Classifiers, intro, evaluation

Tomáś Svoboda and Matěj Hoffmann

thanks to Daniel Novák and Filip Železný, Ondřej Drbohlav

Department of Cybernetics, Vision for Robotics and Autonomous Systems, Center for Machine Perception (CMP)

May 22, 2018

Classification example: What's the fish?

- Factory for fish processing
- 2 classes $s_{1,2}$
- salmon
- sea bass
- Features \vec{x} : length, width, lightness etc. from a camera

Fish classification in feature space

- Linear, quadratic, k-nearest neighbor classifier

Fish classification in feature space

- Linear, quadratic, k -nearest neighbor classifier

- Feature frequency per class shown using histograms
- Classification errors due to histogram overlap

Fish - classification using probability

$$
\text { posterior }=\frac{\text { likelihood } \times \text { prior }}{\text { evidence }}
$$

- Notation for classification problem
- Classes $s_{j} \in S$ (e.g., salmon, sea bass)
- Features $x_{i} \in X$ or feature vectors (\vec{x}_{i}) (also called attributes)

Fish - classification using probability

$$
\text { posterior }=\frac{\text { likelihood } \times \text { prior }}{\text { evidence }}
$$

- Notation for classification problem
- Classes $s_{j} \in S$ (e.g., salmon, sea bass)
- Features $x_{i} \in X$ or feature vectors (\vec{x}_{i}) (also called attributes)
- Optimal classification of \vec{x} :

$$
\delta^{*}(\vec{x})=\arg \max _{j} P\left(s_{j} \mid \vec{x}\right)
$$

- We thus choose the most probable class for a given feature vector.
- Both likelihood and prior are taken into account - recall Bayes rule:

$$
P\left(s_{j} \mid \vec{x}\right)=\frac{P\left(\vec{x} \mid s_{j}\right) P\left(s_{j}\right)}{P(\vec{x})}
$$

Bayes classification in practice

- Usually we are not given $P(s \mid \vec{x})$

Why hard? Way too many various \vec{x}. Think about simple binary 10×10 image $-\vec{x}$ contains 0,1 , position matters. What is the total number of unique images? Think binary, 1×8 binary image?

Bayes classification in practice

- Usually we are not given $P(s \mid \vec{x})$
- It has to be estimated from already classified examples - training data
- For discrete \vec{x}, training examples $\left(\vec{x}_{1}, s_{1}\right),\left(\vec{x}_{2}, s_{2}\right), \ldots\left(\vec{x}_{l}, s_{l}\right)$
- so-called i.i.d (independent, identically distributed) multiset
- every $\left(\vec{x}_{i}, s\right)$ is drawn independently from $P(\vec{x}, s)$
- Without knowing anything about the distribution, a non-parametric estimate:

$$
P(s \mid \vec{x}) \approx \frac{\# \text { examples where } \vec{x}_{i}=\vec{x} \text { and } s_{i}=s}{\# \text { examples where } \vec{x}_{i}=\vec{x}}
$$

Why hard? Way too many various \vec{x}. Think about simple binary 10×10 image $-\vec{x}$ contains 0,1 , position matters. What is the total number of unique images? Think binary, 1×8 binary image?

Bayes classification in practice

- Usually we are not given $P(s \mid \vec{x})$
- It has to be estimated from already classified examples - training data
- For discrete \vec{x}, training examples $\left(\vec{x}_{1}, s_{1}\right),\left(\vec{x}_{2}, s_{2}\right), \ldots\left(\vec{x}_{l}, s_{l}\right)$
- so-called i.i.d (independent, identically distributed) multiset
- every $\left(\vec{x}_{i}, s\right)$ is drawn independently from $P(\vec{x}, s)$
- Without knowing anything about the distribution, a non-parametric estimate:

$$
P(s \mid \vec{x}) \approx \frac{\# \text { examples where } \vec{x}_{i}=\vec{x} \text { and } s_{i}=s}{\# \text { examples where } \vec{x}_{i}=\vec{x}}
$$

- Hard in practice:

Why hard? Way too many various \vec{x}. Think about simple binary 10×10 image $-\vec{x}$ contains 0,1 , position matters. What is the total number of unique images? Think binary, 1×8 binary image?

