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thanks to Daniel Novák and Filip Železný, Onďrej Drbohlav
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Classification example: What’s the fish?

I Factory for fish processing

I 2 classes s1,2:
I salmon
I sea bass

I Features ~x : length, width,
lightness etc. from a camera
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Fish classification in feature space

I Linear, quadratic, k-nearest neighbor classifier

I Feature frequency per class shown using histograms
I Classification errors due to histogram overlap
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Fish – classification using probability

posterior =
likelihood × prior

evidence

I Notation for classification problem
I Classes sj ∈ S (e.g., salmon, sea bass)
I Features xi ∈ X or feature vectors (~xi ) (also called attributes)

I Optimal classification of ~x :

δ∗(~x) = arg max
j

P(sj |~x)

I We thus choose the most probable class for a given feature vector.

I Both likelihood and prior are taken into account – recall Bayes rule:

P(sj |~x) =
P(~x |sj)P(sj)

P(~x)
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Bayes classification in practice

I Usually we are not given P(s|~x)

I It has to be estimated from already classified examples – training data
I For discrete ~x , training examples (~x1, s1), (~x2, s2), . . . (~x l , sl)

I so-called i.i.d (independent, identically distributed) multiset
I every (~xi , s) is drawn independently from P(~x , s)

I Without knowing anything about the distribution, a non-parametric
estimate:

P(s|~x) ≈ # examples where ~x i = ~x and si = s

# examples where ~x i = ~x

I Hard in practice:
I To reliably estimate P(s|~x), the number of examples grows

exponentially with the number of elements of ~x .
I e.g. with the number of pixels in images
I curse of dimensionality
I denominator often 0

5 / 43

Why hard? Way too many various ~x . Think about simple binary 10× 10

image - ~x contains 0, 1, position matters. What is the total number of

unique images? Think binary, 1× 8 binary image?
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Näıve Bayes classification

I For efficient classification we must thus rely on additional
assumptions.

I In the exceptional case of statistical independence between ~x
components for each class s it holds

P(~x |s) = P(x [1]|s) · P(x [2]|s) · . . .

I Use simple Bayes law and maximize:

P(s|~x) =
P(~x |s)P(s)

P(~x)
=

P(s)

P(~x)
P(x [1]|s) · P(x [2]|s) · . . . =

I No combinatorial curse in estimating P(s) and P(x [i ]|s) separately
for each i and s.

I No need to estimate P(~x). (Why?)

I P(s) may be provided apriori.

I näıve = when used despite statistical dependence
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Why näıve at all? Consider N− dimensional space, 8− bit values.
Instead of problem 8N we have 8× N problem.

Think about statistical independence. Example1: person’s weight and

height. Are they independent? Example2: pixel values in images.



Example: Digit recognition

I Input: 8-bit image 13× 13, intensities 0− 255.

I Output: Digit 0− 9. Decision about the class, classification.

I Features: Pixel intensities . . .

Collect data , . . .

I P(~x). What is the dimension of ~x? How many possible images?

I Learn P(~x |s) per each class (digit).

I Classify s∗ = argmaxs P(s|~x).

7 / 43

We can create many more features than just pixel intensities. But first
things first.

We are assuming all errors are equally important - minimizing the number

of wrong decisions
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From images to ~x
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Conditional probabilities

I Apriori digit probabilities P(sk)

I Likelihoods for pixels.
P(xu,v = Ii |sk)

9 / 43

We can rearrange pixels into vector - then using a linear index
P(xj = Ii |sk).

Example:#Condi)onal#Probabili)es#

1 0.1 
2 0.1 
3 0.1 
4 0.1 
5 0.1 
6 0.1 
7 0.1 
8 0.1 
9 0.1 
0 0.1 

1 0.01 
2 0.05 
3 0.05 
4 0.30 
5 0.80 
6 0.90 
7 0.05 
8 0.60 
9 0.50 
0 0.80 

1 0.05 
2 0.01 
3 0.90 
4 0.80 
5 0.90 
6 0.90 
7 0.25 
8 0.85 
9 0.60 
0 0.80 

image by courtesy of P. Abeel, http://ai.berkeley.edu

http://ai.berkeley.edu


Training and testing

Data labeled instances.

I Training set

I Held-out (validation) set

I Testing set.

Features : Attribute-value pairs.

Learning cycle:

I Learn parameters (e.g. probabilities) on training set.

I Tune hyperparameters on held-out (validation) set.

I Evaluate performance on testing set.

10 / 43

We will be talking about hyperparameters in a minute



Generalization and overfiting

I Data: training, validation, testing. Wanted classifier performs well on
what data?

I Overfitting: too close to training, poor on testing
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Overfiting

−2 −1 0 1 2 3 4 5 6
0.6

0.7

0.8

0.9

1

1.1
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see the overfit.m demo



Unseen events

Images 13× 13, intensities 0− 255, 100 exemplars per each class.

