# Sequential decisions under uncertainty Markov Decision Processes (MDP)

Tomáš Svoboda

Department of Cybernetics, Vision for Robotics and Autonomous Systems, Center for Machine Perception (CMP)

March 20, 2019

### Unreliable actions in observable grid world





States  $s \in \mathcal{S}$ , actions  $a \in \mathcal{A}$ Model  $T(s,a,s') \equiv p(s'|s,a) = \text{probability that } a \text{ in } s \text{ leads to } s'$  Observable - agent knows where it is. However, it does not always obey the command.

There is a treasure (desired goal/end state) but there is also some danger (unwanted goal/end state).

The danger state - think about a mountaineous are with safer but longer and shorter but more dangerous paths - a dangerous node may represent a chasm.

Notation note: caligraphic letters like  $\mathcal{S}, \mathcal{A}$  will denote the set(s) of all states/actions.

### Unreliable actions in observable grid world





States  $s \in \mathcal{S}$ , actions  $a \in \mathcal{A}$ Model  $T(s, a, s') \equiv p(s'|s, a) = \text{probability that } a \text{ in } s \text{ leads to } s'$  Observable - agent knows where it is. However, it does not always obey the command.

There is a treasure (desired goal/end state) but there is also some danger (unwanted goal/end state).

The danger state - think about a mountaineous are with safer but longer and shorter but more dangerous paths - a dangerous node may represent a chasm.

Notation note: caligraphic letters like  $\mathcal{S}, \mathcal{A}$  will denote the set(s) of all states/actions.

## Unreliable actions



Actions: go over a glacier bridge or around?

### Plan? Policy

- ► In deterministic world: Plan sequence of actions from Start to Goal.
- MDPs, we need a policy  $\pi: \mathcal{S} \to \mathcal{A}$ .
- An action for each possible state.
- ► What is the best policy?



Remember, we can end up in any state. I any state, the robot/agent has to know what to do.

What is the best policy, we will come to that in a minute, ...

## Plan? Policy

- ► In deterministic world: Plan sequence of actions from Start to Goal.
- ► MDPs, we need a policy  $\pi: \mathcal{S} \to \mathcal{A}$ .
- An action for each possible state.
- ► What is the best policy?



Remember, we can end up in any state. I any state, the robot/agent has to know what to do.

What is the best policy, we will come to that in a minute, ...

## Plan? Policy

- ► In deterministic world: Plan sequence of actions from Start to Goal.
- ► MDPs, we need a policy  $\pi: \mathcal{S} \to \mathcal{A}$ .
- An action for each possible state.
- ► What is the best policy?



Remember, we can end up in any state. I any state, the robot/agent has to know what to do.

What is the best policy, we will come to that in a minute, ...

### Rewards

| -0.04 | -0.04 | -0.04 | 1.00  |
|-------|-------|-------|-------|
| -0.04 |       | -0.04 | -1.00 |
| -0.04 | -0.04 | -0.04 | -0.04 |

Reward: Robot/Agent takes an action a and it is **immediately** rewarded.

Reward function 
$$-0.04$$

Reward function 
$$r(s)$$
 (or  $r(s, a)$ ,  $r(s, a, s')$ )
$$= \begin{cases}
-0.04 & \text{(small penalty) for nonterminal states} \\
\pm 1 & \text{for terminal states}
\end{cases}$$

What do the rewards express? Reward to an agent to be/dwell in that state? Obviously we want the robot to go to the goal and do not stay too long in the maze.

**Thinking about Reward**: Robot/Agent takes an action a and it is immediately rewarded for this. The reward may depend on

- current state s.
- the action taken a
- the next state s' result of the action.

Rewards for terminal states can be understood in a way: there is only one action: a = exit. We will come to this soon.

The **reward function** is a property of (is related to) the problem.

