
Classifiers, intro, evaluation

Tomáš Svoboda and Matěj Hoffmann
thanks to Daniel Novák and Filip Železný, Onďrej Drbohlav

Department of Cybernetics, Vision for Robotics and Autonomous Systems,
Center for Machine Perception (CMP)

May 22, 2018

1 / 43

http://cyber.felk.cvut.cz
http://cyber.felk.cvut.cz/vras

Classification example: What’s the fish?

I Factory for fish processing

I 2 classes s1,2:
I salmon
I sea bass

I Features ~x : length, width,
lightness etc. from a camera

2 / 43

Fish classification in feature space

I Linear, quadratic, k-nearest neighbor classifier

I Feature frequency per class shown using histograms
I Classification errors due to histogram overlap

3 / 43

Fish classification in feature space

I Linear, quadratic, k-nearest neighbor classifier

I Feature frequency per class shown using histograms
I Classification errors due to histogram overlap

3 / 43

Fish – classification using probability

posterior =
likelihood × prior

evidence

I Notation for classification problem
I Classes sj ∈ S (e.g., salmon, sea bass)
I Features xi ∈ X or feature vectors (~xi) (also called attributes)

I Optimal classification of ~x :

δ∗(~x) = arg max
j

P(sj |~x)

I We thus choose the most probable class for a given feature vector.

I Both likelihood and prior are taken into account – recall Bayes rule:

P(sj |~x) =
P(~x |sj)P(sj)

P(~x)

4 / 43

Fish – classification using probability

posterior =
likelihood × prior

evidence

I Notation for classification problem
I Classes sj ∈ S (e.g., salmon, sea bass)
I Features xi ∈ X or feature vectors (~xi) (also called attributes)

I Optimal classification of ~x :

δ∗(~x) = arg max
j

P(sj |~x)

I We thus choose the most probable class for a given feature vector.

I Both likelihood and prior are taken into account – recall Bayes rule:

P(sj |~x) =
P(~x |sj)P(sj)

P(~x)

4 / 43

Bayes classification in practice

I Usually we are not given P(s|~x)

I It has to be estimated from already classified examples – training data
I For discrete ~x , training examples (~x1, s1), (~x2, s2), . . . (~x l , sl)

I so-called i.i.d (independent, identically distributed) multiset
I every (~xi , s) is drawn independently from P(~x , s)

I Without knowing anything about the distribution, a non-parametric
estimate:

P(s|~x) ≈ # examples where ~x i = ~x and si = s

examples where ~x i = ~x

I Hard in practice:
I To reliably estimate P(s|~x), the number of examples grows

exponentially with the number of elements of ~x .
I e.g. with the number of pixels in images
I curse of dimensionality
I denominator often 0

5 / 43

Why hard? Way too many various ~x . Think about simple binary 10× 10

image - ~x contains 0, 1, position matters. What is the total number of

unique images? Think binary, 1× 8 binary image?

Bayes classification in practice

I Usually we are not given P(s|~x)

I It has to be estimated from already classified examples – training data
I For discrete ~x , training examples (~x1, s1), (~x2, s2), . . . (~x l , sl)

I so-called i.i.d (independent, identically distributed) multiset
I every (~xi , s) is drawn independently from P(~x , s)

I Without knowing anything about the distribution, a non-parametric
estimate:

P(s|~x) ≈ # examples where ~x i = ~x and si = s

examples where ~x i = ~x

I Hard in practice:
I To reliably estimate P(s|~x), the number of examples grows

exponentially with the number of elements of ~x .
I e.g. with the number of pixels in images
I curse of dimensionality
I denominator often 0

5 / 43

Why hard? Way too many various ~x . Think about simple binary 10× 10

image - ~x contains 0, 1, position matters. What is the total number of

unique images? Think binary, 1× 8 binary image?

