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Recap: Reinforcement Learning
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» Feedback in form of Rewards

» Learn to act so as to maximize sum of expected rewards.

action
Ay

» In kuimaze package, env.step(action) is the method.

'Scheme from [2]
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. . What are states? What could be rewards?
Learning to control flippers

http://cyber.felk.cvut.cz/vras/
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From off-line (MDPs) to on-line (RL)

Markov decision process — MDPs. Off-line search, we know:
> A set of states s € S (map)
> A set of actions per state. a € A
» A transition model p(s’|s, a) (robot)
» A reward function r(s, a,s’) (map, robot)

Looking for the optimal policy 7(s). We can plan/search before the robot
enters the environment.

On-line problem:
» Transition p and reward r functions not known.

» Agent/robot must act and learn from experience.
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For MDPs, we know p, r for all possible states and actions.



(Transition) Model-based learning

The main idea: Do something and:

» Learn an approximate model from experiences.

» Solve as if the model were correct.
Learning MDP model:

» Try s, a, observe s’, count s, a,s’.

» Normalize to get and estimate of p(s’|s, a)

» Discover each r(s, a,s’) when experienced.
Solve the learned MDP.
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Model-free learning

P> r,p not known.
> Move around, observe
> And learn on the way.

» Goal: learn the state value v(s) or
(better) g-value g(s, a) functions.

—
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Image from [1]
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Executing policies - training, then learning from the observations. We want
to do the policy evaluation but the necessary model is not known.



Recap: V— and Q— values, converged ...

v =1, rewards —1, 410, —10, and no confusion - deterministic robot

6.00 7.00 8.00 0.00
6.00 7.00 | 6.00 8.00 | 7.00 9.00 | 0.00 0.00
5.00 7.00 7.00 0.00

6.00 8.00
5.00 5.00 7.00 X-11.00]
4.00 6.00
5.00 7.00 -11.00

4.00 6.00 | 5.00 5.00 | 6.00 5.00

5.00 6.00 5.00

V(St) = Reyr+ V(St41)
Q(St,Ar) = Rt+1+m3xQ(5t+laa)
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~v = 1, Rewards —1,410,—10, and no confusion - deterministic
robot/agent. Rewards associated with leaving the state. Q values close
next to terminal state includes the actual reward and the transition cost
steping in, or better, leaving the last living state.

Q(s, a) - expected sum of rewards having taken the action and acting
according to the (optimal) policy.

How would the (q)values change if v = 0.97



Model-free TD learning, updating after each transition

> Observe, experience environment through
learning episodes, collecting:

Sta Ah Rt+1, 5t+1a At+17 Rt+27 s

» Update by mimicking Bellman updates after
each transition (S¢, At, Re+1, St4+1)
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Think about S; — Ay — S;41 — Apr1 — Seqo tree with associated rewards.
Episode starts in a start state and ends in a terminal state.



. . . The tree continues from s’ through a’ and so on until it terminates
Recap: Bellman optimality equations for v(s) and q(s, a) g

v(s) = maapr(s’|s,a) [r(s,a,s") + v v(s)] A
s’ /,/ \ \\\
= maxg(s, ) g Q g-state
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Recap: Bellman optimality equations for v(s) and q(s, a)

v(s) = mj\xz p(s'|s,a) [r(s,a,s") + v v(s)] a
s’ 4 \\ \\
= maxg(s. ) (59 atsa)
2 / N
The value of a g-state (s, a): 7 p(s's,a) N

q(s,a) = Z p(s'|s, a) [r(s, a,s’ )+ v(s')] P

— Y pls1s.a) [rls.08) + ymaxa(s' )]
a/
S/
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The tree continues from s’ through a’ and so on until it terminates



Recap: Bellman optimality equations for v(s) and q(s, a)

— , / / // a \\ \\

) = max Y p(els o) [rsa ) v A
s ’ \ N
= maaxq(S, a) g Q q(s, a) *

The value of a g-state (s, a):

q(s,a) = Z p(s'|s, a) [r(s, a,s’ )+ v(s')] P

— Y pls1s.a) [rls.08) + ymaxa(s' )]
a/
S/
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The tree continues from s’ through a’ and so on until it terminates



There are alternatives how to compute the trial.  SARSA method
takes Q(S:, A:) directly, not the max. Hence we need 5-tuples
Sty Aty Re1, Stt1, At

Q-learning

Learn Q values as the robot/agent goes (temporal difference). If some Q
quantity not known, initialize.