Notation remark: lowercase letters will be used for functions like  $p, r, v, f, \dots$ 

## Markov Decision Processes (MDPs)





(b)

States  $s \in \mathcal{S}$ , actions  $a \in \mathcal{A}$ Model  $T(s, a, s') \equiv p(s'|s, a) = \text{probability that } a \text{ in } s \text{ leads to}$ Reward function r(s) (or r(s, a), r(s, a, s'))  $= \begin{cases} -0.04 & \text{(small penalty) for nonterminal states} \\ \pm 1 & \text{for terminal states} \end{cases}$ 

## Markov Decision Processes (MDPs)





States 
$$s \in \mathcal{S}$$
, actions  $a \in \mathcal{A}$   
Model  $T(s, a, s') \equiv p(s'|s, a) = \text{probability that } a \text{ in } s \text{ leads to } s'$   
Reward function  $r(s)$  (or  $r(s, a)$ ,  $r(s, a, s')$ )
$$= \begin{cases} -0.04 & \text{(small penalty) for nonterminal states} \\ \pm 1 & \text{for terminal states} \end{cases}$$

### Markovian property

- ▶ Given the present state, the future and the past are independent.
- ▶ MDP: Markov means action depends only on the current state.
- ▶ In search: successor function (transition model) depends on the current state only.

We run mdp\_agents.py changing reward functions.

#### On-line demos.

$$r(s) = \{-0.04, 1, -1\}$$

$$r(s) = \{-2, 1, -1\}$$

$$r(s) = \{-0.01, 1, -1\}$$

How to measure quality of a polic

On-line demos.

$$r(s) = \{-0.04, 1, -1\}$$

$$r(s) = \{-2, 1, -1\}$$

$$r(s) = \{-0.01, 1, -1\}$$

How to measure quality of a policy

We run mdp\_agents.py changing reward functions.

On-line demos.

- $r(s) = \{-0.04, 1, -1\}$
- $r(s) = \{-2, 1, -1\}$
- $r(s) = \{-0.01, 1, -1\}$

How to measure quality of a policy

We run mdp\_agents.py changing reward functions.

We run mdp\_agents.py changing reward functions.

On-line demos.

- $r(s) = \{-0.04, 1, -1\}$
- $r(s) = \{-2, 1, -1\}$
- $r(s) = \{-0.01, 1, -1\}$

How to measure quality of a policy?

### Utilities of sequences

- $\triangleright$  State reward reward value at time/step t,  $R_t$ .
- ▶ State at time t,  $S_t$ . State sequence  $[S_0, S_1, S_2, ...,]$

Typically, consider stationary preferences on reward sequences

$$[R,R_1,R_2,R_3,\ldots] \succ [R,R_1',R_2',R_3',\ldots] \Leftrightarrow [R_1,R_2,R_3,\ldots] \succ [R_1',R_2',R_3',\ldots]$$

If stationary preferences: Utility (h-history)  $U_h([S_0, S_1, S_2, \dots,]) = R_1 + R_2 + R_3 + \cdots$ 

We consdier discrete time t.  $S_t,$   $R_t$  notation emphasises the time sequence - not a sequence of particular states. The reward is for an action (transition)

### Utilities of sequences

- $\triangleright$  State reward reward value at time/step t,  $R_t$ .
- ▶ State at time t,  $S_t$ . State sequence  $[S_0, S_1, S_2, ...,]$

Typically, consider stationary preferences on reward sequences:

$$[R,R_1,R_2,R_3,\ldots] \succ [R,R_1',R_2',R_3',\ldots] \Leftrightarrow [R_1,R_2,R_3,\ldots] \succ [R_1',R_2',R_3',\ldots]$$

If stationary preferences: Utility (h-history)  $U_h([S_0, S_1, S_2, \dots, ]) = R_1 + R_2 + R_3 + \cdots$  We consdier discrete time t.  $S_t, R_t$  notation emphasises the time sequence - not a sequence of particular states. The reward is for an action (transition)

## Utilities of sequences

- $\triangleright$  State reward reward value at time/step t,  $R_t$ .
- ▶ State at time t,  $S_t$ . State sequence  $[S_0, S_1, S_2, \ldots,]$