Bayes classification in practice

I Usually we are not given P(s|~x)

I It has to be estimated from already classified examples – training data
I For discrete ~x , training examples (~x1, s1), (~x2, s2), . . . (~x l , sl)

I so-called i.i.d (independent, identically distributed) multiset
I every (~xi , s) is drawn independently from P(~x , s)

I Without knowing anything about the distribution, a non-parametric
estimate:

P(s|~x) ≈ # examples where ~x i = ~x and si = s

examples where ~x i = ~x

I Hard in practice:
I To reliably estimate P(s|~x), the number of examples grows

exponentially with the number of elements of ~x .
I e.g. with the number of pixels in images
I curse of dimensionality
I denominator often 0

5 / 43

Why hard? Way too many various ~x . Think about simple binary 10× 10

image - ~x contains 0, 1, position matters. What is the total number of

unique images? Think binary, 1× 8 binary image?

Bayes classification in practice

I Usually we are not given P(s|~x)

I It has to be estimated from already classified examples – training data
I For discrete ~x , training examples (~x1, s1), (~x2, s2), . . . (~x l , sl)

I so-called i.i.d (independent, identically distributed) multiset
I every (~xi , s) is drawn independently from P(~x , s)

I Without knowing anything about the distribution, a non-parametric
estimate:

P(s|~x) ≈ # examples where ~x i = ~x and si = s

examples where ~x i = ~x

I Hard in practice:
I To reliably estimate P(s|~x), the number of examples grows

exponentially with the number of elements of ~x .
I e.g. with the number of pixels in images
I curse of dimensionality
I denominator often 0

5 / 43

Why hard? Way too many various ~x . Think about simple binary 10× 10

image - ~x contains 0, 1, position matters. What is the total number of

unique images? Think binary, 1× 8 binary image?

Näıve Bayes classification

I For efficient classification we must thus rely on additional
assumptions.

I In the exceptional case of statistical independence between ~x
components for each class s it holds

P(~x |s) = P(x [1]|s) · P(x [2]|s) · . . .

I Use simple Bayes law and maximize:

P(s|~x) =
P(~x |s)P(s)

P(~x)
=

P(s)

P(~x)
P(x [1]|s) · P(x [2]|s) · . . . =

I No combinatorial curse in estimating P(s) and P(x [i]|s) separately
for each i and s.

I No need to estimate P(~x). (Why?)

I P(s) may be provided apriori.

I näıve = when used despite statistical dependence

6 / 43

Why näıve at all? Consider N− dimensional space, 8− bit values.
Instead of problem 8N we have 8× N problem.

Think about statistical independence. Example1: person’s weight and

height. Are they independent? Example2: pixel values in images.

Example: Digit recognition

I Input: 8-bit image 13× 13, intensities 0− 255.

I Output: Digit 0− 9. Decision about the class, classification.

I Features: Pixel intensities . . .

Collect data , . . .

I P(~x). What is the dimension of ~x? How many possible images?

I Learn P(~x |s) per each class (digit).

I Classify s∗ = argmaxs P(s|~x).

7 / 43

We can create many more features than just pixel intensities. But first
things first.

We are assuming all errors are equally important - minimizing the number

of wrong decisions

Example: Digit recognition

I Input: 8-bit image 13× 13, intensities 0− 255.

I Output: Digit 0− 9. Decision about the class, classification.

I Features: Pixel intensities . . .

Collect data , . . .

I P(~x). What is the dimension of ~x? How many possible images?

I Learn P(~x |s) per each class (digit).

I Classify s∗ = argmaxs P(s|~x).

7 / 43

We can create many more features than just pixel intensities. But first
things first.

We are assuming all errors are equally important - minimizing the number

of wrong decisions

Example: Digit recognition

I Input: 8-bit image 13× 13, intensities 0− 255.

I Output: Digit 0− 9. Decision about the class, classification.

I Features: Pixel intensities . . .

Collect data , . . .

I P(~x). What is the dimension of ~x? How many possible images?

I Learn P(~x |s) per each class (digit).

I Classify s∗ = argmaxs P(s|~x).

7 / 43

We can create many more features than just pixel intensities. But first
things first.

