 p - is the result of the last expression
& b dec: 4 bin: 0100 dressed by the pointer p
@ ect . 1 Array sub- x[i] *(x+1) — item of the array x m The operand of sizeof () can be a type name or expression
a | b dec: 5 bin: 0101 scripting at the position i
a ~ b dec: 1 bin: 0001 Structure/union s.x Member x of the struct/union int a = 10;
member s printf("%lu %lu\n", sizeof(a), sizeof(a + 1.0));
a >> 1 dec: 2 bin: 0010 -> Struc;ure/unlon p->x l\/cllzmber;gft:e strgct/unlon lec02/sizeof.c
a << 1 dec: 8 bin: 1000 member addressed by the pointer p m Example of the comma operator

lec02/bits.c

Jan Faigl, 2018 B3B36PRG — Lecture 02: Writing your program in C 17 / 57

It is not allowed an operand of the & operator is a bit field or variable
of the register class.

Operator of the indirect address * allows to access to the memory
using pointers.

Jan Faigl, 2018 B3B36PRG — Lecture 02: Writing your program in C 18 / 57

2) {

for (c =1, i =0; i< 3; ++i, ¢ +=
printf("i: %d c: %d\n", i, ¢);
B3B36PRG — Lecture 02: Writing your program in C

Jan Faigl, 2018 19 / 57

0 — Arithmetic, Relational, Logical, Bitwise, and Other Associativity and Precedence Assignment Operators — Arithmetic, Relational, Logical, Bitwise, and Other Associativity and Precedence Assignment Operators — Arithmetic, Relational, Logical, Bitwise, and Other Associativity and Precedence Assignment
Cast Operator Operators Associativity and Precedence Summary of the Operators and Precedence 1/3
h h bl lled Precedence Operator Associativity Name
m Changing the variable type in runtime is called type case . . . - .
§ng yP yp m Binary operation op is associative on the set S if .
Explicit t i itten by th f the t in O 1 ++ L—R Increment (postfix)
m Explicit cast is written by the name of the type in (), e.g., (xopy)opz = xop(yopz), for each x,y,z€ S . .
L oo . . - Decrementation (postfix)
int i; m For not associative operators, it is required to specify the order of i
. luati 0 Function call
float f = (float)i; €valuation o
m Left-associative — operations are grouped from the left 0 Array subscripting
m Implicit cast is made automatically by the compiler during the pro- Eg. 10— 5 — 3 is evaluated as (10 — 5) — 3 S Structure/union member
ilati m Right-associative — operations are grouped from the right)
gram compilation g £ 3+E2 28 or 3 52g_ 75p 35y i 225g 2 ; R—L Increment (prefix)
Fs H .g. is28 or3-5%is75 vs (3 is .
m If the new type can represent the original value, the value is pre- _ i a o Decrementation (prefix)
served by the cast m The assignment is left-associative i)
£ ‘8 ! Logical negation
m Operands of the char, unsigned char, short, unsigned short, & Y=Y o .
P e g€ g_ . First, the whole right side of the operator = is evaluated, and then, ~ Bitwise negation
and the bit field types can be used everywhere where it is allowed the results are assigned to the variable on the left. . Unary plus/minus
to use int or unsigned int. m The order of the operator evaluation can be defined by the fully N Indirection
C expects at least values of the int type. . .
.) ‘) parenthesized expression. &
m Operands are automatically cast to the int or unsigned int. Address
sizeof Size
Jan Faigl, 2018 B3B36PRG — Lecture 02: Writing your program in C 20 / 57 | Jan Faigl, 2018 B3B36PRG — Lecture 02: Writing your program in C 22 /57 | Jan Faigl, 2018 B3B36PRG — Lecture 02: Writing your program in C 23 / 57
Operators — Arithmetic, Relational, Logical, Bitwise, and Other Associativity and Precedence Assignment Operators — Arithmetic, Relational, Logical, Bitwise, and Other Associativity and Precedence Assignment Operators — Arithmetic, Relational, Logical, Bitwise, and Other Associativity and Precedence Assignment

Summary of the Operators and Precedence 2/3

Summary of the Operators and Precedence 3/3

Simple Assignment

m Set the value to the variable

Precedence Operator Associativity Name ! i
Store the value into the memory space referenced by the variable name.

