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(Re-)introduction uncertainty/probability

I Markov Decision Processes - uncertainty about outcome of actions

I Now: uncertainty may be also associated with states

I Different states may have different prior probabilities
I The states s ∈ S may not be directly observable
I They need to be inferred from features x ∈ X

I This is addressed by the rules of probability (such as Bayes theorem)
and leads on to

I Bayesian classification
I Bayesian decision making

2 / 21



Probability example: Picking fruits

I red box: 2 apples, 6 oranges

I blue box: 3 apples, 1 orange

I Scenario: Pick a box (say red box in 40% cases), then pick a fruit at
random

I (Frequent) questions:
I What is the overall probability that the selection procedure will pick an

apple?
I Given that we have chosen an orange, what is the probability that the

box we chose was the blue one?

Example from Chapter 1.2 [1]
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Example serves for probability recap (sum, product rules, conditional
probabilities, Bayes)
Random variables:

• Identity of the box B, two possible values r , b

• Identity of the fruit F , two possible values a, o

Info about picking a box P(B = r) = 0.4 and P(B = r) = 0.6.
Conditional probabilities, given box selected:
P(o|r) = 3/4,P(a|r) = 1/4,P(o|b) = 1/4,P(a|b) = 3/4.
Answering questions:

• P(F = a) = P(a|r)P(r) + P(a|b)P(b) = 11/20

• P(B = b|F = o) = P(b|o)

P(b|o) =
P(o|b)P(b)

P(o)
=

P(o|b)P(b)

P(o|b)P(b) + P(o|r)P(r)
= 1/3

P(B) prior probability - before we observe the fruit; P(B|F ) - aposteriori

probability - after we observe the fruit.



Rules of probability and notation I

I random variables X ,Y

I xi where i = 1, ...,M – values taken by variable X

I yj where j = 1, ..., L – values taken by variable Y

I P(X = xi ,Y = yi ) – probability that X takes the value xi and Y
takes yi – joint probability

I P(X = xi ) – probability that X takes the value xi
I Sum rule of probability :

I P(X = xi ) =
∑L

j=1 P(X = xi ,Y = yj)

I P(X = xi ) is sometimes called marginal probability – obtained by

marginalizing / summing out the other variables
I general rule, compact notation: P(X ) =

∑
Y P(X ,Y )
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This and the following slides are just to formally recap what we learned

when discussion boxes and fruits



Rules of probability and notation II

I Conditional probability : P(Y = yj |X = xi )

I Product rule of probability :

I P(X = xi ,Y = yi ) = P(Y = yj |X = xi )P(X = xi )
I general rule, compact notation: P(X ,Y ) = P(Y |X )P(X )

I Bayes theorem :

I from P(X ,Y ) = P(Y ,X ) and product rule

P(Y |X ) =
P(X |Y )P(Y )

P(X )

posterior =
likelihood × prior

evidence
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Boxes and fruits: prior (before observation) - P(B), likelihood (of
observation) - P(F |B), evidence (total observations) P(F ), posterior
(after observation) P(B|F ).

Think about these terms, it helps to understand and remember.



Decision example: Insure or not? (from late 1980s) [4]

A doctor calls: “999/1000 you die in 10 years, I’m sorry . . . ”. Insurance
company does not want to insure married couple.

I Was the doctor right?

I Was the insurance company rational?

What the doctor (and the company) knew:

I HIV test falsely positive only in 1 case out of 1000.

I Heterosexual male, have family, no drugs, no risk behavior.

6 / 21

Equations/formulas are simple but not easy to (fully) understand. doctor:

P(positive test|healthy) but this the likelihood which we learn before the

pacient diagnosis (classification). More interesting and important is to

know: P(healthy|positive test). Think about 10000 samples of

heterosexual males, family, . . . . Statistically 1 HIV positive inbetween.

Assume P(negative test|healthy)→ 0. 1 person HIV positive will be

tested positive, but also 10 other healthy persons will be tested positive.

Hence P(healthy|textpositivetest) = 10/11!. The fact that a disease is

rare matters a lot!
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Classification example: What’s the fish?

I Factory for fish processing

I 2 classes s1,2:
I salmon
I sea bass

I Features ~x : length, width,
lightness etc. from a camera
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Fish – classification using probability

posterior =
likelihood × prior

evidence

I Notation for classification problem
I Classes sj ∈ S (e.g., salmon, sea bass)
I Features xi ∈ X or feature vectors (~xi ) (also called attributes)

I Optimal classification of ~x :

δ∗(~x) = arg max
j

P(sj |~x)

I We thus choose the most probable class for a given feature vector.