Bayes classification in practice

- Usually we are not given $P(s \mid \vec{x})$
- It has to be estimated from already classified examples - training data
- For discrete \vec{x}, training examples $\left(\vec{x}_{1}, s_{1}\right),\left(\vec{x}_{2}, s_{2}\right), \ldots\left(\vec{x}_{l}, s_{l}\right)$
- so-called i.i.d (independent, identically distributed) multiset
- every $\left(\vec{x}_{i}, s\right)$ is drawn independently from $P(\vec{x}, s)$
- Without knowing anything about the distribution, a non-parametric estimate:

$$
P(s \mid \vec{x}) \approx \frac{\# \text { examples where } \vec{x}_{i}=\vec{x} \text { and } s_{i}=s}{\# \text { examples where } \vec{x}_{i}=\vec{x}}
$$

- Hard in practice:
- To reliably estimate $P(s \mid \vec{x})$, the number of examples grows exponentially with the number of elements of \vec{x}.
- e.g. with the number of pixels in images
- curse of dimensionality
- denominator often 0

Why hard? Way too many various \vec{x}. Think about simple binary 10×10 image $-\vec{x}$ contains 0,1 , position matters. What is the total number of unique images? Think binary, 1×8 binary image?

Naïve Bayes classification

- For efficient classification we must thus rely on additional assumptions.
- In the exceptional case of statistical independence between \vec{x} components for each class s it holds

$$
P(\vec{x} \mid s)=P(x[1] \mid s) \cdot P(x[2] \mid s) .
$$

- Use simple Bayes law and maximize:

$$
P(s \mid \vec{x})=\frac{P(\vec{x} \mid s) P(s)}{P(\vec{x})}=\frac{P(s)}{P(\vec{x})} P(x[1] \mid s) \cdot P(x[2] \mid s) \cdot \ldots=
$$

- No combinatorial curse in estimating $P(s)$ and $P(x[i] \mid s)$ separately for each i and s.
- No need to estimate $P(\vec{x})$. (Why?)
- $P(s)$ may be provided apriori.
- naïve $=$ when used despite statistical dependence

Why naïve at all? Consider N - dimensional space, 8 - bit values. Instead of problem 8^{N} we have $8 \times N$ problem.
Think about statistical independence. Example1: person's weight and height. Are they independent? Example2: pixel values in images.

Example: Digit recognition

0123456789

We can create many more features than just pixel intensities. But first things first.
We are assuming all errors are equally important - minimizing the number of wrong decisions

- Input: 8 -bit image 13×13, intensities $0-255$.
- Output: Digit $0-9$. Decision about the class, classification.
- Features: Pixel intensities

Example: Digit recognition

0123456789

We can create many more features than just pixel intensities. But first things first.
We are assuming all errors are equally important - minimizing the number of wrong decisions

- Input: 8 -bit image 13×13, intensities $0-255$.
- Output: Digit $0-9$. Decision about the class, classification.
- Features: Pixel intensities

Collect data

- $P(\vec{x})$. What is the dimension of \vec{x} ? How many possible images?

Example: Digit recognition

0123456789

We can create many more features than just pixel intensities. But first things first.
We are assuming all errors are equally important - minimizing the number of wrong decisions

- Input: 8 -bit image 13×13, intensities $0-255$.
- Output: Digit $0-9$. Decision about the class, classification.
- Features: Pixel intensities

Collect data

- $P(\vec{x})$. What is the dimension of \vec{x} ? How many possible images?
- Learn $P(\vec{x} \mid s)$ per each class (digit).

Example: Digit recognition

0123456789

We can create many more features than just pixel intensities. But first things first.
We are assuming all errors are equally important - minimizing the number of wrong decisions

- Input: 8 -bit image 13×13, intensities $0-255$.
- Output: Digit $0-9$. Decision about the class, classification.
- Features: Pixel intensities

Collect data

- $P(\vec{x})$. What is the dimension of \vec{x} ? How many possible images?
- Learn $P(\vec{x} \mid s)$ per each class (digit).
- Classify $s^{*}=\operatorname{argmax}_{s} P(s \mid \vec{x})$.

From images to \vec{x}

0123456789

Conditional probabilities

We can rearrange pixels into vector - then using a linear index $P\left(x_{j}=l_{i} \mid s_{k}\right)$.
$P(Y)$

1	0.1
2	0.1
3	0.1
4	0.1
5	0.1
6	0.1
7	0.1
8	0.1
9	0.1
0	0.1

image by courtesy of P. Abeel, http://ai.berkeley.edu

Training and testing

We will be talking about hyperparameters in a minute

Data labeled instances.

- Training set
- Held-out (validation) set
- Testing set.