3 0 R—L Cast Precedence Operator Associativity Name m The form of the assignment operator is
4 * /% LR Multiplicative — (variable) = (expression)

. 14 ?7: R—L Conditional Expression is literal, variable, function call, ...
5 +- Additive m C is statically typed programming language

. . 15 = Assignment Yy typed p! g g g g .
6 >>, << Bitwise shift i m A value of an expression can be assigned only to a variable of the
+ = —= a itive

. same type . .

7 <, >, L=, >= Relational w=,)= %= RL multiplicative yP . N Otherwise the type cast is necessary
. . o . m Example of the implicit type cast
8 ==, = Equality <<=, >>= bitwise shift
N - int i = 320.4; // implicit conversion from ’double’ to ’int’

9 & Bitwise AND &="=1= Bitwise AND, XOR, OR changes value from 320.4 to 320 [-Wliteral-conversion]
10 - Bitwise exclusive OR (XOR) 15 , L—R Comma char ¢ = i; // implicit truncation 320 -> 64
11 - Bitwise inclusive OR (OR K. N. King: Page 735 i ithi imi ilati

(OR) http: //on. cppreference. con/u/c/language/operator receiencs m Cis type sa‘fe onIyDW|th|n a limited context. of the compilation,
12 2 Logical AND e.g., for printf ("%d\n", 10.1); a compiler reports an error

) m In general, C is not type safe
13 Il Logical OR o i .
In runtime, it is possible to write out of the allocated memory space.
Jan Faigl, 2018 B3B36PRG — Lecture 02: Writing your program in C 24 /57 | Jan Faigl, 2018 B3B36PRG — Lecture 02: Writing your program in C 25 /57 | Jan Faigl, 2018 B3B36PRG — Lecture 02: Writing your program in C 27 /57
Operators — Arithmetic, Relational, Logical, Bitwise, and Other Associativity and Precedence Assignment Operators — Arithmetic, Relational, Logical, Bitwise, and Other Associativity and Precedence Assignment Operators — Arithmetic, Relational, Logical, Bitwise, and Other Associativity and Precedence Assignment

Compound Assignment

m A short version of the assignment to compute a new value of the
variable from itself:
(variable) = (variable) (operator) (expression)
m can be written as
(variable) (operator) = (expression)

Example
int i = 10; int i = 10;
double j = 12.6; double j = 12.6;
i=1+1; i+=1;
j=3 /0.2 j /=0.2;

m Notice, assignment is an expression
The assignment of the value to the variable is a side effect

X
y

Jan Faigl, 2018 B3B36PRG — Lecture 02: Writing your program in C 28 / 57

Assignment Expression and Assignment Statement

m The statement performs some action and it is terminated by ;

robot_heading = -10.23;
robot_heading = fabs(robot_heading) ;
printf("Robot heading: %f\n", robot_heading);

m Expression has type and value

23 int type, value is 23
14+16/2 int type, value is 22
y=8 int type, value is 8

m Assignment is an expression and its value is assigned to the left
side

m The assignment expression becomes the assignment statement by
adding the semicolon

Jan Faigl, 2018 B3B36PRG — Lecture 02: Writing your program in C 29 / 57

Undefined Behaviour

m There are some statements that can cause undefined behavior
according to the C standard.
mc=(b=a+2) - (a-1);
B =1k i+t
m The program may behaves differently according to the used com-
piler, but may also not compile or may not run; or it may even crash

and behave erratically or produce meaningless results

m It may also happened if variables are used without initialization

m Avoid statements that may produce undefined behavior!

