Cybernetics and Artificial Intelligence
 Introduction into the course

$\frac{\text { Tomáš Svoboda, Matěj Hoffman }}{2018}$

Admin, rules of the game

- $2+2+5+(\sim 35)$ - weekly: 2 hours lectures, 2 computer labs, 5 individual work (reading, coding), ~35 wrapping up preparing for exam. Intensive term work may save time at the end
- https://cw.fel.cvut.cz/wiki/courses/b3b33kui/start
- program
- grading
- literature ...

literature, resources

- we recommend a few
- on-line materials abundant - you can find by yourself, responsibility is (always) yours
- ask us if unsure
- we appreciate you recommend new ones

cybernetics and AI

- Norbert Wiener (1948). Cybernetics: Or Control and Communication in the Animal and the Machine.
- William Ross Ashby (1956). An introduction to cybernetics.
- then development continued but different names/wording on the two sides of "iron curtain".
- Pask, Gordon (1972). "Cybernetics". Encyclopædia Britannica.

goal-directed system

Pask, Gordon (1972). "Cybernetics". Encyclopædia Britannica.

- our motivation from (intelligent) robotics
- yet basic concepts from cybernetics
- modern terminology will be used

problem: machine control in unstructured environment

2016 Amatrice (Italy) earthquake, deployment of the TRADR system, http://www.tradr-project.eu

(our) pictures of the game

essentials - course content

- solving problems by search
- sequential decisions under uncertainty - how to search when actions are unreliable, but known
- reinforcement learning - learning from final successes and failures
- essentials from machine learning - bayesian decisions, classifiers, ...

joint exploration and seegmentation

search, ..., and beyond

|liplon ulape tiand

+14atorryime

(reinforcement) learning for the robot control

M. Pecka, K. Zimmermann, M. Reinstein, and T. Svoboda. Controlling Robot Morphology from Incomplete Measurements. In IEEE Transactions on Industrial Electronics, Feb 2017, Vol 64, Issue: 2, pp. 1773-1782
V. Kubelka, L. Oswald, F. Pomerleau, F. Colas, T. Svoboda, and M. Reinstein. Robust data fusion of multimodal sensory information for mobile robots. In Journal of Field Robotics, June 2015, Vol 32, Issue: 4

reinforcement learing

CURRENT Q-VALUES

object detection - deforming for better detection/recognition

K. Zimmermann, D. Hurych, T. Svoboda. Non-Rigid Object Detection with Local Interleaved Sequential Alignm

learning, clasification, ...

$\substack{x \\ \mathrm{~cm}}$	XS $(0-100)$	$\underset{(100-125)}{\mathrm{S}}$	$\underset{(125-150)}{\mathrm{M}}$	${ }_{(150-175)}^{\mathrm{L}}$	${\underset{(175-200)}{\mathrm{XL}}}^{\mathrm{XXL}}$	$\underset{(200-\infty)}{ }$	$\boldsymbol{\sum}$
$P(x \mid$ male $)$	0.05	0.15	0.2	0.25	0.3	0.05	$\mathbf{1}$
$P(x \mid$ female $)$	0.05	0.1	0.3	0.3	0.25	0.0	$\mathbf{1}$

emphasis on problem solving

- (problem) analysis
- formalization
- solution - algorithm
- implementation/computation
- verification/testing

n-1 puzzle

15-puzzle.svg:, Public Domain, https://commons.wikimedia.org/w/index.php?curid=28995093

8-puzzle

Start State

Goal State

almost(?) there ...

states

- What is the state?
- How many states?
- Are all states solvable?

- Can we decide before actually solving it?

inversions

12	1	10	2
7	11	4	14
5		9	15
8	13	6	3
$f i g 4$			

12	1	10	2	7	11	4	14	5	9	15	8	13	6	3

Tiles written in a row
inversion is when a tile precedes another tile with a low number

number of inversions during the search

 odd size

11 inversions

7	1	2
5	3	9
8		6

9 inversions

- moving left or right does not change \#inversions
- moving up or down does (passes even number of tiles) parity of inversions (whether is odd or even) is an invariant When is a state solvable?

invariant for the even sized tile

12	1	10	2
7	11	4	14
5		9	15
8	13	6	3

49 inversions
blank on even row
from bot

12	1	10	2
7		4	14
5	11	9	15
8	13	6	3

48 inversions
blank on odd row
from bot

Moving a tile up or down:

- Passes an odd number of other tiles
. The row parity of the blank also changes (from odd to even, or from even to odd)
(\#inversions even)==(blank on odd row from the bottom)

final states:

	1	2
3	4	5
6	7	8

every solvable state

- If the width is odd, then every solvable state has an even number of inversions.
- If the width is even, then every solvable state has
- an even number of inversions if the blank is on an odd numbered row counting from the bottom;
- an odd number of inversions if the blank is on an even numbered row counting from the bottom;

