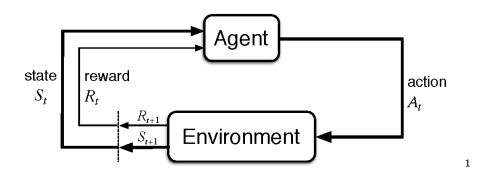
Reinforcement learning II

Tomáš Svoboda

Vision for Robots and Autonomous Systems, Center for Machine Perception
Department of Cybernetics
Faculty of Electrical Engineering, Czech Technical University in Prague

April 10, 2019

Recap: Reinforcement Learning



- ► Feedback in form of Rewards
- ▶ Learn to act so as to maximize sum of expected rewards.
- ▶ In kuimaze package, env.step(action) is the method.

¹Scheme from [2]

http://cyber.felk.cvut.cz/vras/

From off-line (MDPs) to on-line (RL)

Markov decision process – MDPs. Off-line search, we know:

- ▶ A set of states $s \in S$ (map)
- ▶ A set of actions per state. $a \in A$
- A transition model p(s'|s, a) (robot)
- A reward function r(s, a, s') (map, robot)

Looking for the optimal policy $\pi(s)$. We can plan/search before the robot enters the environment.

On-line problem:

- Transition *p* and reward *r* functions not known.
- ► Agent/robot must act and learn from experience.

For MDPs, we know p, r for all possible states and actions.

(Transition) Model-based learning

The main idea: Do something and:

- ► Learn an approximate model from experiences.
- Solve as if the model were correct.

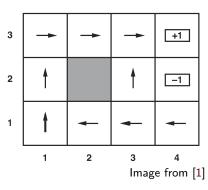
Learning MDP model:

- ightharpoonup Try s, a, observe s', count s, a, s'.
- Normalize to get and estimate of p(s'|s, a)
- ightharpoonup Discover each r(s, a, s') when experienced.

Solve the learned MDP.

Model-free learning

- ightharpoonup r, p not known.
- ► Move around, observe
- ► And learn on the way.
- ▶ **Goal:** learn the state value v(s) or (better) q-value q(s, a) functions.



Executing policies - training, then learning from the observations. We want to do the policy evaluation but the necessary model is not known.

Recap: V- and Q- values, converged . . .

 $\gamma = 1$, rewards -1, +10, -10, and no confusion - deterministic robot

7.00	8.00	9.00	10.00	6.00 7.00 8.00 0.00 6.00 7.00 6.00 8.00 7.00 9.00 0.00 5.00 7.00 7.00 0.00
6.00		8.00	-10.00	6.00 5.00 5.00 7.00 -11.00 0.00 0.0 4.00 6.00 0.00
5.00	6.00	7.00	6.00	5.00 5.00 7.00 -11.00 4.00 5.00 6.00 5.00 5.00 5.00

$$V(S_t) = R_{t+1} + V(S_{t+1})$$

 $Q(S_t, A_t) = R_{t+1} + \max_{a} Q(S_{t+1}, a)$

 $\gamma=1$, Rewards -1,+10,-10, and no confusion - deterministic robot/agent. Rewards associated with leaving the state. Q values close next to terminal state includes the actual reward and the transition cost steping in, or better, leaving the last living state.

Q(s,a) - expected sum of rewards having taken the action and acting according to the (optimal) policy.

How would the (q)values change if $\gamma = 0.9$?

Model-free TD learning, updating after each transition

► Observe, experience environment through learning episodes, collecting:

$$S_t, A_t, R_{t+1}, S_{t+1}, A_{t+1}, R_{t+2}, \dots$$

▶ Update by mimicking Bellman updates after each transition $(S_t, A_t, R_{t+1}, S_{t+1})$

Think about $S_t - A_t - S_{t+1} - A_{t+1} - S_{t+2}$ tree with associated rewards. Episode starts in a start state and ends in a terminal state.

