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Classification example: What's the fish?

» Factory for fish processing

> 2 classes sj2:
! > salmon
> sea bass
» Features X: length, width,

"\ lightness etc. from a camera
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Fish classification in feature space
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- Lightness I » Lightess
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» Linear, quadratic, k-nearest neighbor classifier
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Fish classification in feature space
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» Linear, quadratic, k-nearest neighbor classifier

salmon seabass Count

14 salmon seabass

~Length

Lightness

» Feature frequency per class shown using histograms
» Classification errors due to histogram overlap



Fish — classification using probability

likelihood x prior

posterior = -
evidence

» Notation for classification problem
» Classes sj € S (e.g., salmon, sea bass)
» Features x; € X or feature vectors (X;) (also called attributes)
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Fish — classification using probability

likelihood x prior
evidence

posterior =

v

Notation for classification problem
» Classes sj € S (e.g., salmon, sea bass)
» Features x; € X or feature vectors (X;) (also called attributes)

v

Optimal classification of X:

d*(X) = arg max P(s;j|X)
J

» We thus choose the most probable class for a given feature vector.

» Both likelihood and prior are taken into account — recall Bayes rule:
P(X|s;)P(s;)
P(s:|%) = J J
(519 = ~pzy >



Why hard? Way too many various X. Think about simple binary 10 x 10
image - X contains 0, 1, position matters. What is the total number of

» Usually we are not given P(s|X) unique images? Think binary, 1 x 8 binary image?

Bayes classification in practice



Bayes classification in practice

» Usually we are not given P(s|X)
> It has to be estimated from already classified examples — training data
» For discrete X, training examples (X1, s1), (X2, 52), - . . (X1, 5/)

» so-called i.i.d (independent, identically distributed) multiset
» every (X},s) is drawn independently from P(X,s)

v

Without knowing anything about the distribution, a non-parametric
estimate:

# examples where X; = X and s; = s

P(s|X) ~
(s]%) # examples where X; = X

Why hard? Way too many various X. Think about simple binary 10 x 10
image - X contains 0, 1, position matters. What is the total number of
unique images? Think binary, 1 x 8 binary image?



Why hard? Way too many various X. Think about simple binary 10 x 10

Bayes classification in practice image - X contains 0, 1, position matters. What is the total number of

Usually we are not given P(s|x) unique images? Think binary, 1 x 8 binary image?

v

v

It has to be estimated from already classified examples — training data

v

For discrete X, training examples (X1, s1), (X2, s2), - . . (X1, 5/)
» so-called i.i.d (independent, identically distributed) multiset
» every (X},s) is drawn independently from P(X,s)

v

Without knowing anything about the distribution, a non-parametric
estimate:

# examples where X; = X and s; = s

P(s|X) ~
(s]%) # examples where X; = X

v

Hard in practice:



Why hard? Way too many various X. Think about simple binary 10 x 10

Bayes classification in practice image - X contains 0, 1, position matters. What is the total number of

» Usually we are not given P(s|X) unique images? Think binary, 1 x 8 binary image?
> It has to be estimated from already classified examples — training data
» For discrete X, training examples (X1, s1), (X2, 52), - . . (X1, 5/)
» so-called i.i.d (independent, identically distributed) multiset
» every (X},s) is drawn independently from P(X,s)
» Without knowing anything about the distribution, a non-parametric
estimate:
. # examples where X; = X and s; = s
P(s|X) ~ el
# examples where X; = X
» Hard in practice:

» To reliably estimate P(s|X), the number of examples grows
exponentially with the number of elements of X.
> e.g. with the number of pixels in images
> curse of dimensionality
» denominator often 0



Naive Bayes classification

>

v

For efficient classification we must thus rely on additional
assumptions.

In the exceptional case of statistical independence between X
components for each class s it holds

P(X|s) = P(x[1]|s) - P(x[2]]s) - . .-

Use simple Bayes law and maximize:

P(xls)P(s) _ P(s)

P ="5m = P

P(x[1]]s) - P(x[2][s) - ... =

No combinatorial curse in estimating P(s) and P(x[i]|s) separately
for each i and s.

No need to estimate P(X). (Why?)
P(s) may be provided apriori.
naive = when used despite statistical dependence

6
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Why naive at all? Consider N— dimensional space, 8 — bit values.
Instead of problem 8" we have 8 x N problem.

Think about statistical independence. Examplel: person’s weight and
height. Are they independent? Example2: pixel values in images.



