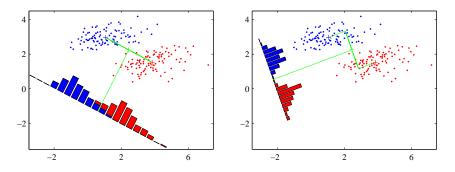
#### Linear Classifiers II

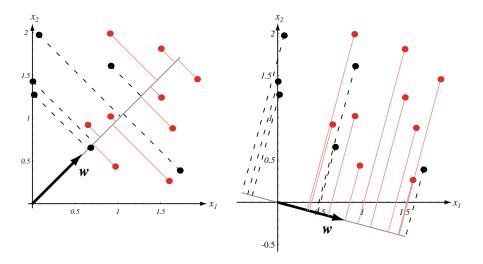
Tomáš Svoboda


Vision for Robots and Autonomous Systems, Center for Machine Perception Department of Cybernetics Faculty of Electrical Engineering, Czech Technical University in Prague

May 21, 2019

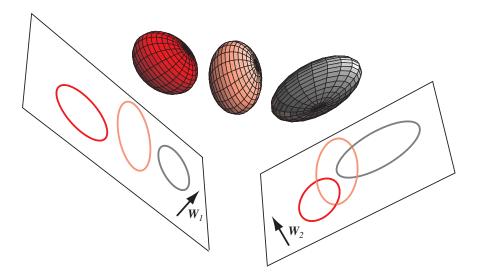
### Linear Classifiers - supplement lecture

- Supplement to the lecture about learning Linear Classifiers (perceptron, ...)
- Better etalons by applying Fischer linear discriminator analysis.
- LSQ formulation of the learning task.


### Fischer linear discriminant



- Dimensionality reduction
- Maximize distance between means, . . .
- ...and minimize within class variance. (minimize overlap)


Figures from [1]

# Projections to lower dimensions $y = \mathbf{w}^{\top} \mathbf{x}$



Figures from [2]

# Projections to lower dimensions $y = \mathbf{w}^{\top} \mathbf{x}$



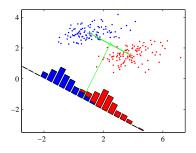
Figures from [2]

#### Finding the best projection

$$y = \mathbf{w}^\top \mathbf{x}$$

thresholding  $y \ge -w_0 C_1$ , otherwise  $C_2$ 

$$\mathbf{m}_i = \frac{1}{n_i} \sum_{\mathbf{x} \in C_i} \mathbf{x}$$


$$m_2 - m_1 = \mathbf{w}^\top (\mathbf{m}_2 - \mathbf{m}_1)$$

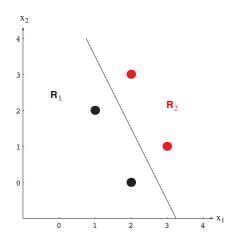
Within class scatter of projected samples

$$s_i^2 = \sum_{y \in C_i} (y - m_i)^2$$

Fischer criterion:

$$J(\mathbf{w}) = \frac{(m_2 - m_1)^2}{s_1^2 + s_2^2}$$




$$\begin{split} \mathbf{S}_i &= \sum_{\mathbf{x} \in \mathcal{C}_1} (\mathbf{x} - \mathbf{m}_i) (\mathbf{x} - \mathbf{m}_i)^\top \\ \mathbf{S}_W &= \mathbf{S}_1 + \mathbf{S}_2 \\ \mathbf{S}_B &= (\mathbf{m}_2 - \mathbf{m}_1) (\mathbf{m}_2 - \mathbf{m}_1)^\top \end{split}$$

$$J(\mathbf{w}) = rac{\mathbf{w}^{ op} \mathbf{S}_B \mathbf{w}}{\mathbf{w}^{ op} \mathbf{S}_W \mathbf{w}}$$

5/7

### LSQ approach to linear classification





### References I

Further reading: Chapter 4 of [1], or chapter 3 and 5 of [2].

[1] Christopher M. Bishop.

Pattern Recognition and Machine Learning. Springer Science+Bussiness Media, New York, NY, 2006. PDF freely downloadable.

[2] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification.

John Wiley & Sons, 2nd edition, 2001.