Typically, consider stationary preferences on reward sequences:

$$[R, R_1, R_2, R_3, \ldots] \succ [R, R'_1, R'_2, R'_3, \ldots] \Leftrightarrow [R_1, R_2, R_3, \ldots] \succ [R'_1, R'_2, R'_3, \ldots]$$

If stationary preferences:

 $U_h([S_0, S_1, S_2, \dots, ]) = R_1 + R_2 + R_3 + \cdots$ 

We consdier discrete time t.  $S_t$ ,  $R_t$  notation emphasises the time sequence - not a sequence of particular states. The reward is for an action (transition)

### Returns and Episodes

- Executing policy sequence of states and **rewards**.
- ▶ Episode starts at *t*, ends at *T* (ending in a terminal state).
- ► Return (Utility) of the episode (policy execution)

$$G_t = R_{t+1} + R_{t+2} + R_{t+3} + \cdots + R_T$$



Problem: Infinite lifetime ⇒ additive utilities are infinite.

- Finite horizon: termination at a fixed time  $\Rightarrow$  nonstationary policy,  $\pi(s)$  depends on the time left.
- ightharpoonup Discounted return ,  $\gamma < 1, R_t < R_{\text{max}}$

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \le \frac{R_{\text{max}}}{1 - \gamma}$$

Absorbing (terminal) state.

Returns are successive steps related to each other

$$G_{t} = R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} R_{t+4} + \cdots$$

$$= R_{t+1} + \gamma (R_{t+2} + \gamma^{1} R_{t+3} + \gamma^{2} R_{t+4} + \cdots)$$

$$= R_{t+1} + \gamma G_{t+1}$$

Discounting is quite natural choice. Think about your preferences/rewards. Go to pub with friends tonight, studying (for the far future reward of getting A in the course)?



$$G_{t} = R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} R_{t+4} + \cdots$$

$$= R_{t+1} + \gamma (R_{t+2} + \gamma^{1} R_{t+3} + \gamma^{2} R_{t+4} + \cdots)$$

$$= R_{t+1} + \gamma G_{t+1}$$

Problem: Infinite lifetime ⇒ additive utilities are infinite.

- Finite horizon: termination at a fixed time  $\Rightarrow$  nonstationary policy,  $\pi(s)$  depends on the time left.
- ightharpoonup Discounted return ,  $\gamma < 1, R_t \le R_{\text{max}}$

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \le \frac{R_{\text{max}}}{1 - \gamma}$$

► Absorbing (terminal) state.

Returns are successive steps related to each other

$$G_{t} = R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} R_{t+4} + \cdots$$

$$= R_{t+1} + \gamma (R_{t+2} + \gamma^{1} R_{t+3} + \gamma^{2} R_{t+4} + \cdots)$$

$$= R_{t+1} + \gamma G_{t+1}$$

Discounting is quite natural choice. Think about your preferences/rewards. Go to pub with friends tonight, studying (for the far future reward of getting A in the course)?



$$G_{t} = R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} R_{t+4} + \cdots$$

$$= R_{t+1} + \gamma (R_{t+2} + \gamma^{1} R_{t+3} + \gamma^{2} R_{t+4} + \cdots)$$

$$= R_{t+1} + \gamma G_{t+1}$$

Problem: Infinite lifetime ⇒ additive utilities are infinite.

- Finite horizon: termination at a fixed time  $\Rightarrow$  nonstationary policy,  $\pi(s)$  depends on the time left.
- ightharpoonup Discounted return ,  $\gamma < 1, R_t \le R_{\text{max}}$

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \le \frac{R_{\mathsf{max}}}{1 - \gamma}$$

Absorbing (terminal) state.