Recap: Bellman optimality equations for v(s) and q(s, a)

$$v(s) = \max_{a} \sum_{s'} p(s'|s,a) \left[r(s,a,s') + \gamma v(s') \right]$$

$$= \max_{a} q(s,a)$$

$$p(s'|s,a)$$

$$p(s'|s,a)$$

$$p(s'|s,a)$$

$$p(s'|s,a)$$

$$p(s'|s,a)$$

$$p(s'|s,a)$$

$$p(s'|s,a)$$

$$p(s'|s,a)$$

The tree continues from s' through a' and so on until it terminates

Recap: Bellman optimality equations for v(s) and q(s, a)

$$v(s) = \max_{a} \sum_{s'} p(s'|s, a) \left[r(s, a, s') + \gamma v(s') \right]$$

$$= \max_{a} q(s, a)$$

$$p(s'|s, a)$$

$$q(s, a) = \sum_{s'} p(s'|s, a) \left[r(s, a, s') + \gamma v(s') \right]$$

$$= \sum_{s'} p(s'|s, a) \left[r(s, a, s') + \gamma \max_{a'} q(s', a') \right]$$

$$s', a' = q(s', a')$$

The tree continues from s' through a' and so on until it terminates

Recap: Bellman optimality equations for v(s) and q(s, a)

$$v(s) = \max_{a} \sum_{s'} p(s'|s,a) \left[r(s,a,s') + \gamma v(s') \right]$$

$$= \max_{a} q(s,a)$$

$$p(s'|s,a)$$

$$q(s,a) = \sum_{s'} p(s'|s,a) \left[r(s,a,s') + \gamma v(s') \right]$$

$$= \sum_{s'} p(s'|s,a) \left[r(s,a,s') + \gamma \max_{a'} q(s',a') \right]$$

The tree continues from s' through a' and so on until it terminates

Learn Q values as the robot/agent goes (temporal difference). If some Q quantity not known, initialize.

- \triangleright time t, at S_t
- ightharpoonup take $A_t \in \mathcal{A}(S_t)$, observe R_{t+1}, S_{t+1}
- compute trial/sample estimate at time trial = $R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a)$
- ightharpoonup α temporal difference update

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(\text{trial} - Q(S_t, A_t))$$

 $\triangleright S_t \leftarrow S_{t+1}$ and repeat (unless S_t is terminal

n each step Q approximates the optimal a^* function

Learn Q values as the robot/agent goes (temporal difference). If some Q quantity not known, initialize.

- \triangleright time t, at S_t
- ▶ take $A_t \in A(S_t)$, observe R_{t+1}, S_{t+1}
- compute trial/sample estimate at time t trial = $R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a)$
- ightharpoonup α temporal difference update

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(\text{trial} - Q(S_t, A_t))$$

 \triangleright $S_t \leftarrow S_{t+1}$ and repeat (unless S_t is terminal

In each step Q approximates the optimal a^* function

Learn Q values as the robot/agent goes (temporal difference). If some Q quantity not known, initialize.

- \triangleright time t, at S_t
- ▶ take $A_t \in \mathcal{A}(S_t)$, observe R_{t+1}, S_{t+1}
- compute trial/sample estimate at time t trial = $R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a)$
- $\triangleright \alpha$ temporal difference update

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(\text{trial} - Q(S_t, A_t))$$

 \triangleright $S_t \leftarrow S_{t+1}$ and repeat (unless S_t is terminal

In each step Q approximates the optimal a^* function.

Learn Q values as the robot/agent goes (temporal difference). If some Q quantity not known, initialize.

- \triangleright time t, at S_t
- ▶ take $A_t \in A(S_t)$, observe R_{t+1}, S_{t+1}
- compute trial/sample estimate at time t trial = $R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a)$
- ▶ α temporal difference update $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(\text{trial} Q(S_t, A_t))$

 \triangleright $S_t \leftarrow S_{t+1}$ and repeat (unless S_t is terminal

In each step Q approximates the optimal q^* function.

Learn Q values as the robot/agent goes (temporal difference). If some Q quantity not known, initialize.

- \triangleright time t, at S_t
- ▶ take $A_t \in \mathcal{A}(S_t)$, observe R_{t+1}, S_{t+1}
- compute trial/sample estimate at time t trial = $R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a)$
- ▶ α temporal difference update $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(\text{trial} Q(S_t, A_t))$
- ▶ $S_t \leftarrow S_{t+1}$ and repeat (unless S_t is terminal)

In each step Q approximates the optimal σ^* function.

Learn Q values as the robot/agent goes (temporal difference). If some Q quantity not known, initialize.

