Probability estimation

Tomáś Svoboda

thanks to Ondřej Drbohlav, Michal Reinstein, Jiří Matas

Department of Cybernetics, Vision for Robotics and Autonomous Systems, Center for Machine Perception (CMP)

May 23, 2018

For simplicity we assume 1-dim (scalar) features x as far we can

In previous two lectures:

$$
\text { posterior }=\frac{\text { likelihood } \times \text { prior }}{\text { evidence }}
$$

In practice:

- uknown quantities
- estimate from training data $\mathcal{T}=\left\{\left(x_{1}, s_{1}\right),\left(x_{2}, s_{2}\right), \ldots\left(x_{1}, s_{1}\right)\right\}$

s / x	5 g	10 g	15 g	20 g	25 g	\sum
1 CZK	15	10	3	0	0	$\mathbf{2 8}$
2 CZK	7	13	16	6	1	$\mathbf{4 3}$
5 CZK	0	1	2	11	15	$\mathbf{2 9}$
\sum	22	24	21	17	16	$\mathbf{1 0 0}$

- What if $x=17$? Interpolate somehow?
- Two weighting devices $A, B . x_{A}=16, x_{B}=19$ what to do?

Problem: tossing coing, is it fair, how is the P (head)?

Probability (density/distribution) estimation from samples
Try to draw the density function, guessing from the samples The data x inded scalar - the quasi 2D plot is for visualisation, only the x-axis matters. Think about weight feature.
We drop the class index.
About normalization - think about assigning 1 to the max and 0 to min
Training data (for one of the class): $\mathcal{T}=\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{1000}\right\}$

- Range normalized $<0,1>$
- Analysis per class (for each class separately).

Probability density/distribution

Estimation methods

Parametric

- Distribution is a function with (a few) parameters $\boldsymbol{\theta}=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{D}\right)$
- Example: the normal distribution $\mathcal{N}\left(x \mid \mu, \sigma^{2}\right)$.

Non-parametric

- Function of many parameters.
- But parameters disappear from estimation methods.
- Examples: K-nearest neighbours, histogram, Parzen window.

Tossing coin. Likelihood

Tossed $2 \times$, two heads $\mathcal{T}=\{\mathrm{H}, \mathrm{H}\}$.
We assume iid.

$$
P\left(\mathrm{H}, \mathrm{H} \mid p_{H}=0.5\right)=
$$

iid - independent (one toss does not influence the other), identically (the same coin) distributed.
Think about difference between $P\left(\mathrm{H}, \mathrm{H} \mid p_{H}\right)$ vs $P\left(p_{H} \mid \mathrm{H}, \mathrm{H}\right)$.
Likelihood \mathcal{L} is not a probability, why?

Tossing coin. Likelihood
Tossed $2 \times$, two heads $\mathcal{T}=\{\mathrm{H}, \mathrm{H}\}$.
We assume iid.

$$
P\left(\mathrm{H}, \mathrm{H} \mid p_{H}=0.5\right) \quad=0.5^{2}=0.25
$$

iid - independent (one toss does not influence the other), identically (the same coin) distributed.
Think about difference between $P\left(\mathrm{H}, \mathrm{H} \mid p_{H}\right)$ vs $P\left(p_{H} \mid \mathrm{H}, \mathrm{H}\right)$.
Likelihood \mathcal{L} is not a probability, why?

Tossing coin. Likelihood
Tossed $2 \times$, two heads $\mathcal{T}=\{\mathrm{H}, \mathrm{H}\}$.
We assume iid.

$$
\begin{array}{ll}
P\left(\mathrm{H}, \mathrm{H} \mid p_{H}=0.5\right) & =0.5^{2}=0.25 \\
P\left(\mathrm{H}, \mathrm{H} \mid p_{H}=0.2\right) & =0.2^{2}=0.04 \\
P\left(\mathrm{H}, \mathrm{H} \mid p_{H}=0.8\right) & =0.8^{2}=0.64
\end{array}
$$

iid - independent (one toss does not influence the other), identically (the same coin) distributed.
Think about difference between $P\left(\mathrm{H}, \mathrm{H} \mid p_{H}\right)$ vs $P\left(p_{H} \mid \mathrm{H}, \mathrm{H}\right)$.
Likelihood \mathcal{L} is not a probability, why?

