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Shortened presentation

I This is a shortened version of the presentation.

I It does not cover a gentle introduction into MLE principle.

I It assumes students know about Maximum likelihood estimation from
a Probability and Statistics course.
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Probability estimation

In previous two lectures:

posterior =
likelihood × prior

evidence

In practice:

I uknown quantities

I estimate from training data T = {(x1, s1), (x2, s2), . . . (xl , sl)}
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Problem: tossing coing, is it fair, how is the P(head)?
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Does ML solve it all?

I Tossing coing, T = {T,T,T}
I What the ML estimate of pH?

I Would you believe it?

I What is missing?
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Tossing coin, using priors

L(pH |T ) = p(T |pH) =
N∏
i=1

p(xn|pH) =
N∏
i=1

pxnH (1− pH)1−xn

p(h,N|pH) =

(
N

h

)
phH(1− pH)N−h; pH =

h

N

(Conjugate) Prior:

p(pH |a, b) ∼ paH(1− pH)b
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Using the prior

p(h,N|pH) ∼ phH(1− pH)N−h

p(pH |a, b) ∼ paH(1− pH)b

p(pH |h,N) ∼ p(h,N|pH)p(pH) ∼ ph+a
H (1− pH)N−h+b

Looking for extremum
∂p(pH |h,N)

∂pH
= 0

yields

pH =
h + a

N + a + b

Hyperparamaters a, b as regularization
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Maximimum aposteriori estimate
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Problem: Coins classification based on weight

s/x 5 g 10 g 15 g 20 g 25 g
∑

1 CZK 15 10 3 0 0 28
2 CZK 7 13 16 6 1 43
5 CZK 0 1 2 11 15 29∑

22 24 21 17 16 100

I What if x = 17? Interpolate somehow?

I Two weighting devices A,B. xA = 16, xB = 19 what to do?
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Maximum likelihood estimation of the weight

Two weighting devices A,B with some σA, σB measure xA = 16, xB = 19.
What is the ML estimate of the weight w?

I Devices independent:

L(w) = p(xA, xB |w) = p(xA|w)p(xB |w)

I Sensors Gaussian:

L(w) =
1

σA
√

2π
exp

[
−(xA − w)2

2σ2A

]
× 1

σB
√

2π
exp

[
−(xB − w)2

2σ2B

]
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Estimation methods

Parametric

I Distribution is a function with (a few) parameters θ = (θ1, θ2, . . . , θD)

I Example: the normal distribution N (x |µ, σ2).

Non-parametric

I Function of many parameters.

I But parameters disappear from estimation methods.

I Examples: K-nearest neighbours, histogram, Parzen window.
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Histogram as piecewise constant density estimate
Histogram with B bins.
For a given B, the parameters of this piecewise-constant function are the
heights d1, d2, ..., dB of the individual bins. This function is denoted
p(x |{d1, d2, ..., dB}).

0.0 0.2 0.4 0.6 0.8 1.00.0
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For the given number of bins B, d1, d2, ..., dB must conform to the
constraint that the area under the function must sum up to one,

1 =

∫ ∞
−∞

p(x |{d1, d2, ..., dB})dx =
B∑
i=1

∫ i
B

i−1
B

di dx =
B∑
i=1

di

bin width
↓
w =

B∑
i=1

di
B
.
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Finding di using ML

L(T ) = p(T |θ) =
N∏
i=1

p(xi |θ) =
B∏
j=1

points in j-th bin︷ ︸︸ ︷ Nj∏
k=1

dj

 =
B∏
j=1

d
Nj

j .

Maximization task:

`(T ) =
B∑
j=1

Nj log dj → max , subject to
1

B

B∑
j=1

dj = 1 ,

Lagrangian:
B∑
j=1

Nj log dj + λ

 1

B

B∑
j=1

dj − 1


Nj

dj
+
λ

B
= 0⇒

dj
Nj

= const.⇒ dj = B
Nj

N
.
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Different number of bins
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K-Nearest neighbors density estimates
Find K neighbors, the density estimate is then p ∼ 1/V where V is the
volume of a minimum cell containing K NNs.
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