- \triangleright time t, at S_t
- ▶ take $A_t \in \mathcal{A}(S_t)$, observe R_{t+1}, S_{t+1}
- compute trial/sample estimate at time t trial = $R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a)$
- ▶ α temporal difference update $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(\text{trial} Q(S_t, A_t))$
- $ightharpoonup S_t \leftarrow S_{t+1}$ and repeat (unless S_t is terminal)

In each step Q approximates the optimal q^* function.

Q-learning: algorithm

```
step size 0 < \alpha \le 1
initialize Q(s, a) for all s \in \mathcal{S}, a \in \mathcal{S}(s)
repeat episodes:
    initialize S
    for for each step of episode: do
        choose A from S
        take action A, observe R, S'
        Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_{a} Q(S', a) - Q(S, A)]
        S \leftarrow S'
    end for until S is terminal
until Time is up, ...
```

How to select A_t in S_t ?

- ightharpoonup time t, at S_t
- ▶ take $A_t \in \mathcal{A}(S_t)$, observe R_{t+1}, S_{t+1}
- compute trial/sample estimate at time t trial = $R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a)$
- ▶ α temporal difference update $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(\text{trial} Q(S_t, A_t))$
- ▶ $S_t \leftarrow S_{t+1}$ and repeat (unless S_t is terminal)

How to select A_t in S_t ?

- ightharpoonup time t, at S_t
- \blacktriangleright take A_t derived from Q , observe R_{t+1}, S_{t+1}
- ► compute trial/sample estimate at time t trial = $R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a)$
- ▶ α temporal difference update $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(\text{trial} Q(S_t, A_t))$
- ▶ $S_t \leftarrow S_{t+1}$ and repeat (unless S_t is terminal)

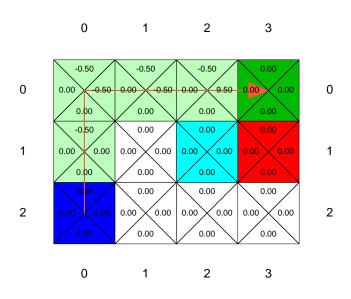
 $\dots A_t$ derived from Q

What about keeping optimality, taking max?

$$A_t = \arg\max_a Q(S_t, a)$$

see the demo run of rl_agents.py.

Two good goal states

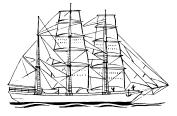


- ▶ Drive the known road or try a new one?
- Go to the university menza or try a nearby restaurant?
- ▶ Use the SW (operating system) I know or try new one?
- Go to bussiness or study a demanding program?
-

- ▶ Drive the known road or try a new one?
- ▶ Go to the university menza or try a nearby restaurant?
- ► Use the SW (operating system) I know or try new one?
- Go to bussiness or study a demanding program of the program of
- . . .

- ▶ Drive the known road or try a new one?
- ▶ Go to the university menza or try a nearby restaurant?
- ▶ Use the SW (operating system) I know or try new one?
- Go to bussiness or study a demanding program?

..



- ▶ Drive the known road or try a new one?
- ▶ Go to the university menza or try a nearby restaurant?
- ▶ Use the SW (operating system) I know or try new one?
- ► Go to bussiness or study a demanding program?

- ▶ Drive the known road or try a new one?
- ▶ Go to the university menza or try a nearby restaurant?
- ▶ Use the SW (operating system) I know or try new one?
- ► Go to bussiness or study a demanding program?
- ...

We can think about lowering ϵ as the learning progresses.

Random (ϵ -greedy):

- ► Flip a coin every step
- \triangleright With probability ϵ , act randomly
- \triangleright With probability 1ϵ , use the policy

Problems with randomness

- Keeps exploring forever
- \triangleright Should we keep ϵ fixed (over learning)
- ho ϵ same everywhere

We can think about lowering ϵ as the learning progresses.

Random (ϵ -greedy):

- ► Flip a coin every step.
- \triangleright With probability ϵ , act randomly
- \blacktriangleright With probability 1ϵ , use the policy

Problems with randomness

- Keeps exploring forever.
- ▶ Should we keep ϵ fixed (over learning)
- $ightharpoonup \epsilon$ same everywhere

Random (ϵ -greedy):

- ► Flip a coin every step.
- ightharpoonup With probability ϵ , act randomly.
- \blacktriangleright With probability 1ϵ , use the policy

Problems with randomness

- Keeps exploring forever
- ▶ Should we keep ϵ fixed (over learning)?
- ightharpoonup ϵ same everywhere

Random (ϵ -greedy):

- ► Flip a coin every step.
- \blacktriangleright With probability ϵ , act randomly.
- \blacktriangleright With probability 1ϵ , use the policy.