We can create many more features than just pixel intensities. But first

Example: Digit recognition things first.

0123456788

> Input: 8-bit image 13 x 13, intensities 0 — 255.

We are assuming all errors are equally important - minimizing the number
of wrong decisions

» Output: Digit 0 — 9. Decision about the class, classification.

» Features: Pixel intensities ...
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Example: Digit recognition

0123456788

> Input: 8-bit image 13 x 13, intensities 0 — 255.
» Output: Digit 0 — 9. Decision about the class, classification.

» Features: Pixel intensities ...

Collect data , ...

» P(X). What is the dimension of X? How many possible images?
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We can create many more features than just pixel intensities. But first
things first.

We are assuming all errors are equally important - minimizing the number
of wrong decisions



Example: Digit recognition

0123456788

> Input: 8-bit image 13 x 13, intensities 0 — 255.
» Output: Digit 0 — 9. Decision about the class, classification.
> Features: Pixel intensities ...
Collect data , ...
» P(X). What is the dimension of X? How many possible images?
» Learn P(X|s) per each class (digit).
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Example: Digit recognition

0123456788

> Input: 8-bit image 13 x 13, intensities 0 — 255.
» Output: Digit 0 — 9. Decision about the class, classification.
> Features: Pixel intensities ...
Collect data , ...
» P(X). What is the dimension of X? How many possible images?
» Learn P(X|s) per each class (digit).

» Classify s* = argmax, P(s|X).

7/43

We can create many more features than just pixel intensities. But first
things first.

We are assuming all errors are equally important - minimizing the number
of wrong decisions
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We can rearrange pixels into vector - then using a linear index

Conditional probabilities P(x; = h|se).

PQY) P(F31 = on|Y) P(Fs5=on|Y)

L / Toor V. [Tom

C 2 |01 2 [0.05 2 10.01

» Apriori digit probabilities P(s) 3 loq 3 To.05 3 To.90

» Likelihoods for pixels. 4 |01 / 41030 4 10.80

P(xy,v = li|sk) 5 |01 v 5 |0.80 5 [0.90

6 |01 6 |0.90 6 | 0.90

7 |01 7 10.05 7 (025

8 |01 8 | 0.60 8 |0.85

9 |01 9 |0.50 9 |0.60

0 Jo1 0 |0.80 0 |0.80

image by courtesy of P. Abeel, http://ai.berkeley.edu
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Training and testing

Data labeled instances.
» Training set
» Held-out (validation) set
» Testing set.

Features : Attribute-value pairs.
Learning cycle:

» Learn parameters (e.g. probabilities) on training set.

» Tune hyperparameters on held-out (validation) set.

» Evaluate performance on testing set.

PUNADD

LaoON;OU!
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We will be talking about hyperparameters in a minute



Generalization and overfiting

» Data: training, validation, testing. Wanted classifier performs well on
what data?
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Generalization and overfiting

» Data: training, validation, testing. Wanted classifier performs well on
what data?

» Overfitting: too close to training, poor on testing
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see the overfit.m demo

Overfiting
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Unseen events

Images 13 x 13, intensities 0 — 255, 100 exemplars per each class.

01234567889

13/43

P(features,C = 2)
P(C=2)=0.1
P(on|C=2)=0.8
P(on|C =2)=0.1
P(offlc =2) =0.1

P(on|C =2)=0.01

P(features,C = 3)
P(C=3)=0.1
P(on|C=3)=0.8
P(on|C'=3)=09
P(off|C =3) =0.7

P(on|C=3)=0.0

image by courtesy of P. Abeel, http://ai.berkeley.edu
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Laplace smoothing

OO®

Pryr(X) =

P(x) = count(x)
total samples
Problem: count(x) =0

Prap(X) =
image by courtesy of P. Abeel, http://ai.berkeley.edu
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Laplace smoothing

count(x
P(x) = _count(x)
total samples
Problem: count(x) =0
Pretend you see the sample one more time.

o cx)+1
Part) = 1) 1 1]

14 /43
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image by courtesy of P. Abeel, http://ai.berkeley.edu


http://ai.berkeley.edu

Laplace smoothing

count(x
P(x) = _count(x)
total samples
Problem: count(x) =0
Pretend you see the sample one more time.

o cx)+1
Part) = 1) 1 1]

c(x)+1

14 /43

OO®

Pryr(X) =

Prap(X) =

image by courtesy of P. Abeel, http://ai.berkeley.edu
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Laplace smoothing - as a hyperparameter k

Pretend you see every sample k extra times:

o c(x)+k
Paet) = $ (e + 4
Piap(x) = m

For conditional, smooth each condition independently

c(x,s) + k

Pt = o+ aix

15/43



just try prod(rand(1,100)) and prod(rand(1,10000)) in Matlab.