We are assuming all errors are equally important - minimizing the number

of wrong decisions

Example: Digit recognition

I Input: 8-bit image 13× 13, intensities 0− 255.

I Output: Digit 0− 9. Decision about the class, classification.

I Features: Pixel intensities . . .

Collect data , . . .

I P(~x). What is the dimension of ~x? How many possible images?

I Learn P(~x |s) per each class (digit).

I Classify s∗ = argmaxs P(s|~x).

7 / 43

We can create many more features than just pixel intensities. But first
things first.

We are assuming all errors are equally important - minimizing the number

of wrong decisions

From images to ~x

8 / 43

Conditional probabilities

I Apriori digit probabilities P(sk)

I Likelihoods for pixels.
P(xu,v = Ii |sk)

9 / 43

We can rearrange pixels into vector - then using a linear index
P(xj = Ii |sk).

Example:#Condi)onal#Probabili)es#

1 0.1
2 0.1
3 0.1
4 0.1
5 0.1
6 0.1
7 0.1
8 0.1
9 0.1
0 0.1

1 0.01
2 0.05
3 0.05
4 0.30
5 0.80
6 0.90
7 0.05
8 0.60
9 0.50
0 0.80

1 0.05
2 0.01
3 0.90
4 0.80
5 0.90
6 0.90
7 0.25
8 0.85
9 0.60
0 0.80

image by courtesy of P. Abeel, http://ai.berkeley.edu

http://ai.berkeley.edu

Training and testing

Data labeled instances.

I Training set

I Held-out (validation) set

I Testing set.

Features : Attribute-value pairs.

Learning cycle:

I Learn parameters (e.g. probabilities) on training set.

I Tune hyperparameters on held-out (validation) set.

I Evaluate performance on testing set.

10 / 43

We will be talking about hyperparameters in a minute

Generalization and overfiting

I Data: training, validation, testing. Wanted classifier performs well on
what data?

I Overfitting: too close to training, poor on testing

11 / 43

Generalization and overfiting

I Data: training, validation, testing. Wanted classifier performs well on
what data?

I Overfitting: too close to training, poor on testing

11 / 43

Overfiting

−2 −1 0 1 2 3 4 5 6
0.6

0.7

0.8

0.9

1

1.1

12 / 43

see the overfit.m demo

Unseen events

Images 13× 13, intensities 0− 255, 100 exemplars per each class.

13 / 43

image by courtesy of P. Abeel, http://ai.berkeley.edu

http://ai.berkeley.edu

Laplace smoothing

P(x) =
count(x)

total samples

Problem: count(x) = 0
Pretend you see the sample one more time.

PLAP(x) =
c(x) + 1∑
x [c(x) + 1]

PLAP(x) =
c(x) + 1

N + |X |

14 / 43

Laplace#Smoothing#

!  Laplace’s#es)mate:#
!  Pretend#you#saw#every#outcome#

once#more#than#you#actually#did#

!  Can#derive#this#es)mate#with#
Dirichlet+priors#(see#cs281a)#

r# r# b#

image by courtesy of P. Abeel, http://ai.berkeley.edu

http://ai.berkeley.edu

Laplace smoothing

P(x) =
count(x)

total samples

Problem: count(x) = 0
Pretend you see the sample one more time.

PLAP(x) =
c(x) + 1∑
x [c(x) + 1]

PLAP(x) =
c(x) + 1

N + |X |

14 / 43

Laplace#Smoothing#

!  Laplace’s#es)mate:#
!  Pretend#you#saw#every#outcome#

once#more#than#you#actually#did#

!  Can#derive#this#es)mate#with#
Dirichlet+priors#(see#cs281a)#

r# r# b#

image by courtesy of P. Abeel, http://ai.berkeley.edu

http://ai.berkeley.edu

Laplace smoothing

P(x) =
count(x)

total samples

Problem: count(x) = 0
Pretend you see the sample one more time.