Problems with randomness

- Keeps exploring forever
- \triangleright Should we keep ϵ fixed (over learning)?
- ightharpoonup ϵ same everywhere

Random (ϵ -greedy):

- ► Flip a coin every step.
- ightharpoonup With probability ϵ , act randomly.
- \blacktriangleright With probability 1ϵ , use the policy.

Problems with randomness?

- Keeps exploring forever
- ightharpoonup Should we keep ϵ fixed (over learning)
- ightharpoonup ϵ same everywhere

Random (ϵ -greedy):

- ► Flip a coin every step.
- \blacktriangleright With probability ϵ , act randomly.
- ▶ With probability 1ϵ , use the policy.

Problems with randomness?

- ► Keeps exploring forever.
- \triangleright Should we keep ϵ fixed (over learning)
- $ightharpoonup \epsilon$ same everywhere

Random (ϵ -greedy):

- ► Flip a coin every step.
- \blacktriangleright With probability ϵ , act randomly.
- ▶ With probability 1ϵ , use the policy.

Problems with randomness?

- ► Keeps exploring forever.
- \triangleright Should we keep ϵ fixed (over learning)?
- \triangleright ϵ same everywhere?

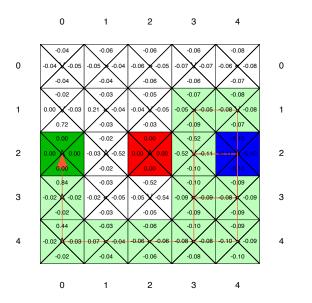
Random (ϵ -greedy):

- ► Flip a coin every step.
- \blacktriangleright With probability ϵ , act randomly.
- ▶ With probability 1ϵ , use the policy.

Problems with randomness?

- ► Keeps exploring forever.
- \triangleright Should we keep ϵ fixed (over learning)?
- $ightharpoonup \epsilon$ same everywhere?

How to evaluate result, when to stop learning?



Run the found policy, discuss some traps, ...

Exploration function f(u, n)

- ▶ Regular trial/sample estimate: trial = $R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a)$
- ▶ If (S_t, a) not yet tried, than perhaps too pesimistic
- $\Rightarrow \text{ trial} = R_{t+1} + \gamma \max_{a} f(Q(S_{t+1}, a), N(S_{t+1}, a))$

where f(u, n)

$$f(u, n) = R^+ \text{ if } n < N_{\epsilon}$$

= $u \text{ otherwise}$

where R^{+} is an optimistic estimate. $\mathit{N_e}$ fixed

Exploration function f(u, n)

- ▶ Regular trial/sample estimate: trial = $R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a)$
- ▶ If (S_t, a) not yet tried, than perhaps too pesimistic.
- $\Rightarrow \text{ trial} = R_{t+1} + \gamma \max_{a} f\left(Q(S_{t+1}, a), N(S_{t+1}, a)\right)$ where f(u, n)

$$f(u, n) = R^+ \text{ if } n < N_e$$

= $u \text{ otherwise}$

where R^\pm is an optimistic estimate. N_e fixed

Exploration function f(u, n)

- ▶ Regular trial/sample estimate: trial = $R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a)$
- ▶ If (S_t, a) not yet tried, than perhaps too pesimistic.

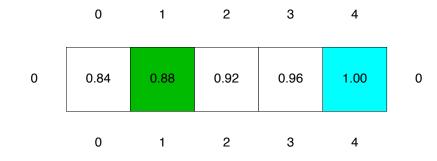
where f(u, n)

$$f(u, n) = R^+ \text{ if } n < N_e$$

= $u \text{ otherwise}$

where R^+ is an optimistic estimate. N_e fixed.