13 / 43

image by courtesy of P. Abeel, http://ai.berkeley.edu

http://ai.berkeley.edu


Laplace smoothing

P(x) =
count(x)

total samples

Problem: count(x) = 0
Pretend you see the sample one more time.

PLAP(x) =
c(x) + 1∑
x [c(x) + 1]

PLAP(x) =
c(x) + 1

N + |X |

14 / 43

Laplace#Smoothing#

!  Laplace’s#es)mate:#
!  Pretend#you#saw#every#outcome#

once#more#than#you#actually#did#

!  Can#derive#this#es)mate#with#
Dirichlet+priors#(see#cs281a)#

r# r# b#
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Laplace smoothing - as a hyperparameter k

Pretend you see every sample k extra times:

PLAP(x) =
c(x) + k∑
x [c(x) + k]

PLAP(x) =
c(x) + k

N + k |X |
For conditional, smooth each condition independently

PLAP(x |s) =
c(x , s) + k

c(s) + k |X |

15 / 43



Product of many small numbers . . .

P(s|~x) =
P(~x |s)P(s)

P(~x)
=

P(s)

P(~x)
P(x [1]|s) · P(x [2]|s) · . . .

P(~x) not needed, . . . ...

log(P(x [1]|s)P(x [2]|s) · · · ) = log(P(x [1]|s)) + log(P(x [2]|s)) + · · ·

16 / 43

just try prod(rand(1,100)) and prod(rand(1,10000)) in Matlab.

What is the way out?
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Inference and decision

Inference stage - learning models/function/parameters from data.

Decision stage - decide about a query ~x .

I Generative model : Learn (infer) P(~x , s). Decide by computing
P(s|~x).

I Discriminative model : Learn P(s|~x)

I Discriminant function : Learn f (~x) which maps ~x directly into class
labels.

17 / 43

Generative models because by sampling from them it is possible to
generate synthetic data points ~x .
For the discriminative model one can consider, e.g. logistic function:

f (x) =
1

1 + e−k(x−x0)



K -Nearest neighbors classification

For a query ~x :

I Find K nearest ~x from the tranining (labeled) data.

I Classify to the class with the most exemplars in the set above.

−1.5 −1 −0.5 0 0.5 1
−0.5

0

0.5

1

1.5
1−nearest neighbour classifier
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K− Nearest Neighbor and Bayes

Assume data:

I N points ~x in total.

I Nj points in sj class. Hence,
∑

j Nj = N.

We want classify ~x . We draw a sphere centered at ~x containing K points
irrespective of class. V is the volume of this sphere.

P(~x) =
K

NV

P(~x |sj) =
Kj

NjV

P(sj) =
Nj

N

P(sj |~x) =
P(~x |sj)P(sj)

P(~x)
=

Kj

K

19 / 43

K = 1
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NN classification example

x1

x2

(a)
x1

x2

(b) 1

1Figs from [1]
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NN classification example

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5
Pentagon data
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Etalon based classification

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x1

x 2

Pentagon data

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x
1

x 2

minimum distance from etalons

Represent ~x by etalon , ~es per each class s ∈ S
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Separate etalons

f (~x) = arg min
s∈S

(||~x − ~es ||2 + os)

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x
1

x 2

minimum distance from etalons
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What etalons?

If N (~x |~µ,Σ); all classes same covari-
ance matrices, then

~es
def
= ~µs =

1

|X s |
∑
i∈X s

~x si

and separating hyperplanes halve dis-
tances between pairs.

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x
1

x 2

minimum distance from etalons
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N (~x |~µ,Σ) =
1

(2π)D/2

1

|Σ|1/2
exp{−1

2
(~x − ~µ)>Σ−1(~x − ~µ)}



Etalon based classification, ~es = ~µs

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x1

x 2

Pentagon data

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x
1

x 2

minimum distance from etalons
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Some wrongly classified samples. We like the simple idea. Are there

better etalons? How to find them?



Digit recognition - etalons ~es = ~µs

etalon for 0 etalon for 1 etalon for 2 etalon for 3 etalon for 4 etalon for 5 etalon for 6 etalon for 7 etalon for 8 etalon for 9

Figures from [5]
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Better etalons – Fischer linear discriminant

−2 2 6

−2

0

2

4

−2 2 6

−2

0

2

4

I Dimensionality reduction

I Maximize distance between means, . . .