PLAP(x) =
c(x) + 1∑
x [c(x) + 1]

PLAP(x) =
c(x) + 1

N + |X |

14 / 43

Laplace#Smoothing#

!  Laplace’s#es)mate:#
!  Pretend#you#saw#every#outcome#

once#more#than#you#actually#did#

!  Can#derive#this#es)mate#with#
Dirichlet+priors#(see#cs281a)#

r# r# b#

image by courtesy of P. Abeel, http://ai.berkeley.edu

http://ai.berkeley.edu

Laplace smoothing - as a hyperparameter k

Pretend you see every sample k extra times:

PLAP(x) =
c(x) + k∑
x [c(x) + k]

PLAP(x) =
c(x) + k

N + k |X |
For conditional, smooth each condition independently

PLAP(x |s) =
c(x , s) + k

c(s) + k |X |

15 / 43

Product of many small numbers . . .

P(s|~x) =
P(~x |s)P(s)

P(~x)
=

P(s)

P(~x)
P(x [1]|s) · P(x [2]|s) · . . .

P(~x) not needed,

log(P(x [1]|s)P(x [2]|s) · · ·) = log(P(x [1]|s)) + log(P(x [2]|s)) + · · ·

16 / 43

just try prod(rand(1,100)) and prod(rand(1,10000)) in Matlab.

What is the way out?

Product of many small numbers . . .

P(s|~x) =
P(~x |s)P(s)

P(~x)
=

P(s)

P(~x)
P(x [1]|s) · P(x [2]|s) · . . .

P(~x) not needed,

log(P(x [1]|s)P(x [2]|s) · · ·) = log(P(x [1]|s)) + log(P(x [2]|s)) + · · ·

16 / 43

just try prod(rand(1,100)) and prod(rand(1,10000)) in Matlab.

What is the way out?

Inference and decision

Inference stage - learning models/function/parameters from data.

Decision stage - decide about a query ~x .

I Generative model : Learn (infer) P(~x , s). Decide by computing
P(s|~x).

I Discriminative model : Learn P(s|~x)

I Discriminant function : Learn f (~x) which maps ~x directly into class
labels.

17 / 43

Generative models because by sampling from them it is possible to
generate synthetic data points ~x .
For the discriminative model one can consider, e.g. logistic function:

f (x) =
1

1 + e−k(x−x0)

K -Nearest neighbors classification

For a query ~x :

I Find K nearest ~x from the tranining (labeled) data.

I Classify to the class with the most exemplars in the set above.

−1.5 −1 −0.5 0 0.5 1
−0.5

0

0.5

1

1.5
1−nearest neighbour classifier

18 / 43

K− Nearest Neighbor and Bayes

Assume data:

I N points ~x in total.

I Nj points in sj class. Hence,
∑

j Nj = N.

We want classify ~x . We draw a sphere centered at ~x containing K points
irrespective of class. V is the volume of this sphere.

P(~x) =
K

NV

P(~x |sj) =
Kj

NjV

P(sj) =
Nj

N

P(sj |~x) =
P(~x |sj)P(sj)

P(~x)
=

Kj

K

19 / 43

K = 1

0 0.5 1
0

5

K = 5

0 0.5 1
0

5

K = 30

0 0.5 1
0

5

K− Nearest Neighbor and Bayes

Assume data:

I N points ~x in total.

I Nj points in sj class. Hence,
∑

j Nj = N.

We want classify ~x . We draw a sphere centered at ~x containing K points
irrespective of class. V is the volume of this sphere.

P(~x) =
K

NV

P(~x |sj) =
Kj

NjV

P(sj) =
Nj

N

P(sj |~x) =
P(~x |sj)P(sj)

P(~x)
=

Kj

K

19 / 43

K = 1

0 0.5 1
0

5

K = 5

0 0.5 1
0

5

K = 30

0 0.5 1
0

5

NN classification example

x1

x2

(a)
x1

x2

(b) 1

1Figs from [1]
20 / 43

NN classification example

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5
Pentagon data

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5
1−nearest neighbour classifier

21 / 43

Etalon based classification

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x1

x 2

Pentagon data

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x
1

x 2

minimum distance from etalons

Represent ~x by etalon , ~es per each class s ∈ S

22 / 43

Separate etalons

f (~x) = arg min
s∈S

(||~x − ~es ||2 + os)

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x
1

x 2

minimum distance from etalons

23 / 43

What etalons?

