Sequential decisions under uncertainty
Markov Decision Processes (MDP)

Tomas Svoboda

Department of Cybernetics, Vision for Robotics and Autonomous Systems,
Center for Machine Perception (CMP)

March 20, 2019

1/23

http://cyber.felk.cvut.cz
http://cyber.felk.cvut.cz/vras

Unreliable actions in observable grid world

0.1 0.1
=]

START

2/23

Unreliable actions in observable grid world

START

States s € S, actions a € A

0.1

0.8

0.1

Model T(s,a,s’) = p(s’|s,a) = probability that a in s leads to s’

2/23

Unreliable actions

3/23

Plan? Policy

P In deterministic world: Plan —
sequence of actions from Start
to Goal.

4/23

Plan? Policy

P In deterministic world: Plan —
sequence of actions from Start
to Goal.

> MDPs, we need a policy
m:S— A

» An action for each possible
state.

4/23

Plan? Policy

P In deterministic world: Plan —
sequence of actions from Start
to Goal.

> MDPs, we need a policy
m:S— A

» An action for each possible
state.

> What is the best policy?

4/23

Rewards

Reward : Robot/Agent takes an action a and it is immediately rewarded.
Reward function r(s) (or r(s, a), r(s,a,s’))

[—0.04 (small penalty) for nonterminal states

N { +1 for terminal states

5/23

Markov Decision Processes (MDPs)

3
2 [=1]
1 | START

1 2 3 4

(a) (b)

6/23

Markov Decision Processes (MDPs)

3
2 [=1]
1 | START
1 2 3 4
(a) (b)

States s € S, actions a € A
Model T(s,a,s’) = p(s’|s,a) = probability that a in s leads to s’
Reward function r(s) (or r(s,a), r(s,a,s’))
—0.04 (small penalty) for nonterminal states
{ +1 for terminal states

6/23

Markovian property

» Given the present state, the future and the past are independent.
» MDP: Markov means action depends only on the current state.

» In search: successor function (transition model) depends on the
current state only.

7/23

Optimal(?) policies

On-line demos.
> r(s) ={-0.04,1,-1}

8/23

Optimal(?) policies

On-line demos.
> r(s) ={-0.04,1,-1}
> r(s)={-2,1,-1}

8/23

Optimal(?) policies

On-line demos.
> r(s) ={-0.04,1,-1}
> r(s)={-2,1,-1}
> r(s) = {-0.01,1,—1}

8/23

Optimal(?) policies

On-line demos.
> r(s) ={-0.04,1,-1}
> r(s)={-2,1,-1}
> r(s) ={-0.01,1,-1}
How to measure quality of a policy?

8/23

Utilities of sequences

> State reward reward value at time/step t, R;.
> State at time t, S;. State sequence [So, S1, Sz, ...,]

9/23

Utilities of sequences

> State reward reward value at time/step t, R;.
> State at time t, S;. State sequence [So, S1, Sz, ...,]

Typically, consider stationary preferences on reward sequences:

[R, Rl, RQ,R3,...] - [R, R{, Ré,Ré,] = [Rl,Rz, R3,...] - [Ri,Ré,Ré,..]

9/23

Utilities of sequences

> State reward reward value at time/step t, R;.
> State at time t, S;. State sequence [So, S1, Sz, ...,]

Typically, consider stationary preferences on reward sequences:

[R, Rl, RQ,R3,...] - [R, R{, Ré,Ré,] = [Rl,Rz, R3,...] - [Ri,Ré,Ré,...

If stationary preferences:
Utility (h-history)
Un([S0, 51,52, .- s]) =Ri+ Re + Rg + -+

9/23

Returns and Episodes

» Executing policy - sequence of states and rewards.

» Episode starts at t, ends at T (ending in a terminal state).

» Return (Utility) of the episode (policy execution)

Gt:Rt+1+Rt+2+Rt+3+...+RT

10/23

Comparing policies; Finite vs infinite horizon

Problem: Infinite lifetime = additive utilities are infinite.

11/23

Comparing policies; Finite vs infinite horizon
Problem: Infinite lifetime = additive utilities are infinite.

» Finite horizon: termination at a fixed time = nonstationary policy,
7(s) depends on the time left.