Jan Faigl, 2018 B3B36PRG — Lecture 02: Writing your program in C 30 /57

Operators — Arithmetic, Relational, Logical, Bitwise, and Other Associativity and Precedence Assignment

Example of Undefined Behaviour

m The C standard does not define the behaviour for the overflow of
the integer value (signed)
m E.g., for the complement representation, the expression can be
127 + 1 of the char equal to -128 (see 1lec02/demo-1loop_byte.c)
m Representation of integer values may depend on the architecture and
can be different, e.g., when binary or inverse code is used
m Implementation of the defined behaviour can be computationally

expensive, and thus the behaviour is not defined by the standard
m Behaviour is not defined and depends on the compiler, e.g. clang
and gcc without/with the optimization -02
m for (int i = 2147483640; i >= 0; ++i) {
printf ("%i %x\n", i, i);
lec02/int_overflow-1.c
Without the optimization, the program prints 8 lines, for -02, the
program compiled by clang prints 9 lines and gcc produces infinite loop.
m for (int i = 2147483640; i >= 0; i += 4) {
printf ("%i %x\n", i, i);
lec02/int_overflow-2.c
A program compiled by gcc with -02 is crashing

Take a look to the asm code using the compiler parameter-S

Jan Faigl, 2018 B3B36PRG — Lecture 02: Writing your program in C 31/ 57

Statements and Coding Styles Selection Statements Loops

Part |l

Part 2 — Control Structures: Selection
Statements and Loops

Jan Faigl, 2018 B3B36PRG — Lecture 02: Writing your program in C

Conditional Expression

32 /57

Statements and Coding Styles Selection Statements Loops Conditional Expression

Statement and Compound Statement (Block)

m Statement is terminated by ;
Statement consisting only of the semicolon is empty statement.
Block consists of sequences of declarations and statements

ANSI C, C89, C90: Declarations must be placed prior other
statements

It is not necessary for C99

Start and end of the block is marked by the { and }
m A block can be inside other block

void function(void) { /# function
block start */
{ /* inner block */

void function(void)
{ /* function block start */
{/* inner block */

for (i = 0; i < 10; ++i) for (int i = 0; i < 10; ++i) {
{ //inner for-loop block
//inner for-loop block }
} }

} }

Notice the coding styles.

Jan Faigl, 2018 B3B36PRG — Lecture 02: Writing your program in C 34 /57

Statements and Coding Styles Selection Statements Loops Conditional Expression

Coding Style
m It supports clarity and readability of the source code
https://www.gnu.org/prep/standards/html_node/Writing-C.html

m Formatting of the code is the fundamental step
Setup automatic formatting in your text editor

m Appropriate identifiers
m Train yourself in coding style even at the cost of slower coding
m Readability and clarity is important, especially during debugging

Notice, sometimes it can be better to start from scratch

m Recommend coding style (PRG)

Statements and Coding Styles Selection Statements Loops

Coding Styles — Links

m There are many different coding styles

m Inspire yourself by existing recommendations

m Inspire yourself by reading representative source codes
http://users.ece.cmu.edu/"eno/coding/CCodingStandard.html

https://www.doc.ic.ac.uk/lab/cplus/cstyle.html
http://en.wikipedia.org/wiki/Indent_style

Conditional Expression

Statements and Coding Styles Selection Statements Loops Conditional Expression

Control Statements

m Selection Statement
m Selection Statement: if () or if ()
m Switch Statement: switch () case

m Control Loops

else

m for ()
m while ()
m do while ()

m Jump statements (unconditional program branching)

1 void function(void) 1 Use Eng“Sh' especia”y for https://google.github.io/styleguide/cppguide.html m continue
2 { /* function block start */ . o . . .
: for (int i = 0; i < 10; ++i) { identifiers https://www.kernel.org/doc/Documentation/CodingStyle : briak
i - . https://google.github.io/styleguide/cppguide.html return
4 (/1n1}e£_for loop block = Use nouns for variables i3 google.g ylegu PPg
5 if (i ==5) { m goto
: break; m Use verbs for function names
8 }
o} Lecturer's preference: indent shift 3, space characters rather than tabular.