I . . . and minimize within class variance. (minimize overlap)

Figures from [1]
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Better etalons - Perceptron

−1.2 −0.8 −0.4 0 0.4 0.8 1.2
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0
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0.8
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Figures from [5]
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Etalon classifier – Linear classifier

f (~x) = arg min
s∈S

(
‖~x − ~es‖2 + os

)
= arg min

s∈S
(~x>~x − 2~e>s ~x + ~e>s ~es + os) =

= arg min
s∈S

(
~x>~x − 2

(
~e>s ~x −

1

2
(~e>s ~es + os)

))
=

= arg min
s∈S

(
~x>~x − 2 (~e>s ~x + bs)

)
=

= arg max
s∈S

(~e>s ~x + bs) = arg max
s∈S

fs(~x). bs = −1

2
(~e>s ~es + os)

Linear function (plus offset)

f (x) = w>x + w0

29 / 43
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Perceptron learning - problem set up

We seek K =
{

(ws ,w0s) | s ∈ S
}

f (x) = arg max
s∈S

(
w>s x + w0s

)
achieves no error on training set T =

{
(xi , s i ), i = 0, 1, . . . ,m}

εtr =
1

m

m∑
j=1

111
(
s j 6= f (xj)

)
, 111(s) =

{
1 s True

0 s False
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Perceptron, two classes linearly separable

|S | = 2, i.e. two states (typically also classes)

f (x) =

 s = 1 , if w>x + w0 > 0 ,

s = −1 , if w>x + w0 < 0 .

x
1

x
2
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Linear seaparability - hyperplane separates/divides space into two

half-spaces



Perceptron learning – Algorithm

x′j = sj

[
1
xj

]
, w′ =

[
w0

w

]
drop the dashes to avoid notation clutter.

Goal: Find a weight vector w ∈ <D+1 (original feature space
dimensionality is D) such that:

w>xj > 0 (∀j ∈ {1, 2, ...,m})

Perceptron algorithm (Rosenblat 1962):

1. t ← 0, w(t) ← 0.

2. Find a wrongly classified observation xj :

w(t)>xj ≤ 0, (j ∈ {1, 2, ...,m}.)

3. If there is no misclassified observation then terminate. Otherwise,

w(t+1) ← w(t) + xj .

4. Goto 2.
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Perceptron iterations
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Etalons: means vs found be perceptron
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Etalons and separating hyperplanes found by perceptron

Figures from [5]
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Digit recognition - etalons means vs. perceptron

etalon for 0 etalon for 1 etalon for 2 etalon for 3 etalon for 4 etalon for 5 etalon for 6 etalon for 7 etalon for 8 etalon for 9

etalon for 0 etalon for 1 etalon for 2 etalon for 3 etalon for 4 etalon for 5 etalon for 6 etalon for 7 etalon for 8 etalon for 9

Figures from [5]
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What if not lin separable?

1.0 0.5 0.0 0.5 1.0 1.5 2.0

Dimension lifting

x = [x , x2]>
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Dimension lifting, x = [x , x2]>
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Performance comparison, parameters fixed

#times classified as

T
ru

e
 l
a
b
e
ls

Matching table for test set

 

 

94  0  0  1  0  0  0  0  5  0

 0 99  0  0  0  0  0  0  0  1

 0  0 92  0  0  0  0  4  4  0

 0  0  0 96  0  0  0  0  3  1

 0  0  0  0 99  0  0  0  1  0

 0  2  0  0  0 93  3  0  2  0

 0  0  0  0  0  1 89  0 10  0

 0  0  2  0  0  0  0 98  0  0

 3  0  0  1  0  0 51  0 35 10

 0  0  0  4  0  0  1  0  9 86
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100  0  0  0  0  0  0  0  0  0

 0 100  0  0  0  0  0  0  0  0

 0  0 100  0  0  0  0  0  0  0

 1  0  0 99  0  0  0  0  0  0

 0  0  0  0 100  0  0  0  0  0

 0  0  0  0  0 100  0  0  0  0

 0  0  0  0  0  0 100  0  0  0

 1  0  0  0  0  0  1 98  0  0

 0  0  0  0  0  0  0  0 97  3

 0  0  0  0  0  0  0  0  5 95
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Why there some errors in perceptron results? we said zero error on

training set.



Precision and Recall, Confusion matrix
Consider digit detection (is there a digit?) or
SPAM/HAM classification.
Confusion matrix :

I Classification (prediction) vs Truth state

Recall :

I How many relevant items are selected?

I Are we missing some items?

I Also called: True positive rate, sensitivity,
hit rate . . .

Precision

I How many selected items are relevant?

I Also called: Positive predictive value

relevant elements

selected elements

false positivestrue positives

false negatives true negatives

Precision = Recall =

How many selected
items are relevant?

How many relevant
items are selected?

By Walber - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=36926283
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Recall =
TP

TP + FN

Precision =
TP

TP + FP

Think about precision vs recall graph, what is the best classifier?

https://commons.wikimedia.org/w/index.php?curid=36926283


Accuracy vs precision

https://commons.wikimedia.org/wiki/File:Precision_versus_accuracy.svg 40 / 43

Accuracy: how close (is your model) to the true. Precision: how

consistent/stable

https://commons.wikimedia.org/wiki/File:Precision_versus_accuracy.svg


Accuracy vs precision

https://en.wikipedia.org/wiki/Accuracy_and_precision
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Accuracy: how close (is your model) to the true. Precision: how
consistent/stable.
Think about terms bias and error. In Czech perhaps accuracy≈správnost,
precision≈p̌resnost.

https://en.wikipedia.org/wiki/Accuracy_and_precision
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