11/23

Comparing policies; Finite vs infinite horizon
Problem: Infinite lifetime = additive utilities are infinite.

» Finite horizon: termination at a fixed time = nonstationary policy,
7(s) depends on the time left.

» Discounted return , v < 1, Ry < Rmax

Rmax
1—7

[e.e]
Gt = Res1 +YRera + 7Rz +-+- = > 7 Reppqa <
k=0

11/23

Comparing policies; Finite vs infinite horizon
Problem: Infinite lifetime = additive utilities are infinite.

» Finite horizon: termination at a fixed time = nonstationary policy,
7(s) depends on the time left.

» Discounted return , v < 1, Ry < Rmax

Rmax
I—vy

[e.e]
Gt = Res1 +YRera + 7Rz +-+- = > 7 Reppqa <
k=0

» Absorbing (terminal) state.

11/23

Comparing policies; Finite vs infinite horizon
Problem: Infinite lifetime = additive utilities are infinite.

» Finite horizon: termination at a fixed time = nonstationary policy,
7(s) depends on the time left.

» Discounted return , v < 1, Ry < Rmax

Rmax
I—vy

[e.e]
Gt = Res1 +YRera + 7Rz +-+- = > 7 Reppqa <
k=0

» Absorbing (terminal) state.

Returns are successive steps related to each other

Gt = Rer1+YRe2+7VRepz + 7 Reya+ -

11/23

Comparing policies; Finite vs infinite horizon
Problem: Infinite lifetime = additive utilities are infinite.

» Finite horizon: termination at a fixed time = nonstationary policy,
7(s) depends on the time left.

» Discounted return , v < 1, Ry < Rmax

Rmax
I—vy

[e.e]
Gt = Res1 +YRera + 7Rz +-+- = > 7 Reppqa <
k=0

» Absorbing (terminal) state.

Returns are successive steps related to each other

Gt = Rer1+YRe2+7VRepz + 7 Reya+ -
= Rey1 +Y(Rer2 + 7 Reys + Y Rega +)

11/23

Comparing policies; Finite vs infinite horizon
Problem: Infinite lifetime = additive utilities are infinite.

» Finite horizon: termination at a fixed time = nonstationary policy,
7(s) depends on the time left.

» Discounted return , v < 1, Ry < Rmax

Rmax
I—vy

[e.e]
Gt = Res1 +YRera + 7Rz +-+- = > 7 Reppqa <
k=0

» Absorbing (terminal) state.

Returns are successive steps related to each other

Gt = Rer1+YRe2+7VRepz + 7 Reya+ -
= Rey1 +Y(Rer2 + 7 Reys + Y Rega +)
= Rij1+7Gea

11/23

MDPs recap

Markov decition processes (MDPs):
> Set of states S
» Set of actions A
» Transitions p(s’[s,a) or T(s,a,s’)

» Reward function r(s, a,s’); and discount ~

12/23

MDPs recap

Markov decition processes (MDPs):
> Set of states S
» Set of actions A
» Transitions p(s’[s,a) or T(s,a,s’)
» Reward function r(s, a,s’); and discount ~
MDP quantities:
» (deterministic) Policy 7(s) — choice of action for each state

» Return (Utility) of an episode (sequence) — sum of (discounted)
rewards.

12/23

Value functions

» Executing policy 7 - sequence of states (and rewards).
> Utility of a state sequence.

13/23

Value functions

» Executing policy 7 - sequence of states (and rewards).
> Utility of a state sequence.
> But actions are unreliable - environment is stochastic.

13/23

Value functions

» Executing policy 7 - sequence of states (and rewards).
> Utility of a state sequence.

> But actions are unreliable - environment is stochastic.
» Expected return of a policy .

Starting at time t, i.e. S;,
o0
U™(S) =E" [Z ’Yth+k+1]
k=0
Value function

Vﬂ(S) =E" [Gt ’ St = 5] =FE" Z’Yth+k+1 St = S]
Lk=0

Action-value funtion (qg-function)
[oo
VW(S) =E" [Gt | St = S,At = 3] =E" Z’yth+k+1
Lk=0

St:S,At:a

13/23

Optimal policy 7*, and optimal value v*(s)

v*(s) = expected (discounted) sum of rewards (until termination)
assuming optimal actions.