Features : Attribute-value pairs.
Learning cycle:

- Learn parameters (e.g. probabilities) on training set.
- Tune hyperparameters on held-out (validation) set.
- Evaluate performance on testing set.

Generalization and overfiting

- Data: training, validation, testing. Wanted classifier performs well on what data?

Generalization and overfiting

- Data: training, validation, testing. Wanted classifier performs well on what data?
- Overfitting: too close to training, poor on testing
see the overfit.m demo

Unseen events

$P($ features,$C=2)$
$P($ features,$C=3)$

image by courtesy of P. Abeel, http://ai.berkeley.edu

$$
P(x)=\frac{\operatorname{count}(x)}{\text { total samples }}
$$

Problem: $\operatorname{count}(x)=0$

$$
P_{M L}(X)=
$$

$$
P_{L A P}(X)=
$$

Laplace smoothing

$$
P(x)=\frac{\operatorname{count}(x)}{\text { total samples }}
$$

Problem: $\operatorname{count}(x)=0$
Pretend you see the sample one more time.

$$
P_{\mathrm{LAP}}(x)=\frac{c(x)+1}{\sum_{x}[c(x)+1]}
$$

$$
P_{M L}(X)=
$$

$$
P_{L A P}(X)=
$$

$$
P(x)=\frac{\text { count }(x)}{\text { total samples }}
$$

Problem: $\operatorname{count}(x)=0$
Pretend you see the sample one more time.

$$
\begin{gathered}
P_{\mathrm{LAP}}(x)=\frac{c(x)+1}{\sum_{x}[c(x)+1]} \\
P_{\mathrm{LAP}}(x)=\frac{c(x)+1}{N+|X|}
\end{gathered}
$$

$$
P_{M L}(X)=
$$

$$
P_{L A P}(X)=
$$

Laplace smoothing - as a hyperparameter k

Pretend you see every sample k extra times:

$$
\begin{gathered}
P_{\mathrm{LAP}}(x)=\frac{c(x)+k}{\sum_{x}[c(x)+k]} \\
P_{\mathrm{LAP}}(x)=\frac{c(x)+k}{N+k|X|}
\end{gathered}
$$

For conditional, smooth each condition independently

$$
P_{\mathrm{LAP}}(x \mid s)=\frac{c(x, s)+k}{c(s)+k|X|}
$$

$$
P(s \mid \vec{x})=\frac{P(\vec{x} \mid s) P(s)}{P(\vec{x})}=\frac{P(s)}{P(\vec{x})} P(x[1] \mid s) \cdot P(x[2] \mid s) .
$$

$P(\vec{x})$ not needed,

$$
P(s \mid \vec{x})=\frac{P(\vec{x} \mid s) P(s)}{P(\vec{x})}=\frac{P(s)}{P(\vec{x})} P(x[1] \mid s) \cdot P(x[2] \mid s) .
$$

$P(\vec{x})$ not needed,

```
log(P(x[1]|s)P(x[2]|s)\cdots)=\operatorname{log}(P(x[1]|s))+\operatorname{log}(P(x[2]|s))
```

Generative models because by sampling from them it is possible to generate synthetic data points \vec{x}. For the discriminative model one can consider, e.g. logistic function:

$$
f(x)=\frac{1}{1+e^{-k\left(x-x_{0}\right)}}
$$

Inference stage - learning models/function/parameters from data. Decision stage - decide about a query \vec{x}.

- Generative model : Learn (infer) $P(\vec{x}, s)$. Decide by computing $P(s \mid \vec{x})$.
- Discriminative model : Learn $P(s \mid \vec{x})$
- Discriminant function : Learn $f(\vec{x})$ which maps \vec{x} directly into class labels.

K-Nearest neighbors classification

For a query \vec{x} :

- Find K nearest \vec{x} from the tranining (labeled) data.
- Classify to the class with the most exemplars in the set above.

K- Nearest Neighbor and Bayes

Assume data:

- N points \vec{x} in total.
- N_{j} points in s_{j} class. Hence, $\sum_{j} N_{j}=N$.

K- Nearest Neighbor and Bayes

Assume data:

- N points \vec{x} in total.
- N_{j} points in s_{j} class. Hence, $\sum_{j} N_{j}=N$.