Jan Faigl, 2018 B3B36PRG — Lecture 02: Writing your program in C 35 / 57 | Jan Faigl, 2018 B3B36PRG — Lecture 02: Writing your program in C 36 / 57 | Jan Faigl, 2018 B3B36PRG — Lecture 02: Writing your program in C 37 /57
Statements and Coding Styles Selection Statements Loops Conditional Expression Statements and Coding Styles Selection Statements Loops Conditional Expression Statements and Coding Styles Selection Statements Loops Conditional Expression
Selection Statement — if The switch Statement The switch Statement — Example

m if (expression) statement;; else statement, m Allows to branch the program based on the value of the expression
m For expression != 0 the statement; is executed; otherwise of the enumerate (integer) type, e.g., int, char, short, enum
statement, The statement can be the compound statement i
u € rorm Is
m The else part is optional itch . switch (v) { if (v == 'A) {
Selecti tat ¢ b ted d ded switc (expressmn) { l case ’A’: printf ("Upper ’A’\n");
m Selection statements can be nested and cascade case constant;: statements,: break: grln;f(‘lupper SA\n") } else if (v == ’a’) {
i . 5 . reak; rintf ("Lower ’a’\n");
int max; int max; case constantp: statements,; break; case ‘a’: } oo 1
if (a > b) { if (a > b) { grin;f("Lower ’a’\n"); prints
. reak; "t 1 e sao\n")
if (@ > c) { case constant,: statements,; break; @9 default:;(} Tt is mot A% mor ’a\a");
max = a; else if (a < ¢ . . . print
; 3 () 1 default: statementsges; break; "It is not ’A’ mor ’a’\n");
¥ - } break;
i == . ¥
¥ } else if (a b) { where constants are of the same type as the expression and
. . lec02/switch.c
ce statements; is a list of statements
} else { .
m Switch statements can be nested
Semantics: First the expression value is calculated. Then, the statements under
¥ the same value are executed. If none of the branch is selected, statementsger

Jan Faigl, 2018 B3B36PRG — Lecture 02: Writing your program in C 39 /57

under default branch as performed (optional)

Jan Faigl, 2018 B3B36PRG — Lecture 02: Writing your program in C

40 / 57

Jan Faigl, 2018 B3B36PRG — Lecture 02: Writing your program in C 41 /57

Statements and Coding Styles Selection Statements Loops

The Role of the break Statement

m The statement break terminates the branch. If not presented, the
execution continues with the statement of the next case label

Example
1 int part = 7 m part « 1
2 switch(part) { Branch 1
3 case 1:

i " wy.

4 prlntf(Branch 1\n"); m part « 2
5 break;
6 case 2: Branch 2
7 printf ("Branch 2\n"); Branch 3
8 case 3:
9 printf ("Branch 3\n"); m part < 3
10 break; Branch 3
11 case 4:
12 printf ("Branch 4\n"); m part « 4
13 break;
14 default: Branch 4
15 printf ("Default branch\n");
16 break; m part < 5
1w} Default branch

lec02/demo-switch_break.c

Jan Faigl, 2018 B3B36PRG — Lecture 02: Writing your program in C

Conditional Expression

42 / 57

Statements and Coding Styles Selection Statements Loops Conditional Expression

Loops

m The for and while loop statements test the con-
trolling expression before the enter to the loop
body

m for — initialization, condition, change of the con-
trolling variable can be a part of the syntax
for (int i = 0; i < 5; ++i) {

false

true

}
= while - controlling variable out of the syntax
int i = 0;
while (i < 5) {
Ui 1
}

m The do loop tests the controlling expression after
the first loop is performed
int i = -1;
do {
P-4
} while (i < 5);

|
?&1 Ise

true

Jan Faigl, 2018 B3B36PRG — Lecture 02: Writing your program in C 44 / 57

Statements and Coding Styles Selection Statements Loops Conditional Expression

The for Loop

m The basic form is
for (expri; expry; exprs) statement
m All expr; are expressions and typically they are used for
1. expr; — initialization of the controlling variable (side effect of the
assignment expression)
2. expr, — Test of the controlling expression
3. If expr, !'=0 the statement is executed; Otherwise the loop is
terminated
4. exprs — updated of the controlling variable (performed at the end
of the loop

m Any of the expressions expr; can be omitted
m break statement — force termination of the loop
m continue — force end of the current iteration of the loop
The expression exprs is evaluated and test of the loop is performed.
m An infinity loop can be written by omitting the expressions
for (55 {...2}