Returns are successive steps related to each other

$$G_{t} = R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} R_{t+4} + \cdots$$

$$= R_{t+1} + \gamma (R_{t+2} + \gamma^{1} R_{t+3} + \gamma^{2} R_{t+4} + \cdots)$$

$$= R_{t+1} + \gamma G_{t+1}$$

Discounting is quite natural choice. Think about your preferences/rewards. Go to pub with friends tonight, studying (for the far future reward of getting A in the course)?



$$G_{t} = R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} R_{t+4} + \cdots$$

$$= R_{t+1} + \gamma (R_{t+2} + \gamma^{1} R_{t+3} + \gamma^{2} R_{t+4} + \cdots)$$

$$= R_{t+1} + \gamma G_{t+1}$$

Problem: Infinite lifetime  $\Rightarrow$  additive utilities are infinite.

- Finite horizon: termination at a fixed time  $\Rightarrow$  nonstationary policy,  $\pi(s)$  depends on the time left.
- ▶ Discounted return ,  $\gamma < 1, R_t \le R_{\text{max}}$

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \le \frac{R_{\mathsf{max}}}{1 - \gamma}$$

► Absorbing (terminal) state.

Returns are successive steps related to each other

$$G_{t} = R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} R_{t+4} + \cdots$$

$$= R_{t+1} + \gamma (R_{t+2} + \gamma^{1} R_{t+3} + \gamma^{2} R_{t+4} + \cdots)$$

$$= R_{t+1} + \gamma G_{t+1}$$

Discounting is quite natural choice. Think about your preferences/rewards. Go to pub with friends tonight, studying (for the far future reward of getting A in the course)?



$$G_{t} = R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} R_{t+4} + \cdots$$

$$= R_{t+1} + \gamma (R_{t+2} + \gamma^{1} R_{t+3} + \gamma^{2} R_{t+4} + \cdots)$$

$$= R_{t+1} + \gamma G_{t+1}$$

Problem: Infinite lifetime ⇒ additive utilities are infinite.

- Finite horizon: termination at a fixed time  $\Rightarrow$  nonstationary policy,  $\pi(s)$  depends on the time left.
- ightharpoonup Discounted return ,  $\gamma < 1, R_t \le R_{\text{max}}$

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \le \frac{R_{\mathsf{max}}}{1 - \gamma}$$

Absorbing (terminal) state.

Returns are successive steps related to each other

$$G_{t} = R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} R_{t+4} + \cdots$$

$$= R_{t+1} + \gamma (R_{t+2} + \gamma^{1} R_{t+3} + \gamma^{2} R_{t+4} + \cdots)$$

$$= R_{t+1} + \gamma G_{t+2} + \gamma^{1} R_{t+3} + \gamma^{2} R_{t+4} + \cdots)$$

Discounting is quite natural choice. Think about your preferences/rewards. Go to pub with friends tonight, studying (for the far future reward of getting A in the course)?



$$G_{t} = R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} R_{t+4} + \cdots$$

$$= R_{t+1} + \gamma (R_{t+2} + \gamma^{1} R_{t+3} + \gamma^{2} R_{t+4} + \cdots)$$

$$= R_{t+1} + \gamma G_{t+1}$$

Problem: Infinite lifetime ⇒ additive utilities are infinite.

- Finite horizon: termination at a fixed time  $\Rightarrow$  nonstationary policy,  $\pi(s)$  depends on the time left.
- ightharpoonup Discounted return ,  $\gamma < 1, R_t \le R_{\text{max}}$

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \le \frac{R_{\mathsf{max}}}{1 - \gamma}$$

Absorbing (terminal) state.

Returns are successive steps related to each other

$$G_{t} = R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} R_{t+4} + \cdots$$
  
=  $R_{t+1} + \gamma (R_{t+2} + \gamma^{1} R_{t+3} + \gamma^{2} R_{t+4} + \cdots)$ 

 $= R_{t+1} + \gamma G_{t+1}$ 

Discounting is quite natural choice. Think about your preferences/rewards. Go to pub with friends tonight, studying (for the far future reward of getting A in the course)?



$$G_{t} = R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} R_{t+4} + \cdots$$

$$= R_{t+1} + \gamma (R_{t+2} + \gamma^{1} R_{t+3} + \gamma^{2} R_{t+4} + \cdots)$$

$$= R_{t+1} + \gamma G_{t+1}$$

Problem: Infinite lifetime ⇒ additive utilities are infinite.