We want classify \vec{x}. We draw a sphere centered at \vec{x} containing K points irrespective of class. V is the volume of this sphere.

$$
\begin{gathered}
P(\vec{x})=\frac{K}{N V} \\
P\left(\vec{x} \mid s_{j}\right)=\frac{K_{j}}{N_{j} V} \\
P\left(s_{j}\right)=\frac{N_{j}}{N} \\
P\left(s_{j} \mid \vec{x}\right)=\frac{P\left(\vec{x} \mid s_{j}\right) P\left(s_{j}\right)}{P(\vec{x})}=\frac{K_{j}}{K}
\end{gathered}
$$

NN classification example

${ }^{1}$ Figs from [1]

NN classification example

Etalon based classification

Represent \vec{x} by etalon , \vec{e}_{s} per each class $s \in S$

Separate etalons

$$
f(\vec{x})=\underset{s \in S}{\arg \min }\left(\left\|\vec{x}-\vec{e}_{s}\right\|^{2}+o_{s}\right)
$$

If $\mathcal{N}(\vec{x} \mid \vec{\mu}, \Sigma)$; all classes same covariance matrices, then

$$
\vec{e}_{s} \stackrel{\text { def }}{=} \vec{\mu}_{s}=\frac{1}{\left|\mathcal{X}^{s}\right|} \sum_{i \in \mathcal{X}^{s}} \vec{x}_{i}^{s}
$$

and separating hyperplanes halve dis- ${ }^{\times}$ tances between pairs.

Some wrongly classified samples. We like the simple idea. Are there better etalons? How to find them?

Digit recognition - etalons $\vec{e}_{s}=\vec{\mu}_{s}$
0123456789

Figures from [5]

Better etalons - Fischer linear discriminant

Better etalons - Fischer linear discriminant

- Dimensionality reduction
- Maximize distance between means,
- and minimize within class variance. (minimize overlap)

Figures from [1]

Better etalons - Perceptron

minimum distance from etalons

Better etalons - Perceptron

minimum distance from etalons

Figures from [5]

Etalon classifier - Linear classifier

$$
f(\vec{x})=\arg \min _{s \in S}\left(\left\|\vec{x}-\vec{e}_{s}\right\|^{2}+o_{s}\right)=
$$

Etalon classifier - Linear classifier

$$
f(\vec{x})=\arg \min _{s \in S}\left(\left\|\vec{x}-\vec{e}_{s}\right\|^{2}+o_{s}\right)=\arg \min _{s \in S}\left(\vec{x}^{\top} \vec{x}-2 \vec{e}_{s}^{\top} \vec{x}+\vec{e}_{s}^{\top} \vec{e}_{s}+o_{s}\right)=
$$

Etalon classifier - Linear classifier

$$
\begin{aligned}
f(\vec{x}) & =\arg \min _{s \in S}\left(\left\|\vec{x}-\vec{e}_{s}\right\|^{2}+o_{s}\right)=\arg \min _{s \in S}\left(\vec{x}^{\top} \vec{x}-2 \vec{e}_{s}^{\top} \vec{x}+\vec{e}_{s}^{\top} \vec{e}_{s}+o_{s}\right)= \\
& =\arg \min _{s \in S}\left(\vec{x}^{\top} \vec{x}-2\left(\vec{e}_{s}^{\top} \vec{x}-\frac{1}{2}\left(\vec{e}_{s}^{\top} \vec{e}_{s}+o_{s}\right)\right)\right)=
\end{aligned}
$$

Etalon classifier - Linear classifier

$$
\begin{aligned}
f(\vec{x}) & =\arg \min _{s \in S}\left(\left\|\vec{x}-\vec{e}_{s}\right\|^{2}+o_{s}\right)=\arg \min _{s \in S}\left(\vec{x}^{\top} \vec{x}-2 \vec{e}_{s}^{\top} \vec{x}+\vec{e}_{s}^{\top} \vec{e}_{s}+o_{s}\right)= \\
& =\arg \min _{s \in S}\left(\vec{x}^{\top} \vec{x}-2\left(\vec{e}_{s}^{\top} \vec{x}-\frac{1}{2}\left(\vec{e}_{s}^{T} \vec{e}_{s}+o_{s}\right)\right)\right)= \\
& =\arg \min _{s \in S}\left(\vec{x}^{\top} \vec{x}-2\left(\vec{e}_{s}^{\top} \vec{x}+b_{s}\right)\right)=
\end{aligned}
$$