If N (~x |~µ,Σ); all classes same covari-
ance matrices, then

~es
def
= ~µs =

1

|X s |
∑
i∈X s

~x si

and separating hyperplanes halve dis-
tances between pairs.

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x
1

x 2

minimum distance from etalons

24 / 43

N (~x |~µ,Σ) =
1

(2π)D/2

1

|Σ|1/2
exp{−1

2
(~x − ~µ)>Σ−1(~x − ~µ)}

Etalon based classification, ~es = ~µs

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x1

x 2

Pentagon data

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x
1

x 2

minimum distance from etalons

25 / 43

Some wrongly classified samples. We like the simple idea. Are there

better etalons? How to find them?

Digit recognition - etalons ~es = ~µs

etalon for 0 etalon for 1 etalon for 2 etalon for 3 etalon for 4 etalon for 5 etalon for 6 etalon for 7 etalon for 8 etalon for 9

Figures from [5]

26 / 43

Better etalons – Fischer linear discriminant

−2 2 6

−2

0

2

4

−2 2 6

−2

0

2

4

I Dimensionality reduction

I Maximize distance between means, . . .

I . . . and minimize within class variance. (minimize overlap)

Figures from [1]

27 / 43

Better etalons – Fischer linear discriminant

−2 2 6

−2

0

2

4

−2 2 6

−2

0

2

4

I Dimensionality reduction

I Maximize distance between means, . . .

I . . . and minimize within class variance. (minimize overlap)

Figures from [1]

27 / 43

Better etalons - Perceptron

−1.2 −0.8 −0.4 0 0.4 0.8 1.2
−1.2

−0.8

−0.4

0

0.4

0.8

1.2

minimum distance from etalons

−1.2 −0.8 −0.4 0 0.4 0.8 1.2
−1.2

−0.8

−0.4

0

0.4

0.8

1.2
perceptron

Figures from [5]

28 / 43

Better etalons - Perceptron

−1.2 −0.8 −0.4 0 0.4 0.8 1.2
−1.2

−0.8

−0.4

0

0.4

0.8

1.2

minimum distance from etalons

−1.2 −0.8 −0.4 0 0.4 0.8 1.2
−1.2

−0.8

−0.4

0

0.4

0.8

1.2
perceptron

Figures from [5]

28 / 43

Etalon classifier – Linear classifier

f (~x) = arg min
s∈S

(
‖~x − ~es‖2 + os

)
= arg min

s∈S
(~x>~x − 2~e>s ~x + ~e>s ~es + os) =

= arg min
s∈S

(
~x>~x − 2

(
~e>s ~x −

1

2
(~e>s ~es + os)

))
=

= arg min
s∈S

(
~x>~x − 2 (~e>s ~x + bs)

)
=

= arg max
s∈S

(~e>s ~x + bs) = arg max
s∈S

fs(~x). bs = −1

2
(~e>s ~es + os)

Linear function (plus offset)

f (x) = w>x + w0

29 / 43

Etalon classifier – Linear classifier

f (~x) = arg min
s∈S

(
‖~x − ~es‖2 + os

)
= arg min

s∈S
(~x>~x − 2~e>s ~x + ~e>s ~es + os) =

= arg min
s∈S

(
~x>~x − 2

(
~e>s ~x −

1

2
(~e>s ~es + os)

))
=

= arg min
s∈S

(
~x>~x − 2 (~e>s ~x + bs)

)
=

= arg max
s∈S

(~e>s ~x + bs) = arg max
s∈S

fs(~x). bs = −1

2
(~e>s ~es + os)

