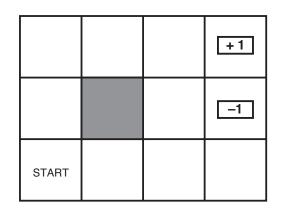
Sequential decisions under uncertainty Markov Decision Processes (MDP)

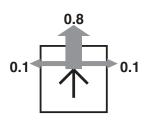
Tomáš Svoboda

Department of Cybernetics, Vision for Robotics and Autonomous Systems, Center for Machine Perception (CMP)

March 20, 2019

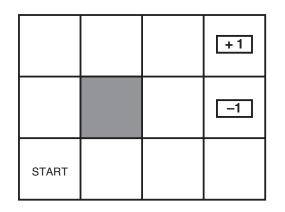
Unreliable actions in observable grid world

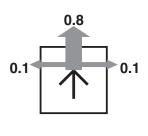




States $s\in\mathcal{S}$, actions $a\in\mathcal{A}$ Model $T(s,a,s')\equiv p(s'|s,a)=$ probability that a in s leads to s'

Unreliable actions in observable grid world



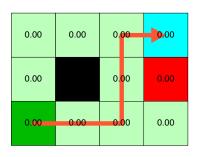


States $s \in S$, actions $a \in A$ Model $T(s, a, s') \equiv p(s'|s, a) =$ probability that a in s leads to s'

Unreliable actions

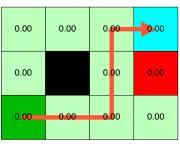
Plan? Policy

- In deterministic world: Plan sequence of actions from Start to Goal.
- MDPs, we need a policy $\pi: \mathcal{S} \to \mathcal{A}$.
- An action for each possible state.
- What is the best policy?



Plan? Policy

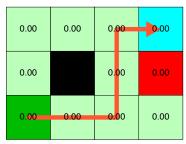
- In deterministic world: Plan sequence of actions from Start to Goal.
- ► MDPs, we need a policy $\pi: \mathcal{S} \to \mathcal{A}$.
- An action for each possible state.
- ► What is the best policy?



>	>	^	None
٨		٨	None
٨	>	٨	<

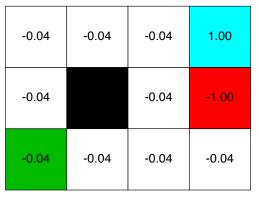
Plan? Policy

- In deterministic world: Plan sequence of actions from Start to Goal.
- ► MDPs, we need a policy $\pi: \mathcal{S} \to \mathcal{A}$.
- An action for each possible state.
- What is the best policy?



>	>	>	None
٨		٨	None
٨	>	٨	<

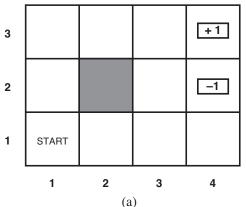
Rewards

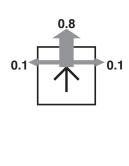


Reward: Robot/Agent takes an action a and it is **immediately** rewarded.

Reward function r(s) (or r(s, a), r(s, a, s')) $= \begin{cases} -0.04 & \text{(small penalty) for nonterminal states} \\ \pm 1 & \text{for terminal states} \end{cases}$

Markov Decision Processes (MDPs)





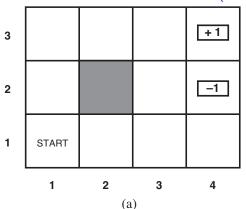
(b)

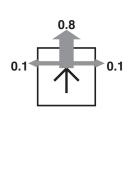
States $s \in S$, actions $a \in A$

Model $T(s, a, s') \equiv p(s'|s, a) = \text{probability that } a \text{ in } s \text{ leads to } s'$ Reward function r(s) (or r(s, a), r(s, a, s'))

 $= \begin{cases} -0.04 & \text{(small penalty) for nonterminal states} \\ +1 & \text{for terminal states} \end{cases}$

Markov Decision Processes (MDPs)





(b)

States $s \in \mathcal{S}$, actions $a \in \mathcal{A}$ Model $T(s, a, s') \equiv p(s'|s, a) = \text{probability that } a \text{ in } s \text{ leads to } s'$ Reward function r(s) (or r(s, a), r(s, a, s')) $= \begin{cases} -0.04 & \text{(small penalty) for nonterminal states} \\ \pm 1 & \text{for terminal states} \end{cases}$

Markovian property

- Given the present state, the future and the past are independent.
- MDP: Markov means action depends only on the current state.
- In search: successor function (transition model) depends on the current state only.