> time t, at S;
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Q-learning

Learn Q values as the robot/agent goes (temporal difference)
quantity not known, initialize.

> time t, at S;
> take A; € A(S;), observe Ryy1, Si1

» compute trial/sample estimate at time t
trial = Ry1 + max Q(St+1,a)

. If some @
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Q-learning

Learn Q values as the robot/agent goes (temporal difference). If some Q
quantity not known, initialize.

>
>
>

time t, at S;

take A; € A(S;), observe Ryy1, Sti1
compute trial/sample estimate at time ¢t
trial = Ry1 + max Q(St+1,a)

« temporal difference update
Q(St,At) < Q(St,At) + O[(trlal — Q(St,At))
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There are alternatives how to compute the trial.  SARSA method
takes Q(S:, A:) directly, not the max. Hence we need 5-tuples
Sty Aty Re1, Stt1, At

Q-learning

Learn Q values as the robot/agent goes (temporal difference). If some Q
quantity not known, initialize.

> time t, at S;
> take A; € A(S;), observe Ryy1, Si1
» compute trial/sample estimate at time t
trial = Ry1 + max Q(St+1,a)
» « temporal difference update
Q(St, Ar) < Q(St, Ar) + aftrial — Q(S:, At))
» S; < Sty1 and repeat (unless S; is terminal)

In each step @ approximates the optimal g* function.
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Q-learning: algorithm

stepsize0<a<1
initialize Q(s, a) for all s € S,a € S(s)
repeat episodes:
initialize S
for for each step of episode: do
choose A from §
take action A, observe R, S’
Q(S,A) «+ Q(S,A) + a[R +ymax, Q(5',a) — Q(S,A)]
S« 5
end for until S is terminal
until Time is up, ...
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How to select A; in 5,7

v

time t, at S;

take A; € A(S;), observe Ryy1, Sri1
compute trial/sample estimate at time ¢t

trial = Rep1 + max Q(St+1,a)

« temporal difference update

Q(St, At) < Q(St, Ar) + aftrial — Q(St, Ar))
St < Sty1 and repeat (unless S; is terminal)

12/27



How to select A; in 5,7

v

time t, at S;

take A; derived from @ , observe Ryi1,St11
compute trial /sample estimate at time ¢t

trial = Rep1 + max Q(St+1,a)

« temporal difference update

Q(St, At) < Q(St, Ar) + aftrial — Q(St, Ar))
St < Sty1 and repeat (unless S; is terminal)
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... A; derived from Q

What about keeping optimality, taking max?
A = argmax,Q(S:, a)

see the demo run of rl_agents.py.
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Discuss the on-line demo with two good goal states. v = 1,a = 0.5,

Two gOOd goal states Living reward —1, R(1,2) = 10, R(3,0) = 20, R(1,1) = —10. Taking the
action, corresponding the max Q. If equal options, than in the 0,1,2,3
0 1 2 3 action order. 50 training episodes. What happened?
0.50 -0.50 0.50
0 0.00 N -0.50-1-0.00-5¢-0.501-0.00-5¢9.50 0
0.00 0.00 0.00
-050 0.00 0.00
1 0.00 % 0.00 | 0.00 % 0.00 | 0.00 X 0.00 1
0.00 0.00 0.00
0.00 0.00 0.00
2 0.00 % 0.00 | 0.00 X 0.00 | 0.00 X 0.00 2
0.00 0.00 0.00
0 1 2 3
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Exploration vs Exploitation Discuss the on-line demo with two good goal states. v = 1,a = 0.5,
P P Living reward —1, R(1,2) = 10, R(3,0) = 20, R(1,1) = —10. Taking the
action, corresponding the max Q. If equal options, than in the 0,1,2,3

action order.

» Drive the known road or try a new one?
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Discuss the on-line demo with two good goal states. v = 1,a = 0.5,
Living reward —1, R(1,2) = 10, R(3,0) = 20, R(1,1) = —10. Taking the
action, corresponding the max Q. If equal options, than in the 0,1,2,3

Exploration vs Exploitation

action order.