Linear function (plus offset)

f (x) = w>x + w0

29 / 43

Etalon classifier – Linear classifier

f (~x) = arg min
s∈S

(
‖~x − ~es‖2 + os

)
= arg min

s∈S
(~x>~x − 2~e>s ~x + ~e>s ~es + os) =

= arg min
s∈S

(
~x>~x − 2

(
~e>s ~x −

1

2
(~e>s ~es + os)

))
=

= arg min
s∈S

(
~x>~x − 2 (~e>s ~x + bs)

)
=

= arg max
s∈S

(~e>s ~x + bs) = arg max
s∈S

fs(~x). bs = −1

2
(~e>s ~es + os)

Linear function (plus offset)

f (x) = w>x + w0

29 / 43

Etalon classifier – Linear classifier

f (~x) = arg min
s∈S

(
‖~x − ~es‖2 + os

)
= arg min

s∈S
(~x>~x − 2~e>s ~x + ~e>s ~es + os) =

= arg min
s∈S

(
~x>~x − 2

(
~e>s ~x −

1

2
(~e>s ~es + os)

))
=

= arg min
s∈S

(
~x>~x − 2 (~e>s ~x + bs)

)
=

= arg max
s∈S

(~e>s ~x + bs) = arg max
s∈S

fs(~x). bs = −1

2
(~e>s ~es + os)

Linear function (plus offset)

f (x) = w>x + w0

29 / 43

Etalon classifier – Linear classifier

f (~x) = arg min
s∈S

(
‖~x − ~es‖2 + os

)
= arg min

s∈S
(~x>~x − 2~e>s ~x + ~e>s ~es + os) =

= arg min
s∈S

(
~x>~x − 2

(
~e>s ~x −

1

2
(~e>s ~es + os)

))
=

= arg min
s∈S

(
~x>~x − 2 (~e>s ~x + bs)

)
=

= arg max
s∈S

(~e>s ~x + bs) = arg max
s∈S

fs(~x). bs = −1

2
(~e>s ~es + os)

Linear function (plus offset)

f (x) = w>x + w0

29 / 43

Etalon classifier – Linear classifier

f (~x) = arg min
s∈S

(
‖~x − ~es‖2 + os

)
= arg min

s∈S
(~x>~x − 2~e>s ~x + ~e>s ~es + os) =

= arg min
s∈S

(
~x>~x − 2

(
~e>s ~x −

1

2
(~e>s ~es + os)

))
=

= arg min
s∈S

(
~x>~x − 2 (~e>s ~x + bs)

)
=

= arg max
s∈S

(~e>s ~x + bs) = arg max
s∈S

fs(~x). bs = −1

2
(~e>s ~es + os)

Linear function (plus offset)

f (x) = w>x + w0

29 / 43

Perceptron learning - problem set up

We seek K =
{

(ws ,w0s) | s ∈ S
}

f (x) = arg max
s∈S

(
w>s x + w0s

)
achieves no error on training set T =

{
(xi , s i), i = 0, 1, . . . ,m}

εtr =
1

m

m∑
j=1

111
(
s j 6= f (xj)

)
, 111(s) =

{
1 s True

0 s False

30 / 43

Perceptron, two classes linearly separable

|S | = 2, i.e. two states (typically also classes)

f (x) =

 s = 1 , if w>x + w0 > 0 ,

s = −1 , if w>x + w0 < 0 .

x
1

x
2

31 / 43

Linear seaparability - hyperplane separates/divides space into two

half-spaces

Perceptron learning – Algorithm

x′j = sj

[
1
xj

]
, w′ =

[
w0

w

]
drop the dashes to avoid notation clutter.

Goal: Find a weight vector w ∈ <D+1 (original feature space
dimensionality is D) such that:

w>xj > 0 (∀j ∈ {1, 2, ...,m})

Perceptron algorithm (Rosenblat 1962):

1. t ← 0, w(t) ← 0.

2. Find a wrongly classified observation xj :

w(t)>xj ≤ 0, (j ∈ {1, 2, ...,m}.)

3. If there is no misclassified observation then terminate. Otherwise,

w(t+1) ← w(t) + xj .