- Finite horizon: termination at a fixed time  $\Rightarrow$  nonstationary policy,  $\pi(s)$  depends on the time left.
- ightharpoonup Discounted return ,  $\gamma < 1, R_t \le R_{\text{max}}$

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \le \frac{R_{\text{max}}}{1 - \gamma}$$

Absorbing (terminal) state.

Returns are successive steps related to each other

$$G_{t} = R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} R_{t+4} + \cdots$$

$$= R_{t+1} + \gamma (R_{t+2} + \gamma^{1} R_{t+3} + \gamma^{2} R_{t+4} + \cdots)$$

$$= R_{t+1} + \gamma G_{t+1}$$

Discounting is quite natural choice. Think about your preferences/rewards. Go to pub with friends tonight, studying (for the far future reward of getting A in the course)?



$$G_{t} = R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} R_{t+4} + \cdots$$

$$= R_{t+1} + \gamma (R_{t+2} + \gamma^{1} R_{t+3} + \gamma^{2} R_{t+4} + \cdots)$$

$$= R_{t+1} + \gamma G_{t+1}$$

### MDPs recap

#### Markov decition processes (MDPs):

- ightharpoonup Set of states S
- ► Set of actions *A*
- ► Transitions p(s'|s, a) or T(s, a, s')
- ▶ Reward function r(s, a, s'); and discount  $\gamma$

#### MDP quantities

- $\triangleright$  (deterministic) Policy  $\pi(s)$  choice of action for each state
- Return (Utility) of an episode (sequence) sum of (discounted) rewards.

## MDPs recap

#### Markov decition processes (MDPs):

- ightharpoonup Set of states S
- $\triangleright$  Set of actions  $\mathcal{A}$
- ▶ Transitions p(s'|s, a) or T(s, a, s')
- ▶ Reward function r(s, a, s'); and discount  $\gamma$

#### MDP quantities:

- (deterministic) Policy  $\pi(s)$  choice of action for each state
- ► Return (Utility) of an episode (sequence) sum of (discounted) rewards.

#### Value functions

- $\blacktriangleright$  Executing policy  $\pi$  sequence of states (and rewards).
- ▶ Utility of a state sequence.
- But actions are unreliable environment is stochastic.
- itarting at time t in S

$$U^{\pi}(S_t) = \mathbb{E}^{\pi} \left[ \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \right]$$

Value function

$$v^{\pi}(s) = \mathsf{E}^{\pi} \left[ \mathsf{G}_t \mid \mathsf{S}_t = s \right] = \mathsf{E}^{\pi} \left[ \sum_{k=0}^{\infty} \gamma^k \mathsf{R}_{t+k+1} \; \middle| \; \mathsf{S}_t = s \right]$$

Action-value funtion (q-function

$$q^{\pi}(s, a) = \mathsf{E}^{\pi} \left[ G_t \mid S_t = s, A_t = a \right] = \mathsf{E}^{\pi} \left[ \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s, A_t = a \right]$$
13/23



Expected value can be also computed by running (executing) the policy many times and then computing average - Monte Carlo simulation methods.

#### Value functions

- $\blacktriangleright$  Executing policy  $\pi$  sequence of states (and rewards).
- Utility of a state sequence.
- But actions are unreliable environment is stochastic.
- $\triangleright$  Expected return of a policy  $\pi$

Starting at time t, i.e.  $S_t$ .

$$U^{\pi}(S_t) = \mathbb{E}^{\pi} \left[ \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \right]$$

Value function

$$v^\pi(s) = \mathsf{E}^\pi \left[ \mathsf{G}_t \mid \mathsf{S}_t = s 
ight] = \mathsf{E}^\pi \left[ \sum_{k=0}^\infty \gamma^k \mathsf{R}_{t+k+1} \; \middle| \; \mathsf{S}_t = s 
ight]$$

Action-value funtion (q-function

$$q^{\pi}(s,a) = \mathsf{E}^{\pi}\left[G_{t} \mid S_{t} = s, A_{t} = a\right] = \mathsf{E}^{\pi}\left[\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \mid S_{t} = s, A_{t} = a\right]$$



Expected value can be also computed by running (executing) the policy many times and then computing average - Monte Carlo simulation methods.

