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Observable - agent knows where it is. However, it does not always obey
the command.

There is a treasure (desired goal/end state) but there is also some danger
(unwanted goal/end state).

The danger state - think about a mountaineous are with safer but longer
and shorter but more dangerous paths - a dangerous node may represent
a chasm.

Notation note: caligraphic letters like S,.A will denote the set(s) of all

states/actions.
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- . Remember, we can end up in any state. | any state, the robot/agent has
Plan’ POllcy to know what to do.

What is the best policy, we will come to that in a minute, ...

P In deterministic world: Plan —
sequence of actions from Start
to Goal.
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What is the best policy, we will come to that in a minute, ...

P In deterministic world: Plan —
sequence of actions from Start
to Goal.

> MDPs, we need a policy
m:S— A

» An action for each possible
state.

> What is the best policy?

4/23



Rewards

Reward : Robot/Agent takes an action a and it is immediately rewarded.
Reward function r(s) (or r(s, a), r(s,a,s’))

—0.04  (small penalty) for nonterminal states
{ +1 for terminal states
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What do the rewards express? Reward to an agent to be/dwell in that
state? Obviously we want the robot to go to the goal and do not stay too
long in the maze.

Thinking about Reward: Robot/Agent takes an action a and it is imme-
diately rewarded for this. The reward may depend on

e current state s,
e the action taken a
e the next state s’ - result of the action.

Rewards for terminal states can be understood in a way: there is only
one action: a = exit. We will come to this soon.

The reward function is a property of (is related to) the problem.
Notation remark: lowercase letters will be used for functions like
p,ryv,f,...



Markov Decision Processes (MDPs)
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Markov Decision Processes (MDPs)

3
2 [=1]
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1 2 3 4
(a) (b)

States s € S, actions a € A
Model T(s,a,s’) = p(s’|s,a) = probability that a in s leads to s’
Reward function r(s) (or r(s,a), r(s,a,s’))

[ —0.04 (small penalty) for nonterminal states

- { +1 for terminal states
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Markovian property

» Given the present state, the future and the past are independent.
» MDP: Markov means action depends only on the current state.

» In search: successor function (transition model) depends on the
current state only.
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We run mdp_agents.py changing reward functions.

Optimal(?) policies

On-line demos.
> r(s) ={-0.04,1,-1}
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We run mdp_agents.py changing reward functions.

Optimal(?) policies

On-line demos.
> r(s) ={-0.04,1,-1}
> r(s)={-2,1,-1}
> r(s) ={-0.01,1,-1}
How to measure quality of a policy?
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We consdier discrete time t. S;, R; notation emphasises the time sequence
- not a sequence of particular states. The reward is for an action (transi-
tion)

Utilities of sequences

> State reward reward value at time/step t, R;.
> State at time t, S;. State sequence [Sp, S1, S, ...,

[a—
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9/23

We consdier discrete time t. S;, R; notation emphasises the time sequence
- not a sequence of particular states. The reward is for an action (transi-
tion)



Utilities of sequences

> State reward reward value at time/step t, R;.
> State at time t, S;. State sequence [So, S1, Sz, ..., ]

Typically, consider stationary preferences on reward sequences:

[R, Rl, Rg,Rg,...] - [R, R{, Ré,Ré,] = [Rl,Rz, R3,...] - [Ri,Ré,Ré,...

If stationary preferences:
Utility (h-history)
Un([S0, 51,52, .- s ]) =Ri+ Re + Rg + -+
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We consdier discrete time t. S;, R; notation emphasises the time sequence

- not a sequence of particular states. The reward is for an action (transi-
tion)



. R,=0
Returns and Episodes R1—+1 R,=+1 Ry=+1 4=
P ' ,(: ) ,<:> Rs—

» Executing policy - sequence of states and rewards.

» Episode starts at t, ends at T (ending in a terminal state).

» Return (Utility) of the episode (policy execution)

Gt =Riy1+ Riyo + Reyzs+ -+ Rt
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Comparing policies; Finite vs infinite horizon

Problem:

Infinite lifetime = additive utilities are infinite.

11/23

Discounting is quite natural choice. Think about your preferences/rewards.
Go to pub with friends tonight, studying (for the far future reward of getting

A in the course)?