On-line demos.

$$r(s) = \{-0.04, 1, -1\}$$

$$r(s) = \{-2, 1, -1\}$$

$$r(s) = \{-0.01, 1, -1\}$$

On-line demos.

- $r(s) = \{-0.04, 1, -1\}$
- $r(s) = \{-2, 1, -1\}$
- $r(s) = \{-0.01, 1, -1\}$

On-line demos.

- $r(s) = \{-0.04, 1, -1\}$
- $r(s) = \{-2, 1, -1\}$
- $r(s) = \{-0.01, 1, -1\}$

On-line demos.

- $r(s) = \{-0.04, 1, -1\}$
- $r(s) = \{-2, 1, -1\}$
- $r(s) = \{-0.01, 1, -1\}$

Utilities of sequences

- ► State reward reward value at time/step t, R_t.
- ▶ State at time t, S_t . State sequence $[S_0, S_1, S_2, ...,]$

Typically, consider stationary preferences on reward sequences

$$[R, R_1, R_2, R_3, \ldots] \succ [R, R'_1, R'_2, R'_3, \ldots] \Leftrightarrow [R_1, R_2, R_3, \ldots] \succ [R'_1, R'_2, R'_3, \ldots]$$

```
If stationary preferences: Utility (h-history) U_h([S_0, S_1, S_2, \dots, ]) = R_1 + R_2 + R_3 + \cdots
```

Utilities of sequences

- ► State reward reward value at time/step t, R_t.
- ▶ State at time t, S_t . State sequence $[S_0, S_1, S_2, ...,]$

Typically, consider stationary preferences on reward sequences:

$$[R,R_1,R_2,R_3,\ldots] \succ [R,R_1',R_2',R_3',\ldots] \Leftrightarrow [R_1,R_2,R_3,\ldots] \succ [R_1',R_2',R_3',\ldots]$$

If stationary preferences:
Utility $(h ext{-history})$ $U_h([S_0, S_1, S_2, \dots,]) = R_1 + R_2 + R_3 + \cdots$

Utilities of sequences

- State reward reward value at time/step t, R_t.
- ▶ State at time t, S_t . State sequence $[S_0, S_1, S_2, ...,]$

Typically, consider stationary preferences on reward sequences:

$$[R, R_1, R_2, R_3, \ldots] \succ [R, R'_1, R'_2, R'_3, \ldots] \Leftrightarrow [R_1, R_2, R_3, \ldots] \succ [R'_1, R'_2, R'_3, \ldots]$$

If stationary preferences:

Utility (*h*-history)
$$U_h([S_0, S_1, S_2, ...,]) = R_1 + R_2 + R_3 + \cdots$$

Returns and Episodes

- Executing policy sequence of states and rewards.
- \triangleright Episode starts at t, ends at T (ending in a terminal state).
- ► Return (Utility) of the episode (policy execution)

$$G_t = R_{t+1} + R_{t+2} + R_{t+3} + \cdots + R_T$$

Problem: Infinite lifetime ⇒ additive utilities are infinite.

- Finite horizon: termination at a fixed time \Rightarrow nonstationary policy, $\pi(s)$ depends on the time left.
- ightharpoonup Discounted return , $\gamma < 1, R_t < R_{\text{max}}$

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \le \frac{R_{\text{max}}}{1 - \gamma}$$

Absorbing (terminal) state

$$G_{t} = R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} R_{t+4} + \cdots$$

$$= R_{t+1} + \gamma (R_{t+2} + \gamma^{1} R_{t+3} + \gamma^{2} R_{t+4} + \cdots)$$

$$= R_{t+1} + \gamma G_{t+1}$$

Problem: Infinite lifetime ⇒ additive utilities are infinite.