Product of many small numbers . .. What is the way out?

P(sl) = = o :g((;;P(X[l]\s)-P(x[2]|s)-...

P(X) not needed, ... ...

16 /43



just try prod(rand(1,100)) and prod(rand(1,10000)) in Matlab.

Product of many small numbers . .. What is the way out?

P(sl) = = (zl‘j();)’ L) _ /58 P(x{1]ls) - P(x[2lls) - ..

P(X) not needed, ... ...

log(P(x[1][s)P(x[2]]s) - - -) = log(P(x[1]ls)) + log(P(x[2][s)) + - --

16 /43



.. Generative models because by sampling from them it is possible to
Inference and decision generate synthetic data points X.

For the discriminative model one can consider, e.g. logistic function:

1

f(X) = 1+ e—k(x—xo)

Inference stage - learning models/function/parameters from data.
Decision stage - decide about a query X.

» Generative model : Learn (infer) P(X,s). Decide by computing
P(s|X).
» Discriminative model : Learn P(s|X)

» Discriminant function : Learn f(X) which maps X directly into class
labels.

17 /43



K-Nearest neighbors classification

For a query X:

» Find K nearest X from the tranining (labeled) data.

» Classify to the class with the most exemplars in the set above.

151

0.5F

-0.5

1-nearest neighbour classifier

-15

0.5

18 /43

Width
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19
18
17
le

15

salmon séa bass

14

» Lightness
2 4 6 8 10



K — Nearest Neighbor and Bayes

Assume data:
» N points X in total.

» N; points in s; class. Hence, Zj N; = N.

19/43
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K — Nearest Neighbor and Bayes

Assume data:

» N points X in total.

» N; points in s; class. Hence, Zj N; = N.

We want classify X. We draw a sphere centered at X containing K points
irrespective of class. V is the volume of this sphere.

. K
Y
} K;
P(X|s;) = TJ\/
N.
P(s;) = -2 0 :
) =N 0 05 1
. P(X|s:\P(s:; K.
P(s) = T ) =

19/43



NN classification example

xzﬂ

1'2‘

!Figs from [1]
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NN classification example

Pentagon data

1-nearest neighbour classifier
151 15
1r 1
%
X
x,’(‘); x ¢ *: *
L . Rodod
05 %% x xo * 05
x O

-05 o
—1f -1

-1.5 i i i i i i —15 L L L L L J
5 1 05 0 05 1 15 “15 -1 -05 0 05 1 15
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Etalon based classification

Pentagon data

1.5 15
1
1t
x x X
05t x XX Xx * *S; 0.5¢
x *
x 0@

minimum distance from etalons

-0.5 A
1t =

15 i i i i i i -15 i i i i ; ;
-15 -1 -0.5 0 0.5 1 15 -15 -1 -0.5 0 0.5 1 15

Represent X by etalon , € per each classs € §
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Separate etalons

minimum distance from etalons

f(X) = arg min(||X — &||? + 0s)
sesS

23 /43



What etalons?

If N(X|fi,X); all classes same covari-
ance matrices, then

& i = o DK
= r»csw

ieXs

and separating hyperplanes halve dis- <

tances between pairs.

minimum distance from etalons

15

0.5

0

24 /43
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Some wrongly classified samples. We like the simple idea. Are there

Etalon based C|aSSIfIC3tI0n, €s = Is better etalons? How to find them?

Pentagon data ) minimum distance from etalons

*
X x * *
R A N
05 X X Xy
xxx -)k**;t

1F
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Digit recognition - etalons € = ji,

etalon for 0 etalon for 1 etalon for 2 etalon for 3 etalon for 4 etalon for 5 etalon for 6 etalon for 7 etalon for 8 etalon for 9

D723456789

Figures from [5]
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Better etalons — Fischer linear discriminant

0 \.', 7 :
) '. -
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Better etalons — Fischer linear discriminant

o

~a ',' : -
oy,
II,'. .

-2 2 6 -2 2 6

» Dimensionality reduction
» Maximize distance between means, ...