#### Value functions

- $\triangleright$  Executing policy  $\pi$  sequence of states (and rewards).
- Utility of a state sequence.
- But actions are unreliable environment is stochastic.
- $\blacktriangleright$  Expected return of a policy  $\pi$ .

Starting at time t, i.e.  $S_t$ ,

$$U^{\pi}(S_t) = \mathsf{E}^{\pi} \left[ \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \right]$$

#### Value function

$$v^\pi(s) = \mathsf{E}^\pi \left[ \mathsf{G}_t \mid \mathsf{S}_t = s 
ight] = \mathsf{E}^\pi \left[ \sum_{k=0}^\infty \gamma^k \mathsf{R}_{t+k+1} \; \middle| \; \mathsf{S}_t = s 
ight]$$

#### **Action-value funtion (q-function)**

$$q^{\pi}(s, a) = \mathsf{E}^{\pi} \left[ \mathsf{G}_{t} \mid \mathsf{S}_{t} = s, \mathsf{A}_{t} = a \right] = \mathsf{E}^{\pi} \left[ \sum_{k=0}^{\infty} \gamma^{k} \mathsf{R}_{t+k+1} \; \middle| \; \mathsf{S}_{t} = s, \mathsf{A}_{t} = a \right]$$



Expected value can be also computed by running (executing) the policy many times and then computing average - Monte Carlo simulation methods.

 $v^*(s) =$ expected (discounted) sum of rewards (until termination) assuming *optimal* actions.

 $v^*(s) =$ expected (discounted) sum of rewards (until termination) assuming *optimal* actions.



 $v^*(s) =$ expected (discounted) sum of rewards (until termination) assuming *optimal* actions.



We still do not know how to compute the optimality,  $\dots$  right?

#### MDP search tree

#### The value of a q-state (s, a):

$$q^*(s,a) = \sum_{s'} p(s'|a,s) \left[ r(s,a,s') + \gamma v^*(s') \right) \right]$$

The value of a state s

$$v^*(s) = \max_{s} q^*(s, a)$$



$$v^{\pi}(s) = E^{\pi} [G_t \mid S_t = s]$$

$$= E^{\pi} [R_{t+1} + \gamma G_{t+1} \mid S_t = s]$$

$$= \sum_{s'} p(s'|a, s) r(s, a, s') + \gamma E^{\pi} [G_{t+1} \mid S_{t+1} = s']$$

Remind Expectimax algorithm from the last lecture.

How to compute V(s)? Well, we could solve the expectimax search - but it grows quickly. We can see R(s) as the price for leaving the state s just anyhow.

#### MDP search tree

The value of a q-state (s, a):

$$q^*(s, a) = \sum_{s'} p(s'|a, s) [r(s, a, s') + \gamma v^*(s'))]$$

The value of a state s:

$$v^*(s) = \max_{a} q^*(s, a)$$



$$v^{\pi}(s) = E^{\pi} [G_t \mid S_t = s]$$

$$= E^{\pi} [R_{t+1} + \gamma G_{t+1} \mid S_t = s]$$

$$= \sum_{s'} p(s'|a, s) r(s, a, s') + \gamma E^{\pi} [G_{t+1} \mid S_{t+1} = s']$$

Remind Expectimax algorithm from the last lecture.

How to compute V(s)? Well, we could solve the expectimax search - but it grows quickly. We can see R(s) as the price for leaving the state s just anyhow.