- Finite horizon: termination at a fixed time \Rightarrow nonstationary policy, $\pi(s)$ depends on the time left.
- ightharpoonup Discounted return , $\gamma < 1, R_t \leq R_{\text{max}}$

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \le \frac{R_{\text{max}}}{1 - \gamma}$$

Absorbing (terminal) state

$$G_{t} = R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} R_{t+4} + \cdots$$

$$= R_{t+1} + \gamma (R_{t+2} + \gamma^{1} R_{t+3} + \gamma^{2} R_{t+4} + \cdots)$$

$$= R_{t+1} + \gamma G_{t+1}$$

Problem: Infinite lifetime ⇒ additive utilities are infinite.

- Finite horizon: termination at a fixed time \Rightarrow nonstationary policy, $\pi(s)$ depends on the time left.
- ightharpoonup Discounted return , $\gamma < 1, R_t \le R_{\max}$

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \le \frac{R_{\text{max}}}{1 - \gamma}$$

Absorbing (terminal) state

$$G_{t} = R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} R_{t+4} + \cdots$$

$$= R_{t+1} + \gamma (R_{t+2} + \gamma^{1} R_{t+3} + \gamma^{2} R_{t+4} + \cdots)$$

$$= R_{t+1} + \gamma G_{t+1}$$

Problem: Infinite lifetime ⇒ additive utilities are infinite.

- ► Finite horizon: termination at a fixed time \Rightarrow nonstationary policy, $\pi(s)$ depends on the time left.
- lacktriangle Discounted return , $\gamma < 1, R_t \le R_{\sf max}$

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \le \frac{R_{\text{max}}}{1 - \gamma}$$

Absorbing (terminal) state.

$$G_{t} = R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} R_{t+4} + \cdots$$

$$= R_{t+1} + \gamma (R_{t+2} + \gamma^{1} R_{t+3} + \gamma^{2} R_{t+4} + \cdots)$$

$$= R_{t+1} + \gamma G_{t+1}$$

Problem: Infinite lifetime ⇒ additive utilities are infinite.

- Finite horizon: termination at a fixed time \Rightarrow nonstationary policy, $\pi(s)$ depends on the time left.
- lacktriangle Discounted return , $\gamma < 1, R_t \le R_{\sf max}$

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \le \frac{R_{\text{max}}}{1 - \gamma}$$

Absorbing (terminal) state.

Returns are successive steps related to each other

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} + \cdots$$

 $= R_{t+1} + \gamma (R_{t+2} + \gamma^{1} R_{t+3} + \gamma^{2} R_{t+4} + \cdots)$

 $= R_{t+1} + \gamma G_{t+1}$

Problem: Infinite lifetime \Rightarrow additive utilities are infinite.

- Finite horizon: termination at a fixed time \Rightarrow nonstationary policy, $\pi(s)$ depends on the time left.
- lacktriangle Discounted return , $\gamma < 1, R_t \le R_{\sf max}$

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \le \frac{R_{\text{max}}}{1 - \gamma}$$

Absorbing (terminal) state.

$$G_{t} = R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} R_{t+4} + \cdots$$

= $R_{t+1} + \gamma (R_{t+2} + \gamma^{1} R_{t+3} + \gamma^{2} R_{t+4} + \cdots)$

Problem: Infinite lifetime \Rightarrow additive utilities are infinite.

- Finite horizon: termination at a fixed time \Rightarrow nonstationary policy, $\pi(s)$ depends on the time left.
- lacktriangle Discounted return , $\gamma < 1, R_t \le R_{\sf max}$

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \le \frac{R_{\text{max}}}{1 - \gamma}$$

Absorbing (terminal) state.

$$G_{t} = R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} R_{t+4} + \cdots$$

$$= R_{t+1} + \gamma (R_{t+2} + \gamma^{1} R_{t+3} + \gamma^{2} R_{t+4} + \cdots)$$

$$= R_{t+1} + \gamma G_{t+1}$$

MDPs recap

Markov decition processes (MDPs):

- \triangleright Set of states S
- \triangleright Set of actions \mathcal{A}
- ▶ Transitions p(s'|s, a) or T(s, a, s')
- ▶ Reward function r(s, a, s'); and discount γ

MDP quantities:

- (deterministic) Policy $\pi(s)$ choice of action for each state
- Return (Utility) of an episode (sequence) sum of (discounted) rewards.