B3B36PRG — Lecture 02: Writing your program in C 45 / 57

Jan Faigl, 2018

Statements and Coding Styles Selection Statements Loops Conditional Exp

The continue Statement

m It transfers the control to the evaluation of the controlling expression
m The continue statement can be used inside the body of the loops
m for ()

m while ()

m do...while () printf("i: %i ", i);

ression

for (int i = 0; i < 10; ++i) {

Statements and Coding Styles Selection Statements Loops Conditional Expression

The break Statement — Force Termination of the Loop

m The program continue with the next statement after the loop

m Example in the while loop
int i = 10;
while (i > 0) {
if (i ==5) {
printf("i reaches 5, leave the loop\n");
break;

i--3

Statements and Coding Styles Selection Statements Loops Conditional Expression

The goto Statement

m Allows to transfers the control to the defined label
It can be used only within a function body

m Syntax goto label;
m The jump goto can jump only outside of the particular block

m It can be used only within a function block

i i Y 1=
m Examples if éénéiiué~ 0 { printf("End of the while loop i: %d\n", i); 1 int test = 3;
4 Lec02,/broak 2 for (int i = 0; i < 3; ++i) {
. ec reak.c 3 for (int j = 0; j < 55 ++j) {
int i; printf ("\n"); . . if (§ e ¢
for (i =0; i <205 ++i) { lec02/demo-continue.c - Example in the for |00P 5 goto loop_out;
if A% 2==0 { ’ for (int i = 0; i < 10; ++i) { clang demo-break.c 6 ¥
continue; clang demo-continue.c printf("i: %i ", i); :{8"’“ 7 fprintf(stdout, "Loop i: %d j: %d\n", i, j);
} ./a.out if i %31!1=0 { ijl $:91:3 8
rintf ("%d\n", i); i:0 continue; oA FiE 3. 9 }
P ° ’ ’ il i:2 i:3 b i:4 i:5 1:6 10 return O;
i:4 i:5 i:6 printf("\n"); 11 loop_out:
lec02/continue.c i:7 1:8 i:9 if (4 > 5) { 12 fprintf(stdout, "After loop\n");
break; 13 return -1;
} + lec02/demo-break.c lec02/goto.c
Jan Faigl, 2018 B3B36PRG — Lecture 02: Writing your program in C 46 / 57 | Jan Faigl, 2018 B3B36PRG — Lecture 02: Writing your program in C 47 / 57 | Jan Faigl, 2018 B3B36PRG — Lecture 02: Writing your program in C 48 / 57
Statements and Coding Styles Selection Statements Loops Conditional Expression Statements and Coding Styles Selection Statements Loops Conditional Expression Statements and Coding Styles Selection Statements Loops Conditional Expression
Nested Loops Example — isPrimeNumber () 1/2 Example — isPrimeNumber () 2/2
m The break statement terminates the inner loop #include <stdbool.h> m The value of (int)sqrt((double)n) is not changing in the loop
for (int i = 0; i < 3; ++i) { i-j: 0-0 #include <math.h> for (int i = 2; i <= (int)sqrt((double)n); ++i) {
for (int j = 0; j < 3; ++j) { (_3:0-1
imtf(hioin Yioviat i 4)s i-j: 0- . . .
prin i-j: ki-kivn", i, j); L _Bool isPrimeNumber (int n) }
if (j = 1) i-j: 1-0 :
break; i-j: 1-1 m We can use the comma operator to initialize the maxBound variable
Bool ret = true;
i-j: 2-0 - ’ ; i o= - (i .
) } i J o for (int i = 2; i <= (int)sqrt((double)n); ++i) { for (int i = 2, maxBound = (int)sqrt((double)n);
1=J: 2= if@Yi==0) { i <= maxBound; ++i) {
m The outer loop can be terminated by the goto statement ret = false; -
forf(imé-i = 0; (i) < 5; ;+i) 4_() p break; m Or, we can declare maxBound as a constant variable
or (int j = 0; j < 3; ++1i i-5: 0-0 _ .
printf("i-j: %i-%i\n", i, j); J: by _Bool ret = true;
if (j == 2) i-j: 0-1 } const int maxBound = (int)sqrt((double)n);
goto outer; i-j: 0-2 return ret; i i =92 i<= . i
J: 5 for (int i = 2; i <= maxBound ; ++i) {
} ¥ lec02/demo-prime.c
} . m Once the first factor is found, call break to terminate the loop }
outer: lec02/demo-goto.c It is not necessary to test other numbers E.g., Compile and run demo-prime.c: clang demo-prime.c -lm; ./a.out 13
Jan Faigl, 2018 B3B36PRG — Lecture 02: Writing your program in C 49 / 57 | Jan Faigl, 2018 B3B36PRG — Lecture 02: Writing your program in C 50 / 57 | Jan Faigl, 2018 B3B36PRG — Lecture 02: Writing your program in C 51 /57