R1_+1 Ry=+1 R;=+1
‘ '(:) '(:) > R5_

Returns are successive steps related to each other

G = Re1+ R+ 7V Rz + P Resa+ -
Rit1 4+ v(Reg2 + ’YlRt+3 + 72Rt+4 +00)
= Rey1+796Gen
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Discounting is quite natural choice. Think about your preferences/rewards.
Go to pub with friends tonight, studying (for the far future reward of getting

Comparing policies; Finite vs infinite horizon
A in the course)?

Problem: Infinite lifetime = additive utilities are infinite.

» Finite horizon: termination at a fixed time = nonstationary policy, R1_+1 Ry=+1 Ry=+1 I:IQ R.-

7(s) depends on the time left.

» Discounted return , v < 1, Ry < Rmax
Returns are successive steps related to each other

R,
Gt = Rey1 +7Req2 + 2R 34 = kR 1 < max
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Problem: Infinite lifetime = additive utilities are infinite. A in the course)?

» Finite horizon: termination at a fixed time = nonstationary policy, R1_+1 Ry=+1 Ry=+1 I:IQ R.-

7(s) depends on the time left.

» Discounted return , v < 1, Ry < Rmax
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MDPs recap

Markov decition processes (MDPs):
> Set of states S
» Set of actions A
» Transitions p(s’[s,a) or T(s,a,s’)

» Reward function r(s, a,s’); and discount ~
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MDPs recap

Markov decition processes (MDPs):
> Set of states S
» Set of actions A
» Transitions p(s’[s,a) or T(s,a,s’)
» Reward function r(s, a,s’); and discount ~
MDP quantities:
» (deterministic) Policy 7(s) — choice of action for each state

» Return (Utility) of an episode (sequence) — sum of (discounted)
rewards.
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. R,=0
Value functions R1_+1 R,=+1 Ry=+1 D@ R4

» Executing policy 7 - sequence of states (and rewards).
> Utility of a state sequence.

Expected value can be also computed by running (executing) the policy
many times and then computing average - Monte Carlo simulation meth-
ods.
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Value functions

» Executing policy 7 - sequence of states (and rewards).
> Utility of a state sequence.

> But actions are unreliable - environment is stochastic.
» Expected return of a policy .

Starting at time t, i.e. S;,
o0
U™(S) =E" [Z ’Yth+k+1]
k=0

Value function

Vﬂ(S) =E" [Gt ’ St = 5] =FE" [Z ’}/th+k+1 St = S]
k=0

Action-value funtion (qg-function)

[e.o]

q"(s,a) =E"[G; | St =5,A, = a] = E" [Z VY Retir1
k=0

St:S,At:a
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R1_+1 R,=+1 Ry=+1 Ry=0
' '(:) '(:) > R5_

Expected value can be also computed by running (executing) the policy
many times and then computing average - Monte Carlo simulation meth-
ods.



. . . We still do not know how to compute the optimality, ... right?
Optimal policy *, and optimal value v*(s) P PHmMAIE. - T8

v*(s) = expected (discounted) sum of rewards (until termination)
assuming optimal actions.
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MDP search tree

The value of a g-state (s, a):

q*(s,a) = _p(s'|a,s) [r(s,a,8) +7 v (s))]

15/23

Vﬂ'(s) = ETr [Gt | St = S]
= E"[Rey1+7Gey1 | St = 9]

> p(s'[,5)r(5,2,5) +1E” [Gera | Seir = ]

Remind Expectimax algorithm from the last lecture.

How to compute V(s)? Well, we could solve the expectimax search - but
it grows quickly. We can see R(s) as the price for leaving the state s just
anyhow.
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MDP search tree

The value of a g-state (s, a):
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ETr [Gt | St = S]
= E"[Re1+7G1 | S =]

> p(s'[,5)r(5,2,5) +1E” [Gera | Seir = ]

Remind Expectimax algorithm from the last lecture.

How to compute V(s)? Well, we could solve the expectimax search - but
it grows quickly. We can see R(s) as the price for leaving the state s just
anyhow.



i i i tation on the table - one row for each action. We got n equations
Bellman (optimality) equation v compu
( P y) q for n unknown - n states. But max is a non-linear operator!