MDPs recap

Markov decition processes (MDPs):

- ightharpoonup Set of states S
- \triangleright Set of actions \mathcal{A}
- ▶ Transitions p(s'|s,a) or T(s,a,s')
- ▶ Reward function r(s, a, s'); and discount γ

MDP quantities:

- (deterministic) Policy $\pi(s)$ choice of action for each state
- Return (Utility) of an episode (sequence) sum of (discounted) rewards.

Value functions

- \blacktriangleright Executing policy π sequence of states (and rewards).
- Utility of a state sequence.
- But actions are unreliable environment is stochastic.
- \triangleright Expected return of a policy π .

Starting at time t, i.e. S_t ,

$$U^{\pi}(S_t) = \mathsf{E}^{\pi} \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \right]$$

Value function

$$v^{\pi}(s) = \mathsf{E}^{\pi}\left[\mathsf{G}_t \mid S_t = s
ight] = \mathsf{E}^{\pi}\left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s
ight]$$

Action-value funtion (q-function)

$$v^{\pi}(s) = \mathsf{E}^{\pi}\left[\mathsf{G}_{t} \mid S_{t} = s, A_{t} = a \right] = \mathsf{E}^{\pi}\left[\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \; \middle| \; S_{t} = s, A_{t} = a \right]$$

Value functions

- \blacktriangleright Executing policy π sequence of states (and rewards).
- Utility of a state sequence.
- But actions are unreliable environment is stochastic.
- ightharpoonup Expected return of a policy π .

Starting at time t, i.e. \mathcal{S}_t ,

$$U^{\pi}(S_t) = \mathsf{E}^{\pi} \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \right]$$

Value function

$$v^{\pi}(s) = \mathsf{E}^{\pi} \left[\mathsf{G}_t \mid \mathsf{S}_t = s \right] = \mathsf{E}^{\pi} \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \; \middle| \; \mathsf{S}_t = s \right]$$

Action-value funtion (q-function)

$$v^{\pi}(s) = \mathsf{E}^{\pi}\left[\mathsf{G}_{t} \mid S_{t} = s, A_{t} = a \right] = \mathsf{E}^{\pi}\left[\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \; \middle| \; S_{t} = s, A_{t} = a \right]$$

Value functions

- \blacktriangleright Executing policy π sequence of states (and rewards).
- Utility of a state sequence.
- But actions are unreliable environment is stochastic.
- ightharpoonup Expected return of a policy π .

Starting at time t, i.e. S_t ,

$$U^{\pi}(S_t) = \mathsf{E}^{\pi} \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \right]$$

Value function

$$v^\pi(s) = \mathsf{E}^\pi \left[\mathsf{G}_t \mid \mathsf{S}_t = s
ight] = \mathsf{E}^\pi \left[\sum_{k=0}^\infty \gamma^k \mathsf{R}_{t+k+1} \; \middle| \; \mathsf{S}_t = s
ight]$$

Action-value funtion (q-function)

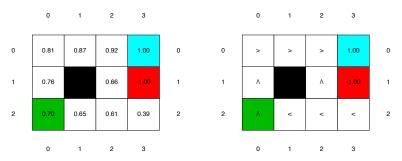
$$v^{\pi}(s) = \mathsf{E}^{\pi} \left[\mathsf{G}_t \mid \mathsf{S}_t = s, \mathsf{A}_t = \mathsf{a} \right] = \mathsf{E}^{\pi} \left[\sum_{k=0}^{\infty} \gamma^k \mathsf{R}_{t+k+1} \mid \mathsf{S}_t = s, \mathsf{A}_t = \mathsf{a} \right]$$

Optimal policy π^* , and optimal value $v^*(s)$

 $v^*(s) =$ expected (discounted) sum of rewards (until termination) assuming *optimal* actions.

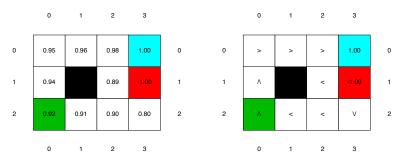
Optimal policy π^* , and optimal value $v^*(s)$

 $v^*(s) =$ expected (discounted) sum of rewards (until termination) assuming *optimal* actions.