» ...and minimize within class variance. (minimize overlap)

Figures from [1]
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Better etalons - Perceptron

minimum distance from etalons
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Better etalons - Perceptron

minimum distance from etalons perceptron

Figures from [5]
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Etalon classifier — Linear classifier

f X) = i X — @ 2 =
(X) arggyg(”x Es|l +os)

29 /43



Etalon classifier — Linear classifier

- C e =12 . oTo 5z2To, 2Tz
f(X) :argrsrggl(Hx—esH + 05) = argrsnelg(x X—28,X+ &8s+ 0s) =
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- C e =12 . oTo 5z2To, 2Tz
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Etalon classifier — Linear classifier

- C e =12 . oTo 5z2To, 2Tz
f(X) :argrsnelg(Hx—esH + 05) = argrsnelg(x X—28,X+ &8s+ 0s) =

1
. ST = J RN T =
= arg min (x X—2(8X— E(es €s + Os))) =

A ST o
= argrsnelg(x X—2(8 X+ bs)) =
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Etalon classifier — Linear classifier

e 2 (12 T azxTo 2Tz
argrsr1€|2(]\x—es\| + 05) = argrsnelg(x X—28; X+ 6,6 +o0s)=

argmin ()?Ti -2 (8;% -

seS

1 _+.
E(esTes+oS

arg min()?Tf(' —2(&lx+ b)) =

seS

ST =
arg Teasx(es X + bs)

= £(X).
arg max f5()

)
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Etalon classifier — Linear classifier

- C e =12 . oTo 5z2To, 2Tz
f(X) :argrsr1€|2(]\x—es\| + 05) = argrsnelg(x X—28,X+ &8s+ 0s) =

1
. (T ST o iy
= argmin (x X—2(8X— E(es € + os))) =
S iy
= argrsnelg(x X—2(8 X+ bs)) =
T . 1 1
=|arg Teasx(es X+ bs)|=arg max fs(X). bs = —E(es s + 0s

Linear function (plus offset)

f(x) =w'x+ wp

29 /43



Perceptron learning - problem set up

We seek K = {(ws, wos) | s € S}

f(x) = arg max (w! x + wos)

achieves no error on training set 7 = {(xi, s, i=0,1,...,m}

etr:%ZI(sj;ﬁf(xj))7 1(5):{1 s True

— 0 s False
j=1

30/43



Perceptron, two classes linearly separable

|S| = 2, i.e. two states (typically also classes)

s=1, if wx4+w >0,

s=—-1, if wx+w<0.

31/43

Linear seaparability - hyperplane separates/divides space into two
half-spaces



Perceptron learning — Algorithm

W . :
X; = sj [ 5 } w' = v: drop the dashes to avoid notation clutter
g

Goal: Find a weight vector w € RP*1 (original feature space
dimensionality is D) such that:

waJ' >0 (Vje{1,2,...,m})
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Perceptron learning — Algorithm
xj- =5

Goal: Find a weight vector w € RP*1 (original feature space
dimensionality is D) such that:

waJ' >0 (Vje{1,2,...,m})
Perceptron algorithm (Rosenblat 1962):
1. t+ 0, w0,

2. Find a wrongly classified observation x;:
T
w(?) x; <0, (e{L2,..,m})
3. If there is no misclassified observation then terminate. Otherwise,

w(tD w(®) oy,

4. Goto 2.

w . .
[ . } w = v: drop the dashes to avoid notation clutter.
g}

32/43



Perceptron iterations

1
2
0000000000
o0 o0
1
eoo0co000000 20000
sEssssasss
00000000
0 ooe o3 ‘0000000000
22 23 eeccccccce
oo oo
_, oo eo .
0000000000 0 1
0000000000 w,
_ !
2 30/
=2 -1 0 1 2 0 ] 10
iter
10—
£0.5
oob -~
0 2 4 6 8 10
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Perceptron iterations

eeeeoo0e
XXX XXX xl
~1l ceeeccee

000000000 w,
\ 1
-2 \ =
M\\ SO
-2 -1 0 1 2 0 .
iter
1.Of— =TT T
£0.5 \
00k-----b
0 2 4 6 8 10
iter

10
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Perceptron iterations

XXX XX XXX D
(XX XXXXXXH
XXX XXXXXXKE
XXX XXXXXKH

-1 (A XK XN XXX NN 1 2
e00000000 0 w,
2 E !
- 1 g
! -1
-2 -1 0 0 . 10
iter
10—~
F0.5 \<
OO0k------—==*-- -~~~ -
0 2 4 10
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Perceptron iterations