#### MDP search tree

The value of a q-state (s, a):

$$q^*(s,a) = \sum_{s'} p(s'|a,s) \left[ r(s,a,s') + \gamma v^*(s') \right) \right]$$

The value of a state s:

$$v^*(s) = \max_a q^*(s, a)$$



$$v^{\pi}(s) = E^{\pi} [G_t \mid S_t = s] 
= E^{\pi} [R_{t+1} + \gamma G_{t+1} \mid S_t = s] 
= \sum_{s'} p(s'|a, s) r(s, a, s') + \gamma E^{\pi} [G_{t+1} \mid S_{t+1} = s']$$

Remind Expectimax algorithm from the last lecture.

How to compute V(s)? Well, we could solve the expectimax search - but it grows quickly. We can see R(s) as the price for leaving the state s just anyhow.

# Bellman (optimality) equation

$$v^*(s) = \max_{a \in A(s)} \sum_{s'} p(s'|a,s) \left[ r(s,a,s') + \gamma v^*(s') \right]$$





(b)

v computation on the table - one row for each action. We got n equations for n unknown - n states. But max is a non-linear operator!

- ▶ Start with arbitrary  $V_0(s)$  (except for terminals)
- Compute Bellman update (one ply of expectimax from each state)

$$V_{k+1}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s, a) V_k(s')$$

Repeat until convergence

The idea: Bellman update makes local consistency with the Bellmann equation. Everywhere locally consistent  $\Rightarrow$  globally optimal.

- ▶ Start with arbitrary  $V_0(s)$  (except for terminals)
- ► Compute Bellman update (one ply of expectimax from each state)

$$V_{k+1}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s, a) V_k(s')$$

Repeat until convergence

The idea: Bellman update makes local consistency with the Bellman equation. Everywhere locally consistent  $\Rightarrow$  globally optimal.

- ▶ Start with arbitrary  $V_0(s)$  (except for terminals)
- ► Compute Bellman update (one ply of expectimax from each state)

$$V_{k+1}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s, a) V_k(s')$$

► Repeat until convergence

The idea: Bellman update makes local consistency with the Bellman equation. Everywhere locally consistent  $\Rightarrow$  globally optimal.

- ▶ Start with arbitrary  $V_0(s)$  (except for terminals)
- ► Compute Bellman update (one ply of expectimax from each state)

$$V_{k+1}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s, a) V_k(s')$$

Repeat until convergence

The idea: Bellman update makes local consistency with the Bellmann equation. Everywhere locally consistent  $\Rightarrow$  globally optimal.

## Convergence

$$V_{k+1}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s, a) V_k(s')$$

$$\gamma < 1$$

$$-R_{\text{max}} \le R(s) \le R_{\text{max}}$$

Max norm:

$$\|v\| = \max_{s} |v(s)|$$

$$J([s_0, s_1, s_2, \dots, s_\infty]) = \sum_{t=0}^{\infty} \gamma^t R(s_t) \le \frac{R_{\text{max}}}{1 - \epsilon}$$

# Convergence

$$V_{k+1}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s, a) V_k(s')$$

$$\gamma < 1$$

$$-R_{\mathsf{max}} \le R(s) \le R_{\mathsf{max}}$$

Max norm:

$$||V|| = \max_{s} |V(s)|$$

$$U([s_0, s_1, s_2, \dots, s_\infty]) = \sum_{t=0}^\infty \gamma^t R(s_t) \leq \frac{R_{\mathsf{max}}}{1 - \gamma}$$

## Convergence cont'd

$$\begin{aligned} & V_{k+1} \leftarrow BV_k \\ & \|BV_k - BV_k'\| \le \gamma \|V_k - V_k'\| \\ & \|BV_k - V_{\text{true}}\| \le \gamma \|V_k - V_{\text{true}}\| \end{aligned}$$

Rewards are bounded, at the beginning then Value error is

$$||V_0 - V_{true}|| \leq \frac{2R_{\text{max}}}{1-\gamma}$$

We run N iterations and reduce the error by factor  $\gamma$  in each and want to stop the error is below  $\epsilon$ :

$$\gamma^{N} 2R_{\text{max}}/(1-\gamma) \le \epsilon$$
 Taking logs, we find:  $N \ge \frac{\log(2R_{\text{max}}/\epsilon(1-\gamma))}{\log(1/\gamma)}$ 

To stop the iteration we want to find a bound relating the error to the size of *one* Bellman update for any given iteration.