Optimal policy π^* , and optimal value $v^*(s)$

 $v^*(s) =$ expected (discounted) sum of rewards (until termination) assuming *optimal* actions.



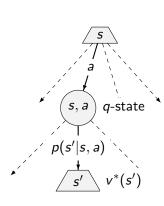
MDP search tree

The value of a q-state (s, a):

$$q^*(s,a) = \sum_{s'} p(s'|a,s) \left[r(s,a,s') + \gamma v^*(s') \right) \right]$$

The value of a state s:

$$v^*(s) = \max_a q^*(s, a)$$



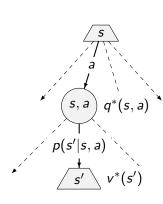
MDP search tree

The value of a q-state (s, a):

$$q^*(s,a) = \sum_{s'} p(s'|a,s) \left[r(s,a,s') + \gamma v^*(s') \right) \right]$$

The value of a state s:

$$v^*(s) = \max_a q^*(s,a)$$



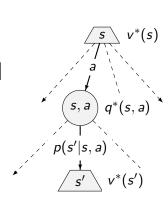
MDP search tree

The value of a q-state (s, a):

$$q^*(s, a) = \sum_{s'} p(s'|a, s) \left[r(s, a, s') + \gamma v^*(s') \right]$$

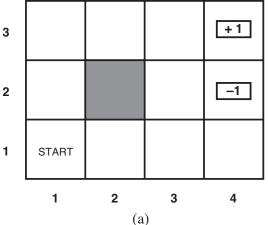
The value of a state s:

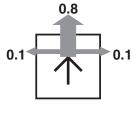
$$v^*(s) = \max_a q^*(s, a)$$



Bellman (optimality) equation

$$v^{*}(s) = \max_{a \in A(s)} \sum_{s'} p(s'|a, s) r(s, a, s') + \gamma v^{*}(s')$$
+1





(b)

- ▶ Start with arbitrary $V_0(s)$ (except for terminals)
- ► Compute Bellman update (one ply of expectimax from each state)

$$V_{k+1}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s, a) V_k(s')$$

Repeat until convergence

- ightharpoonup Start with arbitrary $V_0(s)$ (except for terminals)
- Compute Bellman update (one ply of expectimax from each state)

$$V_{k+1}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s, a) V_k(s')$$

Repeat until convergence

- ▶ Start with arbitrary $V_0(s)$ (except for terminals)
- ► Compute Bellman update (one ply of expectimax from each state)

$$V_{k+1}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s, a) V_k(s')$$

Repeat until convergence

- ▶ Start with arbitrary $V_0(s)$ (except for terminals)
- Compute Bellman update (one ply of expectimax from each state)

$$V_{k+1}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s, a) V_k(s')$$

Repeat until convergence

Convergence

$$\begin{aligned} V_{k+1}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s, a) V_k(s') \\ \gamma < 1 \\ -R_{\text{max}} \leq R(s) \leq R_{\text{max}} \end{aligned}$$

Max norm:

$$\|V\|=\max_s |V(s)|$$
 $U([s_0,s_1,s_2,\ldots,s_\infty])=\sum_{t=0}^\infty \gamma^t R(s_t) \leq rac{R_{ ext{max}}}{1-\gamma^t}$

Convergence

$$egin{aligned} V_{k+1}(s) \leftarrow R(s) + \gamma \max_{\mathbf{a} \in A(s)} \sum_{s'} P(s'|s,a) V_k(s') \\ \gamma < 1 \\ -R_{\mathsf{max}} \leq R(s) \leq R_{\mathsf{max}} \end{aligned}$$

Max norm:

$$\|V\| = \max_{s} |V(s)|$$

$$U([s_0, s_1, s_2, \dots, s_{\infty}]) = \sum_{t=0}^{\infty} \gamma^t R(s_t) \le \frac{R_{\mathsf{max}}}{1 - \gamma}$$

Convergence cont'd

$$\begin{aligned} & V_{k+1} \leftarrow BV_k \\ & \|BV_k - BV_k'\| \leq \gamma \|V_k - V_k'\| \\ & \|BV_k - V_{\mathsf{true}}\| \leq \gamma \|V_k - V_{\mathsf{true}}\| \end{aligned}$$

Rewards are bounded, at the beginning then Value error is

$$||V_0 - V_{true}|| \le \frac{2R_{\text{max}}}{1-\gamma}$$

We run N iterations and reduce the error by factor γ in each and want to stop the error is below ϵ :

$$\gamma^N 2R_{\max}/(1-\gamma) \le \epsilon$$
 Taking logs, we find: $N \ge \frac{\log(2R_{\max}/\epsilon(1-\gamma))}{\log(1/\gamma)}$

To stop the iteration we want to find a bound relating the error to the size of *one* Bellman update for any given iteration.