I Both likelihood and prior are taken into account – recall Bayes rule:

P(sj |~x) =
P(~x |sj)P(sj)

P(~x)
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Bayes classification in practice

I Usually we are not given P(s|~x)

I It has to be estimated from already classified examples – training data
I For discrete ~x , training examples (~x1, s1), (~x2, s2), . . . (~x l , sl)

I so-called i.i.d (independent, identically distributed) multiset
I every (~xi , s) is drawn independently from P(~x , s)

I Without knowing anything about the distribution, a non-parametric
estimate:

P(s|~x) ≈ # examples where ~x i = ~x and si = s

# examples where ~x i = ~x

I Hard in practice:
I To reliably estimate P(s|~x), the number of examples grows

exponentially with the number of elements of ~x .
I e.g. with the number of pixels in images
I curse of dimensionality
I denominator often 0

9 / 21

Why hard? Way too many various ~x . Think about simple binary 10× 10

image - ~x contains 0, 1, position matters. What is the total number of

unique images? Think binary, 1× 8 binary image?
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Näıve Bayes classification

I For efficient classification we must thus rely on additional
assumptions.

I In the exceptional case of statistical independence between ~x
components for each class s it holds

P(~x |s) = P(x [1]|s) · P(x [2]|s) · . . .

I Use simple Bayes law and maximize:

P(s|~x) =
P(~x |s)P(s)

P(~x)
=

P(s)

P(~x)
P(x [1]|s) · P(x [2]|s) · . . . =

I No combinatorial curse in estimating P(s) and P(x [i ]|s) separately
for each i and s.

I No need to estimate P(~x). (Why?)

I P(s) may be provided apriori.

I näıve = when used despite statistical dependence
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Why näıve at all? Consider N− dimensional space, 8− bit values.
Instead of problem 8N we have 8× N problem.

Think about statistical independence. Example1: person’s weight and

height. Are they independent? Example2: pixel values in images.



Decision making under uncertainty
I An important feature of intelligent systems

I make the best possible decision
I in uncertain conditions.

I Example: Take a tram OR subway from A to B?
I Tram: timetables imply a quicker route, but adherence uncertain.
I Subway: longer route, but adherence almost certain.

I Example: where to route a letter with this ZIP?

I 15700? 15706? 15200? 15206?

I What is the optimal decision ?
I Both examples fall into the same framework.
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Example: What to cook for a dinner [3]

I Wife coming back from work. Husband: what to cook for dinner?

I 3 dishes ( decisions ) in his repertoire:
I nothing . . . don’t bother cooking ⇒ no work but makes wife upset
I pizza . . . microwave a frozen pizza ⇒ not much work but won’t

impress
I g.T.c. . . . general Tso’s chicken ⇒ will make her day, but very

laborious.

I Hassle incurred by the individual options depends wife’s feeling

I For each of the 9 possible situation (3 possible decisions × 3 possible
states) the hassle is quantified by a loss function l(d , s):

l(s, d) d = nothing d = pizza d = g.T.c.

s = good 0 2 4
s = average 5 3 5

s = bad 10 9 6

Her state of mind is an uncertain state.

12 / 21

Was the state known the decision would be simple.
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Example (cont’d), State uncertain, . . .

I Husband’s experiment. He tells her he accidentally overtaped their
wedding video and observes her reaction

I Anticipates 4 possible reactions:
I mild . . . all right, we keep our memories.
I irritated . . . how many times do I have to tell you....
I upset . . . Why did I marry this guy?
I alarming . . . silence

I The reaction is a measurable attribute (“feature”) of the mind
state.

I From experience, the husband knows how individual reactions are
probable in each state of mind; this is captured by the
joint distribution P(x , s) .

P(x , s) x = mild x =irritated x = upset x = alarming

s = good 0.35 0.28 0.07 0.00
s = average 0.04 0.10 0.04 0.02

s = bad 0.00 0.02 0.05 0.03
13 / 21

Joint distibution. Husband tried similar experiment multiple times,

gathered some evidence . . .
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Decision strategy

I Decision strategy : a rule selecting a decision for any given value of
the measured attribute(s).

I i.e. function d = δ(x).

I Example of husband’s possible strategies:

δ(x) x = mild x = irritated x = upset x = alarming

δ1(x) = nothing nothing pizza g.T.c.
δ2(x) = nothing pizza g.T.c. g.T.c.
δ3(x) = g.T.c. g.T.c. g.T.c. g.T.c.
δ4(x) = nothing nothing nothing nothing

I How many strategies?

I How to define which strategy is best? How to sort them by quality?