» Drive the known road or try a new one?

» Go to the university menza or try a nearby restaurant?
» Use the SW (operating system) | know or try new one?
» Go to bussiness or study a demanding program?

> ..
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We can think about lowering € as the learning progresses.
How to explore? g & proe

Random (e-greedy):
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How to explore?

Random (e-greedy):
» Flip a coin every step.

» With probability €, act randomly.

> With probability 1 — ¢, use the policy.

Problems with randomness?

> Keeps exploring forever.
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We can think about lowering € as the learning progresses.
How to explore? g & proe

Random (e-greedy):

» Flip a coin every step.

» With probability €, act randomly.

> With probability 1 — ¢, use the policy.
Problems with randomness?

> Keeps exploring forever.

» Should we keep € fixed (over learning)?

P> ¢ same everywhere?
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How to evaluate result, when to stop learning?

0 1 2 3 4
0.04 0.06 -0.06 0.06 0.08
0 0.04 3-0.05 | -0.05 »¢ -0.04 | -0.06 % -0.05 | -0.07 3¢ -0.07 | -0.06 3 -0.08 0
0.04 0.04 -0.06 0.06 0.07
0.02 0.03 -0.05 0.07 0.08
1 0.00 3-0.03 | 0.21 3<-0.04 | -0.04 3 -0.05 | -0.05 »¢-0.05-|-0.08-¥ -0.08 1
0.72 0.03 -0.03 0.09 0,07
0.02 0552
2 0.03 X(-0.52 0.52 2
0.02 ol10
0.84 0.03 -0.52 ol10 0.09
3 0.02 YX-0.02 | -0.02 3<-0.05 | -0.05 3 -0.54 | -0.09 3-0.09-1-0.08 3 -0.09 3
-0,02 -0.03 -0.05 -0l09 -0l09
0.44 -0.03 -0.06 -0l10 -0l09
4 0.02Y-0.03 0.0 0.04-1-0.063¢-0.06-1-0.083¢-0.08 | -0.103¢-0.09 4
0.02 0.04 -0.06 0.08 0.10
0 1 2 3 4

17/27

Run the found policy, discuss some traps, ...



Exploration function f(u, n)

» Regular trial /sample estimate: trial = Ry11 + v max Q(St+1, a)
a
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» Regular trial /sample estimate: trial = Ry11 + v max Q(St+1, a)
a

» If (S, a) not yet tried, than perhaps too pesimistic.
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Exploration function f(u, n)

» Regular trial /sample estimate: trial = Ry11 + v max Q(St+1, a)
a

» If (S, a) not yet tried, than perhaps too pesimistic.
> trial = Req + 7 max f(Q(Str1,a), N(Se41,a))

where f(u, n)

f(u,n) = RTifn< N,

= u otherwise

where RT is an optimistic estimate. N, fixed.
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Going beyond tables - generalizing across states

0 0.84

2 3 4
0.92 0.96 1.00 0
2 3 4
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We were talking about v— and g— functions but what was the represen-
tation? (look-up) Tables. Looking at v(s), we need a table for each of the
state!

This world is small, but think bigger!



Going beyond tables - generalizing across states

0 1 2 3 4
0 0.84 0.80 0.76 0.72 .
1 0.88 0.84 0.80 0.76 0.72
2 0.92 0.88 0.84 0.80 0.76
3 0.96 0.92 0.88 0.84 0.80
4 1.00 0.96 0.92 0.88 0.84
0 1 2 3 4
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Looking a V/(s), we need a table for each of the state! This world is small,
but think bigger!



v(s) not as table but as an approximation function

0 0.84

2 3 4
0.92 0.96 1.00
2 3 4

21/27

What are wy, wy equal to?, we can start from left, target is the true v(s =
0) = 0.84, next target is v(s = 1) = 0.88, ...

Note about notation. Bold lower cases are used to denote vectors. Vectors
are always considered oriented columnwise unless explicitly stated other-
wise.
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What are wp, wy equal to?
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v(s) not as table but as an approximation function

0 1 2 3 4
0 0.84 0.92 0.96 1.00
0 1 2 3 4

V(s,w) =wp+ wys

What are wy, wy equal to?