We stop if

$$\|V_{k+1} - V_k\| \le \frac{\epsilon(1-\gamma)}{\gamma}$$

then also: $||V_{k+1} - V_{\text{true}}|| \le \epsilon$ Proof on the next slide

Convergence cont'd

$$\|V_{k+1} - V_{\mathsf{true}}\| \leq \epsilon$$
 is the same as $\|V_{k+1} - V_{\infty}\| \leq \epsilon$

Assume $||V_{k+1} - V_k|| = \text{err}$

In each of the following iteration steps we reduce the error by the factor γ . Till ∞ , the total sum of reduced errors is:

total =
$$\gamma$$
err + γ^2 err + γ^3 err + γ^4 err + \cdots = $\frac{\gamma$ err}{(1 - $\gamma)}$

We want to have total $< \epsilon$.

$$\frac{\gamma \mathsf{err}}{(1-\gamma)} < \epsilon$$

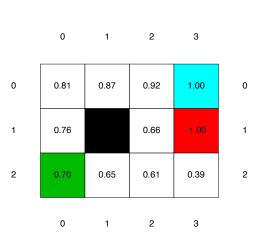
From it follows that

$$\operatorname{err} < rac{\epsilon(1-\gamma)}{\gamma}$$

Hence we can stop if $||V_{k+1} - V_k|| < \epsilon(1 - \gamma)/\gamma$

Value iteration demo

$$V_{k+1}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s,a) V_k(s')$$



```
function VALUE-ITERATION(env,\epsilon) returns: state values V
    input: env - MDP problem, \epsilon
    V' \leftarrow 0 in all states
```

```
function VALUE-ITERATION(env,\epsilon) returns: state values V
    input: env - MDP problem, \epsilon
    V' \leftarrow 0 in all states

    iterate values until convergence

    repeat
```

```
function VALUE-ITERATION(env,\epsilon) returns: state values V
   input: env - MDP problem, \epsilon
    V' \leftarrow 0 in all states

    iterate values until convergence

   repeat
       V \leftarrow V'
                                              \delta \leftarrow 0
                                                 > reset the max difference
```

```
function VALUE-ITERATION(env,\epsilon) returns: state values V
    input: env - MDP problem, \epsilon
    V' \leftarrow 0 in all states

    iterate values until convergence

    repeat
        V \leftarrow V'
                                                   \delta \leftarrow 0
                                                       > reset the max difference
        for each state s in S do
            V'[s] \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s, a) V(s')
            if |V'[s] - V[s]| > \delta then \delta \leftarrow |V'[s] - V[s]|
        end for
```

22 / 23

```
function VALUE-ITERATION(env,\epsilon) returns: state values V
    input: env - MDP problem, \epsilon
    V' \leftarrow 0 in all states

    iterate values until convergence

    repeat
        V \leftarrow V'
                                                     \delta \leftarrow 0
                                                        > reset the max difference
        for each state s in S do
             V'[s] \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s, a) V(s')
            if |V'[s] - V[s]| > \delta then \delta \leftarrow |V'[s] - V[s]|
        end for
    until \delta < \epsilon (1 - \gamma)/\gamma
end function
```

References

Some figures from [1] but notation slightly changed adapting notation from [2] (chaspter 3, 4) which will help us in the Reinforcement Learning part of the course.

[1] Stuart Russell and Peter Norvig.

Artificial Intelligence: A Modern Approach.

Prentice Hall, 3rd edition, 2010.

http://aima.cs.berkeley.edu/.

[2] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning; an Introduction.

MIT Press, 2nd edition, 2018.

http://www.incompleteideas.net/book/the-book-2nd.html.