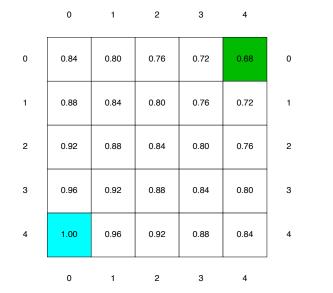
Going beyond tables - generalizing across states



We were talking about v- and q- functions but what was the representation? (look-up) Tables. Looking at v(s), we need a table for each of the state!

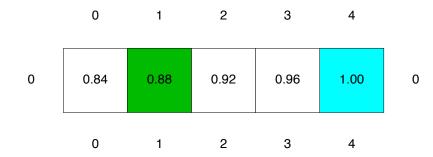
This world is small, but think bigger!

Going beyond tables - generalizing across states



Looking a V(s), we need a table for each of the state! This world is small, but think bigger!

v(s) not as table but as an approximation function

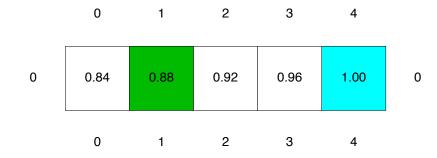


$$\hat{v}(s,\mathbf{w}) = w_0 + w_1$$

What are w_0, w_1 equal to? Instead of the complete table, only 2 parameters to learn $\mathbf{w} = [w_0, w_1]^{\top}$ What are w_0 , w_1 equal to?, we can start from left, target is the true v(s = 0) = 0.84, next target is v(s = 1) = 0.88, ...

Note about notation. Bold lower cases are used to denote vectors. Vectors are always considered oriented columnwise unless explicitly stated otherwise.

v(s) not as table but as an approximation function



$$\hat{v}(s,\mathbf{w})=w_0+w_1s$$

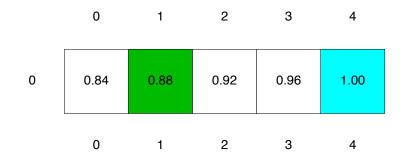
What are w_0 , w_1 equal to?

Instead of the complete table, only 2 parameters to learn $\mathbf{w} = [\mathbf{w}_1, \mathbf{w}_1]^T$

What are w_0 , w_1 equal to?, we can start from left, target is the true v(s = 0) = 0.84, next target is v(s = 1) = 0.88, ...

Note about notation. Bold lower cases are used to denote vectors. Vectors are always considered oriented columnwise unless explicitly stated otherwise.

v(s) not as table but as an approximation function



$$\hat{v}(s,\mathbf{w})=w_0+w_1s$$

What are w_0, w_1 equal to? Instead of the complete table, only 2 parameters to learn $\mathbf{w} = [w_0, w_1]^{\top}$ What are w_0 , w_1 equal to?, we can start from left, target is the true v(s = 0) = 0.84, next target is v(s = 1) = 0.88, ...

Note about notation. Bold lower cases are used to denote vectors. Vectors are always considered oriented columnwise unless explicitly stated otherwise.

Linear value functions

7.00	8.00	9.00	10.00
6.00		8.00	-10.00
5.00	6.00	7.00	6.00

$$\hat{v}(s, \mathbf{w}) = w_1 f_1(s) + w_2 f_2(s) + w_3 f_3(s) + \dots + w_n f_n(s)$$

$$\hat{q}(s, a, \mathbf{w}) = w_1 f_1(s, a) + w_2 f_2(s, a) + w_3 f_3(s, a) + \dots + w_n f_n(s, a)$$

What could be the f functions for the grid world? Obviously, when data are available, we can fit. How to do it on-line?

- ▶ assume $\hat{v}(s, \mathbf{w})$ differentiable in all states
- we update **w** in discrete time steps *t*
- \blacktriangleright in each step S_t we observe a new example of (true) $v^{\pi}(S_t)$
- $ightharpoonup \hat{v}(S_t, \mathbf{w})$ is an approximator $ightharpoonup \operatorname{error} v^{\pi}(S_t) \hat{v}(S_t, \mathbf{w}_t)$

$$\begin{aligned} \mathbf{w}_{t+1} & \doteq & \mathbf{w}_t - \frac{1}{2} \alpha \nabla \Big[v^{\pi}(S_t) - \hat{v}(S_t, \mathbf{w}_t) \Big]^2 \\ & = & \mathbf{w}_t + \alpha \Big[v^{\pi}(S_t) - \hat{v}(S_t, \mathbf{w}_t) \Big] \nabla \hat{v}(S_t, \mathbf{w}_t) \end{aligned}$$

$$\nabla f(\mathbf{w}) \doteq \left[\frac{\partial f(\mathbf{w})}{\partial w_1}, \frac{\partial f(\mathbf{w})}{\partial w_2}, \cdots, \frac{\partial f(\mathbf{w})}{\partial w_d} \right]^{\top}$$