* — / / *(
vi(s) = a?,f();) zs;p(s |la,s) [r(s,a,s") + yv*(s)]

3 0.8

2 =] > o

1 START

(a) b)
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. . What is the complexity of each iteration? O(S%A
Value iteration ' mplexity iteration? O(S%A)

> Start with arbitrary Vj(s) (except for terminals)
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Value iteration

> Start with arbitrary Vj(s) (except for terminals)

» Compute Bellman update (one ply of expectimax from each state)

V +— R(s P(s ) Vi(
k+1(5) +7;§j§2 Is,a) Vi(s')
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What is the complexity of each iteration? O(S2A)



Value iteration

> Start with arbitrary Vj(s) (except for terminals)
» Compute Bellman update (one ply of expectimax from each state)
Vit1(s) < R(s) + v max ZP "Is,a)Vi(s")

acA(s)

> Repeat until convergence
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Value iteration

> Start with arbitrary Vj(s) (except for terminals)

» Compute Bellman update (one ply of expectimax from each state)

V +— R(s P(s ) Vi(
k+1(5) +’73fgj>§Z Is,a) Vi(s')

> Repeat until convergence

The idea: Bellman update makes local consistency with the Bellmann
equation. Everywhere locally consistent = globally optimal.
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What is the complexity of each iteration? O(S2A)



Convergence

Vir1(s) < R(s) +7~ m:(x) P(s'|s, a) Vi(s)
ac S ;

v<1
_Rmax S R(S) S Rmax
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Convergence

Vir1(s) < R(s) +7~ mAa(x) P(s'|s, a) Vi(s)
ac S ;

v<1
—Rmax < R(S) < Rmax

Max norm:
IV = max|V(s)]
= R
U([SO) 517 52, e 7500]) — ;/—th(st) S 1 Tai(y
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Convergence cont'd

Vk+1 — B\/k

1BVi — BV <+[[Vic — V]

HBVk - VtrueH < ’Y”Vk - VtrueH

Rewards are bounded, at the beginning then Value error is

HVO - Vtrue” § 21Rfm;X

We run N iterations and reduce the error by factor v in each and want to
stop the error is below e:

YN2Rmax /(1 — 7) < € Taking logs, we find: N > %

To stop the iteration we want to find a bound relating the error to the size
of one Bellman update for any given iteration.

We stop if

e(l —
Wiewr — Vi < 2=

then also: || Vki1 — Viruell < € Proof on the next slide

19/23

Try to proove that:

| max f(a) — maxg(a)|| < max||f(a) —g(a)]l



Convergence cont'd

IVkt1 — Viruel| < € is the same as || Vi1 — Vo < €

Assume H Vk+1 — Vk” = err

In each of the following iteration steps we reduce the error by the factor ~.
Till co, the total sum of reduced errors is:

yerr

total = ~err + ’y2err + ’y3err + 74err 4=
(1-7)

We want to have total < e.

From it follows that

1
err < ——=

Hence we can stop if ||Vii1 — V|| < e(1—7)/v
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. . Run mdp_agents.py and try to compute next state value in advance.
Value iteration demo Remind the R(s) = —0.04 and v = 1 in order to simplify computation.

Then discuss the course of the Values.

Vii1(s) < R(s) +~ max P(s'|s, a) Vi(s)

acA(s) "
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Value iteration algorithm

function VALUE-ITERATION(env,€) returns: state values V
input: env - MDP problem, ¢
V' < 0 in all states
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Value iteration algorithm

function VALUE-ITERATION(env,€) returns: state values V
input: env - MDP problem, ¢
V' < 0 in all states

repeat > iterate values until convergence
V«— V/ > keep the last known values
6+0 > reset the max difference

for each state s in S do
V'[s] <= R(s) +~v max > P(s'|s,a)V(s')
acA(s)

if |V/[s] — V][s]| > ¢ then § « |V'[s] — V[s]|
end for
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Value iteration algorithm

function VALUE-ITERATION(env,€) returns: state values V
input: env - MDP problem, ¢
V' < 0 in all states

repeat > iterate values until convergence
V«— V/ > keep the last known values
6+0 > reset the max difference

for each state sin S do
V'[s] <= R(s) +~v max > P(s'|s,a)V(s')
acA(s)
if |V/[s] — V][s]| > ¢ then § « |V'[s] — V[s]|
end for

until 0 < €(1—7)/v
end function
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