Tossing coin. Likelihood
Tossed $2 \times$, two heads $\mathcal{T}=\{\mathrm{H}, \mathrm{H}\}$. We assume iid.

$$
\begin{array}{ll}
P\left(\mathrm{H}, \mathrm{H} \mid p_{H}=0.5\right) & =0.5^{2}=0.25 \\
P\left(\mathrm{H}, \mathrm{H} \mid p_{H}=0.2\right) & =0.2^{2}=0.04 \\
P\left(\mathrm{H}, \mathrm{H} \mid p_{H}=0.8\right) & =0.8^{2}=0.64
\end{array}
$$

Likelihood: $\mathcal{L}\left(p_{H} \mid \mathcal{T}\right)$
iid - independent (one toss does not influence the other), identically (the same coin) distributed.
Think about difference between $P\left(\mathrm{H}, \mathrm{H} \mid p_{H}\right)$ vs $P\left(p_{H} \mid \mathrm{H}, \mathrm{H}\right)$.
Likelihood \mathcal{L} is not a probability, why?

Tossing coin. Likelihood

Tossed $2 \times$, two heads $\mathcal{T}=\{\mathrm{H}, \mathrm{H}\}$. We assume iid.

$$
\begin{array}{ll}
P\left(\mathrm{H}, \mathrm{H} \mid p_{H}=0.5\right) & =0.5^{2}=0.25 \\
P\left(\mathrm{H}, \mathrm{H} \mid p_{H}=0.2\right) & =0.2^{2}=0.04 \\
P\left(\mathrm{H}, \mathrm{H} \mid p_{H}=0.8\right) & =0.8^{2}=0.64
\end{array}
$$

Likelihood: $\mathcal{L}\left(p_{H} \mid \mathcal{T}\right)$

Tossed $3 \times$, two heads $\mathcal{T}=\{\mathrm{H}, \mathrm{H}, \mathrm{T}\}$. What is p_{H} ?
iid - independent (one toss does not influence the other), identically (the same coin) distributed.
Think about difference between $P\left(\mathrm{H}, \mathrm{H} \mid p_{H}\right)$ vs $P\left(p_{H} \mid \mathrm{H}, \mathrm{H}\right)$.
Likelihood \mathcal{L} is not a probability, why?

Tossing coin. Likelihood

Tossed $2 \times$, two heads $\mathcal{T}=\{\mathrm{H}, \mathrm{H}\}$. We assume iid.

$$
\begin{array}{ll}
P\left(\mathrm{H}, \mathrm{H} \mid p_{H}=0.5\right) & =0.5^{2}=0.25 \\
P\left(\mathrm{H}, \mathrm{H} \mid p_{H}=0.2\right) & =0.2^{2}=0.04 \\
P\left(\mathrm{H}, \mathrm{H} \mid p_{H}=0.8\right) & =0.8^{2}=0.64
\end{array}
$$

Likelihood: $\mathcal{L}\left(p_{H} \mid \mathcal{T}\right)$

Tossed $3 \times$, two heads $\mathcal{T}=\{\mathrm{H}, \mathrm{H}, \mathrm{T}\}$. What is p_{H} ?

iid - independent (one toss does not influence the other), identically (the same coin) distributed.
Think about difference between $P\left(\mathrm{H}, \mathrm{H} \mid p_{H}\right)$ vs $P\left(p_{H} \mid \mathrm{H}, \mathrm{H}\right)$.
Likelihood \mathcal{L} is not a probability, why?

Tossing coin, Maximum likelihood estimate
Log the whole product and ∂p_{H}, and at the end,

$$
p_{H}=\frac{\sum x_{n}}{N}
$$

Bernoulli distribution is a special case of Binomial distribution for $n=1$.

$$
\mathcal{L}\left(p_{H} \mid \mathcal{T}\right)=p\left(\mathcal{T} \mid p_{H}\right)=\prod_{i=1}^{N} p\left(x_{n} \mid p_{H}\right)=\prod_{i=1}^{N} p_{H}^{x_{n}}\left(1-p_{H}\right)^{1-x_{n}}
$$

(Bernoulli distribution)

What is the best p_{H} ?

Maximum Likelihood (ML)

Observations $\mathcal{T}=\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{N}\right\}$; known parametric form of the likelihood function $\mathcal{L}(\boldsymbol{\theta})=p(\mathcal{T} \mid \boldsymbol{\theta})$.