4. Goto 2.

32 / 43

Perceptron learning – Algorithm

x′j = sj

[
1
xj

]
, w′ =

[
w0

w

]
drop the dashes to avoid notation clutter.

Goal: Find a weight vector w ∈ <D+1 (original feature space
dimensionality is D) such that:

w>xj > 0 (∀j ∈ {1, 2, ...,m})

Perceptron algorithm (Rosenblat 1962):

1. t ← 0, w(t) ← 0.

2. Find a wrongly classified observation xj :

w(t)>xj ≤ 0, (j ∈ {1, 2, ...,m}.)

3. If there is no misclassified observation then terminate. Otherwise,

w(t+1) ← w(t) + xj .

4. Goto 2.

32 / 43

Perceptron iterations

2 1 0 1 2

2

1

0

1

2

0 2 4 6 8 10
iter

0.0

0.5

1.0

ε t
r

0 1
w1

0

1

w
2

0 2 4 6 8 10
iter

0
1

w
0

33 / 43

Perceptron iterations

2 1 0 1 2

2

1

0

1

2

0 2 4 6 8 10
iter

0.0

0.5

1.0

ε t
r

0 1
w1

0

1

2

w
2

0 2 4 6 8 10
iter

0
1

w
0

33 / 43

Perceptron iterations

2 1 0 1 2

2

1

0

1

2

0 2 4 6 8 10
iter

0.0

0.5

1.0

ε t
r

0 1 2
w1

0

1

2

w
2

0 2 4 6 8 10
iter

1

1

w
0

33 / 43

Perceptron iterations

2 1 0 1 2

2

1

0

1

2

0 2 4 6 8 10
iter

0.0

0.5

1.0

ε t
r

0 1 2
w1

0

1

2

w
2

0 2 4 6 8 10
iter

1

1

w
0

33 / 43

Perceptron iterations

2 1 0 1 2

2

1

0

1

2

0 2 4 6 8 10
iter

0.0

0.5

1.0

ε t
r

0 1 2
w1

0

1

2

w
2

0 2 4 6 8 10
iter

1

1

w
0

33 / 43

Perceptron iterations

2 1 0 1 2

2

1

0

1

2

0 2 4 6 8 10
iter

0.0

0.5

1.0

ε t
r

0 1 2 3
w1

0

1

2

w
2

0 2 4 6 8 10
iter

1

1

w
0

33 / 43

Perceptron iterations

2 1 0 1 2

2

1

0

1

2

0 2 4 6 8 10
iter

0.0

0.5

1.0

ε t
r

0 1 2 3
w1

0

1

2

w
2

0 2 4 6 8 10
iter

1

1

w
0

33 / 43

Etalons: means vs found be perceptron

−1.2 −0.8 −0.4 0 0.4 0.8 1.2
−1.2

−0.8

−0.4

0

0.4

0.8

1.2

minimum distance from etalons

−15 −10 −5 0 5 10 15

−10

−5

0

5

10

15

Etalons and separating hyperplanes found by perceptron

Figures from [5]

34 / 43

Digit recognition - etalons means vs. perceptron

etalon for 0 etalon for 1 etalon for 2 etalon for 3 etalon for 4 etalon for 5 etalon for 6 etalon for 7 etalon for 8 etalon for 9

etalon for 0 etalon for 1 etalon for 2 etalon for 3 etalon for 4 etalon for 5 etalon for 6 etalon for 7 etalon for 8 etalon for 9

Figures from [5]

35 / 43

What if not lin separable?