I Define the risk of a strategy as a mean (expected) loss value .

r(δ) =
∑
x

∑
s

l(s, δ(x))P(x , s)

14 / 21

Overall, 34 = 81 possible strategies (3 possible decisions for each of the 4

possible attribute values).
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Calculating r(δ) =
∑

x

∑
s l(s, δ(x))P(x , s)

P(x , s) x = mild x =irritated x = upset x = alarming

s = good 0.35 0.28 0.07 0.00
s = average 0.04 0.10 0.04 0.02

s = bad 0.00 0.02 0.05 0.03

δ(x) x = mild x = irritated x = upset x = alarming

δ1(x) = nothing nothing pizza g.T.c.
δ2(x) = nothing pizza g.T.c. g.T.c.
δ3(x) = g.T.c. g.T.c. g.T.c. g.T.c.
δ4(x) = nothing nothing nothing nothing

l(s, d) d = nothing d = pizza d = g.T.c.

s = good 0 2 4
s = average 5 3 5

s = bad 10 9 6

Do we need to evaluate all possible strategies? P(x , s) = P(s|x)P(x)

15 / 21

Risk depend on strategy(decisions). Strategy(decisions) depends on
obeservation. Loss comines decision and state. The total weighted
average is weighted by joint probability of observation and state.

Calculate r(δ1) and r(δ2), what is better strategy?
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δ2(x) = nothing pizza g.T.c. g.T.c.
δ3(x) = g.T.c. g.T.c. g.T.c. g.T.c.
δ4(x) = nothing nothing nothing nothing

l(s, d) d = nothing d = pizza d = g.T.c.

s = good 0 2 4
s = average 5 3 5

s = bad 10 9 6

Do we need to evaluate all possible strategies? P(x , s) = P(s|x)P(x)
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obeservation. Loss comines decision and state. The total weighted
average is weighted by joint probability of observation and state.
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Bayes optimal strategy
I The Bayes optimal strategy : one minimizing mean risk.

δ∗ = arg min
δ

r(δ)

I From P(x , s) = P(s|x)P(x) (Bayes rule), we have

r(δ) =
∑
x

∑
s

l(s, δ(x))P(x , s) =
∑
s

∑
x

l(s, δ(x))P(s|x)P(x)

=
∑
x

P(x)
∑
s

l(s, δ(x))P(s|x)︸ ︷︷ ︸
Conditional risk

I The optimal strategy is obtained by minimizing the conditional risk
separately for each x :

δ∗(x) = arg min
d

∑
s

l(s, d)P(s|x)
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Optimal strategy: δ∗(x) = arg mind

∑
s l(s, d)P(s|x)

l(s, d) d = nothing d = pizza d = g.T.c.

s = good 0 2 4
s = average 5 3 5

s = bad 10 9 6

P(x , s) x = mild x =irritated x = upset x = alarming

s = good 0.35 0.28 0.07 0.00
s = average 0.04 0.10 0.04 0.02

s = bad 0.00 0.02 0.05 0.03

δ(x) x = mild x = irritated x = upset x = alarming

δ∗(x) = ?? ?? ?? ??
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We need to recompute the table of joint probability P(s, x) into table of

conditional probabilies P(s|x). Having the table of all P(s|x) we just

mechanically instert into equation in the slide title.



Statistical decision making: wrapping up

I Given:
I A set of possible states : S
I A set of possible decisions : D
I A loss function l : D × S → <
I The range X of the attribute
I Distribution P(x , s), x ∈ X , s ∈ S.

I Define:
I Strategy : function δ : X → D
I Risk of strategy δ : r(δ) =

∑
x

∑
s l(s, δ(x))P(x , s)

I Bayes problem:
I Goal: find the optimal strategy δ∗ = arg minδ∈∆ r(δ)
I Solution: δ∗(x) = arg mind

∑
s l(s, d)P(s|x)
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A special case - Bayesian classification
I Bayesian classification is a special case of statistical decision theory:

I Attribute vector ~x = (x1, x2, . . . ): pixels 1, 2, . . . .
I State set S = decision set D = {0, 1, . . . 9}.
I State = actual class, Decision = recognized class
I Loss function:

l(s, d) =

{
0, d = s
1, d 6= s

δ∗(~x) = arg min
d

∑
s

l(s, d)︸ ︷︷ ︸
0 if d=s

P(s|~x) = arg min
d

∑
s 6=d

P(s|~x)

Obviously
∑

s P(s|~x) = 1, then:

P(d |~x) +
∑
s 6=d

P(s|~x) = 1

Inserting into above:

δ∗(~x) = arg min
d

[1− P(d |~x)] = arg max
d

P(d |~x)
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• Classification as opposed to Decision

• Loss function simply counts errors (misclassifications)

• We consider alle errors equally painful!

• More example during the lab . . .

• The final result is not that surprising, is it?
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