Instead of the complete table, only 2 parameters to learn w = [wp, wy] "

What are wy, wy equal to?, we can start from left, target is the true v(s =
0) = 0.84, next target is v(s = 1) = 0.88, ...

Note about notation. Bold lower cases are used to denote vectors. Vectors
are always considered oriented columnwise unless explicitly stated other-
wise.



What could be the f functions for the grid world?

Linear value functions Obviously, when data are available, we can fit. How to do it on-line?

V(s,w) = wifi(s) + wafa(s) + wafz(s) + - - - + wafn(s)
4(s,a,w) = wifi(s,a) + waha(s,a) + wafz(s,a) + - + wyfs(s, a)
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Learning w by Stochastic Gradient Descent (SGD)

> assume V(s,w) differentiable in all states

23/27

Gradient descent - all samples are known, Stochastic GD - update after
each sample

U(s,w) could be quite complex, e.g. a Multi Layer Perceptron (MLP),
Deep Network, and w represents the weights. See, e.g.

e https://skymind.ai/wiki/deep-reinforcement-learning

e Vision for robotics course you may take next term.
https://cw.fel.cvut.cz/wiki/courses/b3b33vir/start
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Learning w by Stochastic Gradient Descent (SGD)

> assume V(s,w) differentiable in all states
> we update w in discrete time steps t
» in each step S; we observe a new example of (true) v™(5;)

» {(S¢,w) is an approximator — error v™(S;) — V(S¢, wy)

Gradient descent - all samples are known, Stochastic GD - update after
each sample

U(s,w) could be quite complex, e.g. a Multi Layer Perceptron (MLP),
Deep Network, and w represents the weights. See, e.g.

e https://skymind.ai/wiki/deep-reinforcement-learning
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Learning w by Stochastic Gradient Descent (SGD)

assume ¥(s,w) differentiable in all states
we update w in discrete time steps t

in each step S; we observe a new example of (true) v™(S;)

vVvyyvyy

V(St,w) is an approximator — error v™(S;) — V(S¢, wy)

. 1 ; ?
Wt+1 = W; — §av |:V7r(5t) - V(Sta Wt):|

— wet oz[v”(St) - O(St,wt)]VO(St,wt)

R Sttt

.
Of(w) Of (w) af(w)]

E)VVQ E?vvd

Gradient descent - all samples are known, Stochastic GD - update after
each sample

U(s,w) could be quite complex, e.g. a Multi Layer Perceptron (MLP),
Deep Network, and w represents the weights. See, e.g.

e https://skymind.ai/wiki/deep-reinforcement-learning

e Vision for robotics course you may take next term.
https://cw.fel.cvut.cz/wiki/courses/b3b33vir/start
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. . . . . How is it possible at all? On-line least squares!
Approximate Q-learning (of a linear combination)

10Fle epata |
| — curve fit |:

4(s,a,w) = wifi(s,a) + wafa(s, a) + wafz(s,a) + - - - + wyfy(s, a) >

v

transition = S;, A, Rei1, Sti1 4
» trial Rey1 47y max G(Sts1,a,wy) X

By Krishnavedala - Own work, CC BY-SA 3.0, https://commons.wikimedia.

> diff = [Rep1 + v max (Ser1, a,wt)] — G(Se, A, we)
a org/w/index.php?curid=15462765

> Update: w = [wy, wp, -+, wy] "
w; < w; + o [diff] (S, Ae)
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See the fitdemo.m run, higher degree polynomials perfectly fits, but poorly

Overfitting : :
generalizes outside the range
0 2 3 4
0 0.84 0.92 0.96 1.00 0
0 2 3 4
1.15
11 r
1.05 o ‘ '7
1 EJE::“U%MU,
s
095 o
09 5!"
: L3}
0.85}a05 a!"aﬁ
ELLER
0.8 ..ﬁ“‘n
o,,_; -1 1 2 3 4 6
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Going beyond - Dyna-Q integration planning, acting,
learning

value/policy i \

| Policy/value functions |

acting )
) planning update
planning direct
RL direct RL simulated
update experience
real
experience

model search
model experience learning | control

\_/ Model
model Environment
learning

2Schemes from [2]
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