Statements and Coding Styles Selection Statements Loops Conditional Expression

Conditional Expression — Example Greatest Common Divisor

1 int getGreatestCommonDivisor(int x, int y)
2

3 int d;

4 if (x <y) {

5 d = x;

6 } else {

7 d=1y;

8 }

9 while ((x % d!'=0) Il (y%hd'!=0){
10 d=4d-1;

11 }

12 return d;

13}

m The same with the conditional expression: expry 7 expry : exprs

Part Ill
Part 3 — Assignment HW 02

HW 02 — Assignment
Topic: Prime Factorization

Mandatory: 2 points; Optional: 4 points; Bonus : none

m Motivation: Experience loops, variables and their internal
representation in a computational task
m Goal: Familiar yourself with the algorithmic solution of the
computational task
m Assignment:
https://cw.fel.cvut.cz/wiki/courses/b3b36prg/hw/hw02
m Read sequence of positive integer values, less than 108, but still rep-
resentable as 64-bit integer, and compute their prime factorization

using Sieve of Eratosthenes
https://en.wikipedia.org/wiki/Sieve_of _Eratosthenes

1 int getGreatestCommonDivisor(int x, int y) m Optional assignment — an extension of the prime factorization for
i intd=x<y7x:y; integer values with up to 100 digit_s. Notice, t_he _inpl_Jt values are
4 while ((x %4d !'=0) || (y%d!=0){ such that, the the greatest number in the factorization is always less
: 3 d=d-1; than 10°.
7 return d; m Deadline: 10.03.2018, 23:59:59 PST
s } lec02/demo-gcd.c PST — Pacific Standard Time
Jan Faigl, 2018 B3B36PRG — Lecture 02: Writing your program in C 53 / 57 | Jan Faigl, 2018 B3B36PRG — Lecture 02: Writing your program in C 54 /57 | Jan Faigl, 2018 B3B36PRG — Lecture 02: Writing your program in C 55 / 57
Topics Discussed Topics Discussed
Topics Discussed
m Expressions
m Operators — Arithmetic, Relational, Logical, Bitwise, and others
m Operator Associativity and Precedence
m Assignment and Compound Assignment
Summary O'F the Lecture m Implementation-Defined Behaviour
m Undefined Behaviour
m Coding Styles
m Select Statements
m Loops
= Conditional Expression
m Next: Data types, memory storage classes, function call
Jan Faigl, 2018 B3B36PRG — Lecture 02: Writing your program in C 56 / 57 | Jan Faigl, 2018 B3B36PRG — Lecture 02: Writing your program in C 57 / 57