5
[5)

10

iter
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Perce

ptron iterations

5
[5)

wy
1
s /\/\
-1
2 0 .
iter
””””” 8 10

10
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Perceptron iterations

2 ol !
XXX
ssecoccnoce
sesecoeco0o00
1 seseccoco0o00

(XX XXX XN X gﬂ

ee0000000c0
o0 eoce o
0 eceeeeoeee
eecccocococe
(XX XXXXXXl
XXX XXXXXXKE
XXX XXXXXKH

-1 (A XK XN XXX NN 0 1 2 3
eeo0c00000e s wy
! 1
-2 ‘ s M
} -1
-2 -1 0 1 2 0 2 4 6 8 10

iter

[5)
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Perceptron iterations

5
[5)

(oS N N N N N W N N N
000000 O0OCE

iter

10
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Etalons: means vs found be perceptron

minimum distance from etalons

Etalons and separating hyperplanes found by perceptron

T

T

T

Figures from [5]
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Digit recognition - etalons means vs. perceptron

etalon for 0 etalon for 1 etalon for 2 etalon for 3 etalon for 4 etalon for 5 etalon for 6 etalon for 7 etalon for 8 etalon for 9

D72Z23456789

etalon for 0 etalon for 1 etalon for 2 etalon for 3 etalon for 4 etalon for 5 etalon for 6 etalon for 7 etalon for 8 etalon for 9

Figures from [5]
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What if not lin separable?

-10 -05 00 05 10 15 20

Dimension lifting

x = [x,x3]"
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x, x]"

Dimension lifting, x

00 05 10 15

-05

1.0

2.0

-1.5

1.5 20

-05 00 05 1.0

-1.0

-1.5
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Why there some errors in perceptron results? we said zero error on

Performance comparison, parameters fixed e
training set.

Matching table for test set Matching table for test set

100

5 0 %0 0 0 O 0 o
0 0 1 80 0 0 0 O 0 "
0 0 4 0 0 0 0 0 O 0
70 70
o 0 0 3 1 60 1 0 9 0 0 0 O 0 60
R 0 0 O 1 0 50 é 0 0 0 0 1000 O O 0 50
(<] (4]
z 0 2 0 0 2 0 40 2 0 0 0 0 0 1000 O (0] 2
0 0 O (0] 10 0 30 0 0 0 0O 0O O 1000 0
30
0 0 2 (0] 0 0 20 1 0 0 0 0 0 1 98 0
20
3 0 O (0] 0 10 0 0 0 OO O 0O 3 10
0 0 O 0 0 0 0 0 OO O 0O 95 0
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
#times classified as #times classified as
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Precision and Recall, Confusion matrix

Consider digit detection (is there a digit?) or
SPAM/HAM classification.
Confusion matrix

» Classification (prediction) vs Truth state
Recall

» How many relevant items are selected?

> Are we missing some items?

» Also called: True positive rate, sensitivity,
hit rate ...

Precision
» How many selected items are relevant?

» Also called: Positive predictive value

By Walber - Own work, CC BY-SA 4.0,

https://commons.wikimedia.org/w/index.php?curid=36926283

relevant elements

false negatives true negatives

[ o le)

selected elements

How many selected How many relevant
items are relevant? items are selected?

Recall = ——

Precision =

39/43

TP

Reca”:m
Precisio —L
recsion = T Fp

Think about precision vs recall graph, what is the best classifier?


https://commons.wikimedia.org/w/index.php?curid=36926283

Accuracy: how close (is your model) to the true. Precision: how

Accuracy vs precision consistent/stable

https://commons.wikimedia.org/wiki/File:Precision_versus_accuracy.svg , .,


https://commons.wikimedia.org/wiki/File:Precision_versus_accuracy.svg

. Accuracy: how close (is your model) to the true. Precision: how
Accuracy VS precision consistent/stable.
Think about terms bias and error. In Czech perhaps accuracy~spravnost,
precisionapresnost.

Reference value

A Dichte
A
Probability Accuracy Mangel an /
density Richtigkeit /|

Man

an Prazision

richtiger Wer;-f
- Wert

[
>

+— \Value
Precision

https://en.wikipedia.org/wiki/Accuracy_and_precision
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