1.0 0.5 0.0 0.5 1.0 1.5 2.0

Dimension lifting

x = [x , x2]>

36 / 43

Dimension lifting, x = [x , x2]>

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

0

1

2

3

4

37 / 43

Performance comparison, parameters fixed

#times classified as

T
ru

e
 l
a
b
e
ls

Matching table for test set

94 0 0 1 0 0 0 0 5 0

 0 99 0 0 0 0 0 0 0 1

 0 0 92 0 0 0 0 4 4 0

 0 0 0 96 0 0 0 0 3 1

 0 0 0 0 99 0 0 0 1 0

 0 2 0 0 0 93 3 0 2 0

 0 0 0 0 0 1 89 0 10 0

 0 0 2 0 0 0 0 98 0 0

 3 0 0 1 0 0 51 0 35 10

 0 0 0 4 0 0 1 0 9 86

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9
0

10

20

30

40

50

60

70

80

90

#times classified as

T
ru

e
 l
a

b
e

ls

Matching table for test set

100 0 0 0 0 0 0 0 0 0

 0 100 0 0 0 0 0 0 0 0

 0 0 100 0 0 0 0 0 0 0

 1 0 0 99 0 0 0 0 0 0

 0 0 0 0 100 0 0 0 0 0

 0 0 0 0 0 100 0 0 0 0

 0 0 0 0 0 0 100 0 0 0

 1 0 0 0 0 0 1 98 0 0

 0 0 0 0 0 0 0 0 97 3

 0 0 0 0 0 0 0 0 5 95

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9
0

10

20

30

40

50

60

70

80

90

100

38 / 43

Why there some errors in perceptron results? we said zero error on

training set.

Precision and Recall, Confusion matrix
Consider digit detection (is there a digit?) or
SPAM/HAM classification.
Confusion matrix :

I Classification (prediction) vs Truth state

Recall :

I How many relevant items are selected?

I Are we missing some items?

I Also called: True positive rate, sensitivity,
hit rate . . .

Precision

I How many selected items are relevant?

I Also called: Positive predictive value

relevant elements

selected elements

false positivestrue positives

false negatives true negatives

Precision = Recall =

How many selected
items are relevant?

How many relevant
items are selected?

By Walber - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=36926283

39 / 43

Recall =
TP

TP + FN

Precision =
TP

TP + FP

Think about precision vs recall graph, what is the best classifier?

https://commons.wikimedia.org/w/index.php?curid=36926283

Accuracy vs precision

https://commons.wikimedia.org/wiki/File:Precision_versus_accuracy.svg 40 / 43

Accuracy: how close (is your model) to the true. Precision: how

consistent/stable

https://commons.wikimedia.org/wiki/File:Precision_versus_accuracy.svg

Accuracy vs precision

https://en.wikipedia.org/wiki/Accuracy_and_precision

41 / 43

Accuracy: how close (is your model) to the true. Precision: how
consistent/stable.
Think about terms bias and error. In Czech perhaps accuracy≈správnost,
precision≈p̌resnost.

https://en.wikipedia.org/wiki/Accuracy_and_precision

References I

Further reading: Chapter 13 and 14 of [4]. Books [1] and [2] are classical
textbooks in the field of pattern recognition and machine learning. Many
Matlab figures created with the help of [3]

[1] Christopher M. Bishop.

Pattern Recognition and Machine Learning.

Springer Science+Bussiness Media, New York, NY, 2006.

[2] Richard O. Duda, Peter E. Hart, and David G. Stork.

Pattern Classification.

John Wiley & Sons, 2nd edition, 2001.

[3] Votjěch Franc and Václav Hlaváč.

Statistical pattern recognition toolbox.

http://cmp.felk.cvut.cz/cmp/software/stprtool/index.html.

42 / 43

http://cmp.felk.cvut.cz/cmp/software/stprtool/index.html

References II

[4] Stuart Russell and Peter Norvig.

Artificial Intelligence: A Modern Approach.

Prentice Hall, 3rd edition, 2010.

http://aima.cs.berkeley.edu/.

[5] Tomáš Svoboda, Jan Kybic, and Hlaváč Václav.

Image Processing, Analysis and Machine Vision — A MATLAB Companion.

Thomson, Toronto, Canada, 1st edition, September 2007.

http://visionbook.felk.cvut.cz/.

43 / 43

http://aima.cs.berkeley.edu/
http://visionbook.felk.cvut.cz/

	Introduction
	Making classification robust

	Direct learning
	Performance evaluation
	Accuracy and precision

	References