We stop if

$$\|V_{k+1} - V_k\| \le \frac{\epsilon(1-\gamma)}{\gamma}$$

then also:  $||V_{k+1} - V_{\text{true}}|| \le \epsilon$  Proof on the next slide

Try to proove that:

$$\| \max f(a) - \max g(a) \| \le \max \| f(a) - g(a) \|$$

#### Convergence cont'd

$$\|V_{k+1} - V_{\text{true}}\| \le \epsilon$$
 is the same as  $\|V_{k+1} - V_{\infty}\| \le \epsilon$ 

Assume  $||V_{k+1} - V_k|| = \text{err}$ 

In each of the following iteration steps we reduce the error by the factor  $\gamma$ .

Till  $\infty$ , the total sum of reduced errors is:

total = 
$$\gamma$$
err +  $\gamma^2$ err +  $\gamma^3$ err +  $\gamma^4$ err +  $\cdots$  =  $\frac{\gamma$ err}{(1 -  $\gamma)}$ 

We want to have total  $< \epsilon$ .

$$\frac{\gamma \text{err}}{(1-\gamma)} < \epsilon$$

From it follows that

$$\operatorname{\mathsf{err}} < rac{\epsilon (1 - \gamma)}{\gamma}$$

Hence we can stop if  $||V_{k+1} - V_k|| < \epsilon(1 - \gamma)/\gamma$ 

#### Value iteration demo

$$V_{k+1}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s, a) V_k(s')$$



Run mdp\_agents.py and try to compute next state value in advance. Remind the R(s)=-0.04 and  $\gamma=1$  in order to simplify computation. Then discuss the course of the Values.

```
function VALUE-ITERATION(env,\epsilon) returns: state values V
   input: env - MDP problem, \epsilon
    V' \leftarrow 0 in all states
```

```
function VALUE-ITERATION(env,\epsilon) returns: state values V
  input: env - MDP problem, \epsilon
   V' \leftarrow 0 in all states
                                 repeat
```

```
function VALUE-ITERATION(env,\epsilon) returns: state values V
  input: env - MDP problem, \epsilon
   V' \leftarrow 0 in all states
                             repeat
     V \leftarrow V'
                                \delta \leftarrow 0
```

```
function VALUE-ITERATION(env,\epsilon) returns: state values V
   input: env - MDP problem, \epsilon
    V' \leftarrow 0 in all states
                                        repeat
       V \leftarrow V'
                                             \delta \leftarrow 0
                                                ▷ reset the max difference
       for each state s in S do
           V'[s] \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s, a) V(s')
           if |V'[s] - V[s]| > \delta then \delta \leftarrow |V'[s] - V[s]|
       end for
```

```
function VALUE-ITERATION(env,\epsilon) returns: state values V
   input: env - MDP problem, \epsilon
    V' \leftarrow 0 in all states
    repeat

    iterate values until convergence

        V \leftarrow V'
                                                 \delta \leftarrow 0
                                                    for each state s in S do
            V'[s] \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s, a) V(s')
           if |V'[s] - V[s]| > \delta then \delta \leftarrow |V'[s] - V[s]|
        end for
   until \delta < \epsilon (1 - \gamma)/\gamma
end function
```

#### References

Some figures from [1] (chapter 17) but notation slightly changed adapting notation from [2] (chapters 3, 4) which will help us in the Reinforcement Learning part of the course.

[1] Stuart Russell and Peter Norvig.

Artificial Intelligence: A Modern Approach.

Prentice Hall, 3rd edition, 2010.

http://aima.cs.berkeley.edu/.

[2] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning; an Introduction. MIT Press, 2nd edition, 2018. http://www.incompleteideas.net/book/the-book-2nd.html.