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Linear Classifiers - supplement lecture

I Supplement to the lecture about learning Linear Classifiers
(perceptron, . . . )

I Better etalons by applying Fischer linear discriminator analysis.

I LSQ formulation of the learning task.
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Fischer linear discriminant
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I Dimensionality reduction

I Maximize distance between means, . . .

I . . . and minimize within class variance. (minimize overlap)

Figures from [1]
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Projections to lower dimensions y = w>x
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FIGURE 3.5. Projection of the same set of samples onto two different lines in the di-
rections marked w. The figure on the right shows greater separation between the red
and black projected points. From: Richard O. Duda, Peter E. Hart, and David G. Stork,
Pattern Classification. Copyright c⃝ 2001 by John Wiley & Sons, Inc.

Figures from [2]
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Projections to lower dimensions y = w>x
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FIGURE 3.6. Three three-dimensional distributions are projected onto two-dimensional
subspaces, described by a normal vectors W1 and W2. Informally, multiple discriminant
methods seek the optimum such subspace, that is, the one with the greatest separation of
the projected distributions for a given total within-scatter matrix, here as associated with
W1. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification.
Copyright c⃝ 2001 by John Wiley & Sons, Inc.

Figures from [2]
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Finding the best projection

y = w>x

thresholding y ≥ −w0 C1, otherwise C2

mi =
1

ni

∑

x∈Ci

x

m2 −m1 = w>(m2 −m1)

Within class scatter of projected samples

s2i =
∑

y∈Ci

(y −mi )
2

Fischer criterion:

J(w) =
(m2 −m1)2

s21 + s22
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Si =
∑

x∈C1

(x−mi )(x−mi )
>

SW = S1 + S2

SB = (m2 −m1)(m2 −m1)>

J(w) =
w>SBw

w>SWw
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LSQ approach to linear classification

Xw = b

30 CHAPTER 5. LINEAR DISCRIMINANT FUNCTIONS
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⎠ = 0, where a was found

by means of a pseudoinverse technique.

We arbitrarily let all the margins be equal, i.e., b = (1, 1, 1, 1)t. Our solution is
a = Y†b = (11/3,−4/3,−2/3)t, and leads to the decision boundary shown in the
figure. Other choices for b would typically lead to different decision boundaries, of
course.

5.8.2 Relation to Fisher’s Linear Discriminant

In this section we shall show that with the proper choice of the vector b, the MSE
discriminant function aty is directly related to Fisher’s linear discriminant. To do
this, we must return to the use of linear rather than generalized linear discriminant
functions. We assume that we have a set of n d-dimensional samples x1, ...,xn, n1 of
which are in the subset D1 labelled ω1, and n2 of which are in the subset D2 labelled
ω2. Further, we assume that a sample yi is formed from xi by adding a threshold
component x0 = 1 to make an augmented pattern vector. Further, if the sample isaugmented

pattern
vector

labelled ω2, then the entire pattern vector is multiplied by −1 — the “normlization”
we saw in Sect. 5.4.1. With no loss in generality, we can assume that the first n1

samples are labelled ω1 and the second n2 are labelled ω2. Then the matrix Y can
be partitioned as follows:

Y =

[
11 X1

−12 −X2

]
,

where 1i is a column vector of ni ones, and Xi is an ni-by-d matrix whose rows are
the samples labelled ωi. We partition a and b correspondingly, with

a =

[
w0

w

]

and with
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References I

Further reading: Chapter 18 of [4], or chapter 4 of [1], or chapter 5 of [2].
Many Matlab figures created with the help of [3]. You may also play with
demo functions from [5].
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