Gradient descent - all samples are known, Stochastic GD - update after each sample

- https://skymind.ai/wiki/deep-reinforcement-learning
- Vision for robotics course you may take next term. https://cw.fel.cvut.cz/wiki/courses/b3b33vir/start

- **>** assume $\hat{v}(s, \mathbf{w})$ differentiable in all states
- ightharpoonup we update $m{\bf w}$ in discrete time steps t
- \blacktriangleright in each step S_t we observe a new example of (true) $v^{\pi}(S_t)$
- $\hat{v}(S_t, \mathbf{w})$ is an approximator \rightarrow error $v^{\pi}(S_t) \hat{v}(S_t, \mathbf{w}_t) \hat{v}(S_t, \mathbf{w}_t)$

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t - \frac{1}{2}\alpha\nabla\Big[v^{\pi}(S_t) - \hat{v}(S_t, \mathbf{w}_t)\Big]^2$$
$$= \mathbf{w}_t + \alpha\Big[v^{\pi}(S_t) - \hat{v}(S_t, \mathbf{w}_t)\Big]\nabla\hat{v}(S_t, \mathbf{w}_t)$$

$$\nabla f(\mathbf{w}) \doteq \left[\frac{\partial f(\mathbf{w})}{\partial w_1}, \frac{\partial f(\mathbf{w})}{\partial w_2}, \cdots, \frac{\partial f(\mathbf{w})}{\partial w_d} \right]^{\top}$$

Gradient descent - all samples are known, Stochastic GD - update after each sample

- https://skymind.ai/wiki/deep-reinforcement-learning
- Vision for robotics course you may take next term. https://cw.fel.cvut.cz/wiki/courses/b3b33vir/start

- **>** assume $\hat{v}(s, \mathbf{w})$ differentiable in all states
- ightharpoonup we update $m{f w}$ in discrete time steps t
- ▶ in each step S_t we observe a new example of (true) $v^{\pi}(S_t)$
- $\hat{v}(S_t, \mathbf{w})$ is an approximator \rightarrow error $v^{\pi}(S_t) \hat{v}(S_t, \mathbf{w}_t)$

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t - \frac{1}{2}\alpha\nabla\Big[v^{\pi}(S_t) - \hat{v}(S_t, \mathbf{w}_t)\Big]^2$$
$$= \mathbf{w}_t + \alpha\Big[v^{\pi}(S_t) - \hat{v}(S_t, \mathbf{w}_t)\Big]\nabla\hat{v}(S_t, \mathbf{w}_t)$$

$$\nabla f(\mathbf{w}) \doteq \left[\frac{\partial f(\mathbf{w})}{\partial w_1}, \frac{\partial f(\mathbf{w})}{\partial w_2}, \cdots, \frac{\partial f(\mathbf{w})}{\partial w_d} \right]^{\top}$$

Gradient descent - all samples are known, Stochastic GD - update after each sample

- https://skymind.ai/wiki/deep-reinforcement-learning
- Vision for robotics course you may take next term. https://cw.fel.cvut.cz/wiki/courses/b3b33vir/start

- **assume** $\hat{v}(s, \mathbf{w})$ differentiable in all states
- ightharpoonup we update $m{\bf w}$ in discrete time steps t
- ▶ in each step S_t we observe a new example of (true) $v^{\pi}(S_t)$
- $ightharpoonup \hat{v}(S_t, \mathbf{w})$ is an approximator o error $v^\pi(S_t) \hat{v}(S_t, \mathbf{w}_t)$

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t - \frac{1}{2} \alpha \nabla \left[v^{\pi}(S_t) - \hat{v}(S_t, \mathbf{w}_t) \right]^2$$
$$= \mathbf{w}_t + \alpha \left[v^{\pi}(S_t) - \hat{v}(S_t, \mathbf{w}_t) \right] \nabla \hat{v}(S_t, \mathbf{w}_t)$$