Maximum likelihood estimate:

$$
\boldsymbol{\theta}=\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \mathcal{L}(\boldsymbol{\theta})=\underset{\boldsymbol{\theta}}{\operatorname{argmax}} p(\mathcal{T} \mid \boldsymbol{\theta})
$$

We assume independent and identically distributed (i.i.d) samples x in \mathcal{T}.

$$
\boldsymbol{\theta}=\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \prod_{i=1}^{N} p\left(x_{i} \mid \boldsymbol{\theta}\right)
$$

We can do log-likelihood (logarithm is an increasing function).
$p(\mathcal{T} \mid \boldsymbol{\theta})$ likelihood that the data \mathcal{T} were generated by the density/distribution function with parameters $\boldsymbol{\theta}$. If parameters are correct they will do larger probabilites (hence the max) compared to the wrong ones
Independent - we can use the product of individual probabilies Identically - from the same distribution

Derivation on the blackboard, or by yourself. You can also logarithm the whole thing.

$$
\mu_{M L}=\frac{1}{N} \sum_{i=1}^{N} x_{i}
$$

$$
\mathcal{N}(x \mid \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right]
$$

$$
p\left(\left\{x_{1}, x_{2}, \ldots, x_{N}\right\} \mid \boldsymbol{\theta}\right)=\prod_{i=1}^{N} p\left(x_{i} \mid \boldsymbol{\theta}\right)
$$

$$
p(\mathcal{T} \mid \mu, \sigma)=\frac{1}{\sigma^{N} \sqrt{(2 \pi)^{N}}} \exp \left[-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}\right]
$$

We are looking for an extremum of $p(\mathcal{T} \mid \mu, \sigma)$

Why the Normal distribution

Central Limit Theorem

$$
X=X_{A}+X_{B}+X_{C}
$$

$X_{A, B, C}$ random variables with uniform distributions

Does ML solve it all?

- Tossing coing, $\mathcal{T}=\{\mathrm{T}, \mathrm{T}, \mathrm{T}\}$
- What the ML estimate of p_{H} ?

Does ML solve it all?

- Tossing coing, $\mathcal{T}=\{\mathrm{T}, \mathrm{T}, \mathrm{T}\}$
- What the ML estimate of p_{H} ?
- Would you believe it?

Does ML solve it all?

- Tossing coing, $\mathcal{T}=\{T, T, T\}$
- What the ML estimate of p_{H} ?
- Would you believe it?
-What is missing?

Tossing coin, using priors

$$
\mathcal{L}\left(p_{H} \mid \mathcal{T}\right)=p\left(\mathcal{T} \mid p_{H}\right)=\prod_{i=1}^{N} p\left(x_{n} \mid p_{H}\right)=\prod_{i=1}^{N} p_{H}^{x_{n}}\left(1-p_{H}\right)^{1-x_{n}}
$$

the likelihood and the prior have the same The prior $p\left(p_{H} \mid a, b\right)$ is actually the Beta distribution, https://en.wikipedia.org/wiki/Beta_distribution

Tossing coin, using priors

$$
\begin{gathered}
\mathcal{L}\left(p_{H} \mid \mathcal{T}\right)=p\left(\mathcal{T} \mid p_{H}\right)=\prod_{i=1}^{N} p\left(x_{n} \mid p_{H}\right)=\prod_{i=1}^{N} p_{H}^{x_{n}}\left(1-p_{H}\right)^{1-x_{n}} \\
p\left(h, N \mid p_{H}\right)=\binom{N}{h} p_{H}^{h}\left(1-p_{H}\right)^{N-h} ; p_{H}=\frac{h}{N}
\end{gathered}
$$

Conjugate because the likelihood and the prior have the same form. The prior $p\left(p_{H} \mid a, b\right)$ is actually the Beta distribution, https://en.wikipedia.org/wiki/Beta_distribution

Tossing coin, using priors

$$
\begin{gathered}
\mathcal{L}\left(p_{H} \mid \mathcal{T}\right)=p\left(\mathcal{T} \mid p_{H}\right)=\prod_{i=1}^{N} p\left(x_{n} \mid p_{H}\right)=\prod_{i=1}^{N} p_{H}^{x_{n}}\left(1-p_{H}\right)^{1-x_{n}} \\
p\left(h, N \mid p_{H}\right)=\binom{N}{h} p_{H}^{h}\left(1-p_{H}\right)^{N-h} ; p_{H}=\frac{h}{N}
\end{gathered}
$$

(Conjugate) Prior:

$p\left(p_{H} \mid a, b\right) \sim p_{H}^{a}\left(1-p_{H}\right)^{b}$

Conjugate because the likelihood and the prior have the same form. The prior $p\left(p_{H} \mid a, b\right)$ is actually the Beta distribution, https://en.wikipedia.org/wiki/Beta_distribution

Using the prior

$$
\begin{gathered}
p\left(h, N \mid p_{H}\right) \sim p_{H}^{h}\left(1-p_{H}\right)^{N-h} \\
p\left(p_{H} \mid a, b\right) \sim p_{H}^{a}\left(1-p_{H}\right)^{b}
\end{gathered}
$$

$$
p\left(p_{H} \mid h, N\right) \sim p\left(h, N \mid p_{H}\right) p\left(p_{H}\right) \sim p_{H}^{h+a}\left(1-p_{H}\right)^{N-h+b}
$$

Looking for extremum

$$
\frac{\partial p\left(p_{H} \mid h, N\right)}{\partial p_{H}}=0
$$

yields

$$
p_{H}=\frac{h+a}{N+a+b}
$$

Hyperparamaters a, b as regularization

Maximimum aposteriori estimate

See the map.m demo.

Estimation methods

Parametric

- Distribution is a function with (a few) parameters $\boldsymbol{\theta}=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{D}\right)$
- Example: the normal distribution $\mathcal{N}\left(x \mid \mu, \sigma^{2}\right)$.

Estimation methods

Non-parametric

- Function of many parameters.
- But parameters disappear from estimation methods.
- Examples: K-nearest neighbours, histogram, Parzen window.

Histogram as piecewise constant density estimate

Histogram with B bins.
For a given B, the parameters of this piecewise-constant function are the heights $d_{1}, d_{2}, \ldots, d_{B}$ of the individual bins. This function is denoted $p\left(x \mid\left\{d_{1}, d_{2}, \ldots, d_{B}\right\}\right)$.

For the given number of bins $B, d_{1}, d_{2}, \ldots, d_{B}$ must conform to the constraint that the area under the function must sum up to one,
bin width
$1=\int_{-\infty}^{\infty} p\left(x \mid\left\{d_{1}, d_{2}, \ldots, d_{B}\right\}\right) \mathrm{d} x=\sum_{i=1}^{B} \int_{\frac{i-1}{B}}^{\frac{i}{B}} d_{i} \mathrm{~d} x=\sum_{i=1}^{B} d_{i} w=\sum_{i=1}^{B} \frac{d_{i}}{B}$.

Finding d_{i} using ML

$$
L(\mathcal{T})=p(\mathcal{T} \mid \boldsymbol{\theta})=\prod_{i=1}^{N} p\left(x_{i} \mid \boldsymbol{\theta}\right)=\prod_{j=1}^{B} \overbrace{\left(\prod_{k=1}^{N_{j}} d_{j}\right)}^{\text {points in } j \text {-th bin }}=\prod_{j=1}^{B} d_{j}^{N_{j}} .
$$

Maximization task:

$$
\ell(\mathcal{T})=\sum_{j=1}^{B} N_{j} \log d_{j} \rightarrow \max , \quad \text { subject to } \frac{1}{B} \sum_{j=1}^{B} d_{j}=1
$$

Finding d_{i} using ML

$$
L(\mathcal{T})=p(\mathcal{T} \mid \boldsymbol{\theta})=\prod_{i=1}^{N} p\left(x_{i} \mid \boldsymbol{\theta}\right)=\prod_{j=1}^{B} \overbrace{\left(\prod_{k=1}^{N_{j}} d_{j}\right)}^{\text {points in } j \text {-th bin }}=\prod_{j=1}^{B} d_{j}^{N_{j}} .
$$

Maximization task:

$$
\ell(\mathcal{T})=\sum_{j=1}^{B} N_{j} \log d_{j} \rightarrow \max , \quad \text { subject to } \frac{1}{B} \sum_{j=1}^{B} d_{j}=1
$$

$$
\text { Lagrangian: } \sum_{j=1}^{B} N_{j} \log d_{j}+\lambda\left(\frac{1}{B} \sum_{j=1}^{B} d_{j}-1\right)
$$