Etalon classifier - Linear classifier

$$
\begin{aligned}
f(\vec{x}) & =\arg \min _{s \in S}\left(\left\|\vec{x}-\vec{e}_{s}\right\|^{2}+o_{s}\right)=\arg \min _{s \in S}\left(\vec{x}^{\top} \vec{x}-2 \vec{e}_{s}^{\top} \vec{x}+\vec{e}_{s}^{\top} \vec{e}_{s}+o_{s}\right)= \\
& =\arg \min _{s \in S}\left(\vec{x}^{\top} \vec{x}-2\left(\vec{e}_{s}^{\top} \vec{x}-\frac{1}{2}\left(\vec{e}_{s}^{\top} \vec{e}_{s}+o_{s}\right)\right)\right)= \\
& \left.=\arg \min _{s \in S} \vec{x}^{\top} \vec{x}-2\left(\vec{e}_{s}^{\top} \vec{x}+b_{s}\right)\right)= \\
& =\arg \max _{s \in S}\left(\vec{e}_{s}^{\top} \vec{x}+b_{s}\right)=\arg \max _{s \in S} f_{s}(\vec{x}) . \quad b_{s}=-\frac{1}{2}\left(\vec{e}_{s}^{\top} \vec{e}_{s}+o_{s}\right)
\end{aligned}
$$

Etalon classifier - Linear classifier

$$
\begin{aligned}
f(\vec{x}) & =\arg \min _{s \in S}\left(\left\|\vec{x}-\vec{e}_{s}\right\|^{2}+o_{s}\right)=\arg \min _{s \in S}\left(\vec{x}^{\top} \vec{x}-2 \vec{e}_{s}^{\top} \vec{x}+\vec{e}_{s}^{\top} \vec{e}_{s}+o_{s}\right)= \\
& =\arg \min _{s \in S}\left(\vec{x}^{\top} \vec{x}-2\left(\vec{e}_{s}^{\top} \vec{x}-\frac{1}{2}\left(\vec{e}_{s}^{\top} \vec{e}_{s}+o_{s}\right)\right)\right)= \\
& \left.=\arg \min _{s \in S} \vec{x}^{\top} \vec{x}-2\left(\vec{e}_{s}^{\top} \vec{x}+b_{s}\right)\right)= \\
& =\arg \max _{s \in S}\left(\vec{e}_{s}^{\top} \vec{x}+b_{s}\right)=\arg \max _{s \in S} f_{s}(\vec{x}) . \quad b_{s}=-\frac{1}{2}\left(\vec{e}_{s}^{\top} \vec{e}_{s}+o_{s}\right)
\end{aligned}
$$

Linear function (plus offset)

$$
f(\mathbf{x})=\mathbf{w}^{\top} \mathbf{x}+w_{0}
$$

Perceptron learning - problem set up

We seek $\mathcal{K}=\left\{\left(\mathbf{w}_{s}, w_{0 s}\right) \mid s \in S\right\}$

$$
f(\mathbf{x})=\arg \max _{s \in S}\left(\mathbf{w}_{s}^{\top} \mathbf{x}+w_{0 s}\right)
$$

achieves no error on training set $\mathcal{T}=\left\{\left(\mathbf{x}^{i}, s^{i}\right), i=0,1, \ldots, m\right\}$

$$
\epsilon_{t r}=\frac{1}{m} \sum_{j=1}^{m} \mathbf{1}\left(s^{j} \neq f\left(x^{j}\right)\right), \quad \mathbf{1}(s)= \begin{cases}1 & s \text { True } \\ 0 & s \text { False }\end{cases}
$$

Perceptron, two classes linearly separable

Linear seaparability - hyperplane separates/divides space into two half-spaces
$|S|=2$, i.e. two states (typically also classes)

$$
f(\mathbf{x})=\left\{\begin{array}{l}
s=1, \quad \text { if } \quad \mathbf{w}^{\top} \mathbf{x}+w_{0}>0, \\
s=-1, \quad \text { if } \quad \mathbf{w}^{\top} \mathbf{x}+w_{0}<0 .
\end{array}\right.
$$