Gradient descent - all samples are known, Stochastic GD - update after each sample

- https://skymind.ai/wiki/deep-reinforcement-learning
- Vision for robotics course you may take next term. https://cw.fel.cvut.cz/wiki/courses/b3b33vir/start

- **assume** $\hat{v}(s, \mathbf{w})$ differentiable in all states
- \triangleright we update **w** in discrete time steps t
- \triangleright in each step S_t we observe a new example of (true) $v^{\pi}(S_t)$
- $\hat{v}(S_t, \mathbf{w})$ is an approximator \rightarrow error $v^{\pi}(S_t) \hat{v}(S_t, \mathbf{w}_t)$

$$\mathbf{w}_{t+1} \stackrel{.}{=} \mathbf{w}_t - \frac{1}{2} \alpha \nabla \left[v^{\pi}(S_t) - \hat{v}(S_t, \mathbf{w}_t) \right]^2$$

$$= \mathbf{w}_t + \alpha \left[v^{\pi}(S_t) - \hat{v}(S_t, \mathbf{w}_t) \right] \nabla \hat{v}(S_t, \mathbf{w}_t)$$

$$\nabla f(\mathbf{w}) \doteq \left[\frac{\partial f(\mathbf{w})}{\partial w_1}, \frac{\partial f(\mathbf{w})}{\partial w_2}, \cdots, \frac{\partial f(\mathbf{w})}{\partial w_d} \right]^{\top}$$

Gradient descent - all samples are known, Stochastic GD - update after each sample

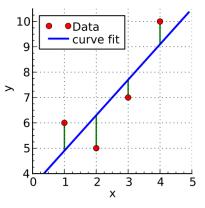
- https://skymind.ai/wiki/deep-reinforcement-learning
- Vision for robotics course you may take next term. https://cw.fel.cvut.cz/wiki/courses/b3b33vir/start

Approximate Q-learning (of a linear combination)

$$\hat{q}(s, a, \mathbf{w}) = w_1 f_1(s, a) + w_2 f_2(s, a) + w_3 f_3(s, a) + \cdots + w_n f_n(s, a)$$

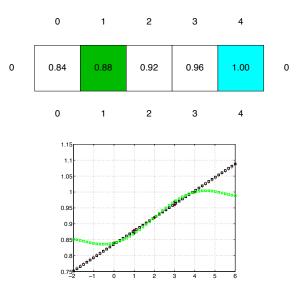
- ightharpoonup transition = S_t , A_t , R_{t+1} , S_{t+1}
- ightharpoonup trial $R_{t+1} + \gamma \max_{a} \hat{q}(S_{t+1}, a, \mathbf{w}_t)$
- ▶ Update: $\mathbf{w} = [w_1, w_2, \cdots, w_d]^{\top}$ $w_i \leftarrow w_i + \alpha [\text{diff}] f_i(S_t, A_t)$

How is it possible at all? On-line least squares!



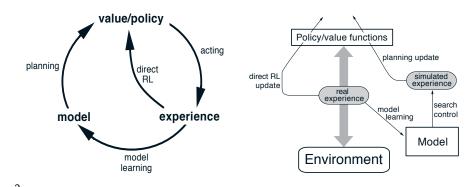
By Krishnavedala - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=15462765

Overfitting



See the ${\tt fitdemo.m.run}$, higher degree polynomials perfectly fits, but poorly generalizes outside the range

Going beyond - Dyna-Q integration planning, acting, learning



²Schemes from [2]

References

Further reading: Chapter 21 of [1]. More detailed discussion in [2] Chapters 6 and 9. You can read about strategies for exploratory moves at various places, Tensor Flow related³. More RL URLs at the course pages⁴.

[1] Stuart Russell and Peter Norvig.

Artificial Intelligence: A Modern Approach.

Prentice Hall, 3rd edition, 2010.

http://aima.cs.berkeley.edu/.

[2] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning; an Introduction. MIT Press, 2nd edition, 2018. http://www.incompleteideas.net/book/bookdraft2018jan1.pdf.

³https://medium.com/emergent-future/ simple-reinforcement-learning-with-tensorflow-part-7-action-selection-stra 4https://cw.fel.cvut.cz/wiki/courses/b3b33kui/cviceni/program_po_ tydnech/tyden_09#reinforcement_learning_plus