Finding d_{i} using ML

$$
L(\mathcal{T})=p(\mathcal{T} \mid \boldsymbol{\theta})=\prod_{i=1}^{N} p\left(x_{i} \mid \boldsymbol{\theta}\right)=\prod_{j=1}^{B} \overbrace{\left(\prod_{k=1}^{N_{j}} d_{j}\right)}^{\text {points in } j \text {-th bin }}=\prod_{j=1}^{B} d_{j}^{N_{j}}
$$

Maximization task:

$$
\ell(\mathcal{T})=\sum_{j=1}^{B} N_{j} \log d_{j} \rightarrow \max , \quad \text { subject to } \frac{1}{B} \sum_{j=1}^{B} d_{j}=1
$$

$$
\text { Lagrangian: } \sum_{j=1}^{B} N_{j} \log d_{j}+\lambda\left(\frac{1}{B} \sum_{j=1}^{B} d_{j}-1\right)
$$

$$
\frac{N_{j}}{d_{j}}+\frac{\lambda}{B}=0 \Rightarrow \frac{d_{j}}{N_{j}}=\text { const. } \Rightarrow d_{j}=B \frac{N_{j}}{N}
$$

Different number of bins

K-Nearest neighbors density estimates

Find K neighbors, the density estimate is then $p \sim 1 / V$ where V is the volume of a minimum cell containing $K \mathrm{NNs}$.

Maximum likelihood estimation

$$
\ell(w)=\ln .
$$

after some derivation, ..., weighted average

$$
w=\frac{x_{A} \sigma_{A}^{-2}+x_{B} \sigma_{B}^{-2}}{\sigma_{A}^{-2}+\sigma_{B}^{-2}}
$$

Maximum likelihood estimation

$$
\ell(w)=\ln .
$$

after some derivation, ..., weighted average

$$
w=\frac{x_{A} \sigma_{A}^{-2}+x_{B} \sigma_{B}^{-2}}{\sigma_{A}^{-2}+\sigma_{B}^{-2}}
$$

Maximum likelihood estimation

$$
\ell(w)=\ln .
$$

after some derivation, ..., weighted average

$$
w=\frac{x_{A} \sigma_{A}^{-2}+x_{B} \sigma_{B}^{-2}}{\sigma_{A}^{-2}+\sigma_{B}^{-2}}
$$

(Back to the coin example) Two weighting devices A, B with some σ_{A}, σ_{B} measure $x_{A}=16, x_{B}=19$.
What is the ML estimate of the weight w ?

- Devices independent:

$$
\mathcal{L}(w)=p\left(x_{A}, x_{B} \mid w\right)=p\left(x_{A} \mid w\right) p\left(x_{B} \mid w\right)
$$

Maximum likelihood estimation

$$
\ell(w)=\ln .
$$

after some derivation, ..., weighted average

$$
w=\frac{x_{A} \sigma_{A}^{-2}+x_{B} \sigma_{B}^{-2}}{\sigma_{A}^{-2}+\sigma_{B}^{-2}}
$$

(Back to the coin example) Two weighting devices A, B with some σ_{A}, σ_{B} measure $x_{A}=16, x_{B}=19$.
What is the ML estimate of the weight w ?

- Devices independent:

$$
\mathcal{L}(w)=p\left(x_{A}, x_{B} \mid w\right)=p\left(x_{A} \mid w\right) p\left(x_{B} \mid w\right)
$$

- Sensors Gaussian:

$$
\mathcal{L}(w)=\frac{1}{\sigma_{A} \sqrt{2 \pi}} \exp \left[-\frac{\left(x_{A}-w\right)^{2}}{2 \sigma_{A}^{2}}\right] \times \frac{1}{\sigma_{B} \sqrt{2 \pi}} \exp \left[-\frac{\left(x_{B}-w\right)^{2}}{2 \sigma_{B}^{2}}\right]
$$

References I

Further reading: Chapter 13 and 14 of [3]. Books [1] and [2] are classical textbooks in the field of pattern recognition and machine learning. The lecture has been greatly inspired by the 4th and 5th lecture of the Machine Learning and Pattern Recognition course (B4B33RPZ)
[1] Christopher M. Bishop.
Pattern Recognition and Machine Learning.
Springer Science+Bussiness Media, New York, NY, 2006
[2] Richard O. Duda, Peter E. Hart, and David G. Stork.

Pattern Classification

John Wiley \& Sons, 2nd edition, 2001.
[3] Stuart Russell and Peter Norvig.
Artificial Intelligence: A Modern Approach
Prentice Hall, 3rd edition, 2010.
http://aima.cs.berkeley.edu/.