Perceptron learning - Algorithm

$\mathbf{x}_{j}^{\prime}=s_{j}\left[\begin{array}{c}1 \\ \mathbf{x}_{j}\end{array}\right], \mathbf{w}^{\prime}=\left[\begin{array}{c}w_{0} \\ \mathbf{w}\end{array}\right]$ drop the dashes to avoid notation clutter.
Goal: Find a weight vector $\mathbf{w} \in \Re^{D+1}$ (original feature space dimensionality is D) such that:

$$
\mathbf{w}^{\top} \mathbf{x}_{j}>0 \quad(\forall j \in\{1,2, \ldots, m\})
$$

Perceptron learning - Algorithm

$\mathbf{x}_{j}^{\prime}=s_{j}\left[\begin{array}{c}1 \\ \mathbf{x}_{j}\end{array}\right], \mathbf{w}^{\prime}=\left[\begin{array}{c}\mathbf{w}_{0} \\ \mathbf{w}\end{array}\right]$ drop the dashes to avoid notation clutter.
Goal: Find a weight vector $\mathbf{w} \in \Re^{D+1}$ (original feature space dimensionality is D) such that:

$$
\mathbf{w}^{\top} \mathbf{x}_{j}>0 \quad(\forall j \in\{1,2, \ldots, m\})
$$

Perceptron algorithm (Rosenblat 1962):

1. $t \leftarrow 0, \mathbf{w}^{(t)} \leftarrow 0$.
2. Find a wrongly classified observation \mathbf{x}_{j} :

$$
\mathbf{w}^{\left.(t)^{\top} \mathbf{x}_{j} \leq 0, \quad(j \in\{1,2, \ldots, m\} .) .\right) .}
$$

3. If there is no misclassified observation then terminate. Otherwise,

$$
\mathbf{w}^{(t+1)} \leftarrow \mathbf{w}^{(t)}+\mathbf{x}_{j}
$$

4. Goto 2.

Perceptron iterations

Perceptron iterations

Perceptron iterations

Perceptron iterations

Perceptron iterations

Perceptron iterations

Perceptron iterations

Etalons: means vs found be perceptron

Figures from [5]

Digit recognition - etalons means vs. perceptron

etalon for 0	etalon for 1	etalon for 2	etalon for 3	etalon for 4	etalon for 5	etalon for 6	etalon for 7	etalon for 8	etalon for 9
etalon for 0	etalon for 1	etalon for 2	etalon for 3	etalon for 4	etalon for 5	etalon for 6	etalon for 7	etalon for 8	etalon for 9

Figures from [5]

Dimension lifting

$$
\mathbf{x}=\left[x, x^{2}\right]^{\top}
$$

Dimension lifting, $\mathbf{x}=\left[x, x^{2}\right]^{\top}$

Why there some errors in perceptron results? we said zero error on training set.

Precision and Recall, Confusion matrix

Consider digit detection (is there a digit?) or SPAM/HAM classification.

Confusion matrix

- Classification (prediction) vs Truth state Recall
- How many relevant items are selected?
- Are we missing some items?
- Also called: True positive rate, sensitivity, hit rate

Precision

- How many selected items are relevant?
- Also called: Positive predictive value

$$
\text { Recall }=\frac{\mathrm{TP}}{\mathrm{TP}+\mathrm{FN}}
$$

$$
\text { Precision }=\frac{\mathrm{TP}}{\mathrm{TP}+\mathrm{FP}}
$$

Think about precision vs recall graph, what is the best classifier?

nemosymemem

Accuracy: how close (is your model) to the true. Precision: how consistent/stable

Accuracy vs precision

Reference value

Accuracy: how close (is your model) to the true. Precision: how consistent/stable.
Think about terms bias and error. In Czech perhaps accuracy \approx správnost, precision \approx přesnost.

References I

Further reading: Chapter 13 and 14 of [4]. Books [1] and [2] are classical textbooks in the field of pattern recognition and machine learning. Many Matlab figures created with the help of [3]
[1] Christopher M. Bishop.
Pattern Recognition and Machine Learning
Springer Science+Bussiness Media, New York, NY, 2006.
[2] Richard O. Duda, Peter E. Hart, and David G. Stork.

Pattern Classification.

John Wiley \& Sons, 2nd edition, 2001
[3] Votjěch Franc and Václav Hlaváč.
Statistical pattern recognition toolbox.
http://cmp.felk.cvut.cz/cmp/software/stprtool/index.html

References II

[4] Stuart Russell and Peter Norvig.
Artificial Intelligence: A Modern Approach.
Prentice Hall, 3rd edition, 2010.
http://aima.cs.berkeley.edu/.
[5] Tomáš Svoboda, Jan Kybic, and Hlaváč Václav.
Image Processing, Analysis and Machine Vision - A MATLAB Companion.
Thomson, Toronto, Canada, $1^{\text {st }}$ edition, September 2007.
http://visionbook.felk.cvut.cz/