14/23

Optimal policy 7*, and optimal value v*(s)

v*(s) = expected (discounted) sum of rewards (until termination)
assuming optimal actions.

0 1 2 3 0 1 2 3

14/23

Optimal policy 7*, and optimal value v*(s)

v*(s) = expected (discounted) sum of rewards (until termination)
assuming optimal actions.

0 1 2 3 0 1 2 3

14/23

MDP search tree

The value of a g-state (s, a): @

q*(s,a) = Zp(s'|a, s) [r(s,a,s") + v v*(s))] oA

15/23

MDP search tree

The value of a g-state (s, a): @

q*(s,a) = Zp(s'|a, s) [r(s,a,s") + v v*(s))] oA

The value of a state s: ,

v*(s) = maxg*(s, a) ','/
a [\ @)

15/23

MDP search tree

The value of a g-state (s, a): @ v¥(s)

q*(s,a) = Zp(s'|a, s) [r(s,a,s") + v v*(s))] oA

The value of a state s: ,

v*(s) = maxq*(s, a) ',/
a [N\)

15/23

Bellman (optimality) equation

vi(s)= max Z p(s'|a,s)r(s, a,s') +v*(s))

3
2 (1]
1 | START
1 2 4
(@)

0.8

0.1 0.1

(b)

16/23

Value iteration

> Start with arbitrary Vj(s) (except for terminals)

17/23

Value iteration

> Start with arbitrary Vj(s) (except for terminals)

» Compute Bellman update (one ply of expectimax from each state)

V +— R(s P(s) Vi(
k+1(5) +'732‘j>§2 Is,a) Vi(s')

17/23

Value iteration

> Start with arbitrary Vj(s) (except for terminals)
» Compute Bellman update (one ply of expectimax from each state)
Vit1(s) < R(s) + v max ZP "Is,a)Vi(s")

acA(s)

> Repeat until convergence

17/23

Value iteration

> Start with arbitrary Vj(s) (except for terminals)

» Compute Bellman update (one ply of expectimax from each state)

V +— R(s P(s) Vi(
k+1(5) +7;§j§2 Is,a) Vi(s')

> Repeat until convergence

The idea: Bellman update makes local consistency with the Bellmann
equation. Everywhere locally consistent = globally optimal.

17/23

Convergence

Vir1(s) < R(s) +7~ m:(x) P(s'|s, a) Vi(s)
ac S ;

v<1
_Rmax S R(S) S Rmax

18/23

Convergence

Vir1(s) < R(s) +7~ mAa(x) P(s'|s, a) Vi(s)
ac S ;

v<1
—Rmax < R(S) < Rmax

Max norm:
IV = max|V(s)]
= R
U([SO) 517 52, e 7500]) — ;/—th(st) S 1 Tai(y

18/23

Convergence cont'd

Vk+1 — B\/k

1BVi — BV <+[[Vic — V]

HBVk - VtrueH < ’Y”Vk - VtrueH

Rewards are bounded, at the beginning then Value error is

HVO - Vtrue” § 21Rfm;X

We run N iterations and reduce the error by factor v in each and want to
stop the error is below e:

YN2Rmax /(1 — 7) < € Taking logs, we find: N > %

To stop the iteration we want to find a bound relating the error to the size
of one Bellman update for any given iteration.

We stop if

e(l —
Wiewr — Vi < 2=

then also: || Vki1 — Viruell < € Proof on the next slide

19/23

Convergence cont'd

IVkt1 — Viruel| < € is the same as || Vi1 — Vo < €

Assume H Vk+1 — Vk” = err

In each of the following iteration steps we reduce the error by the factor ~.
Till co, the total sum of reduced errors is:

yerr

total = ~err + ’y2err + ’y3err + 74err 4=
(1-7)

We want to have total < e.

From it follows that

1
err < ——=

Hence we can stop if ||Vii1 — V|| < e(1—7)/v

20/23

Value iteration demo

Vis1(s) < R(s) + v max P(s'|s, a) Vi(s)

acA(s) -

21/23

Value iteration algorithm

function VALUE-ITERATION(env,€) returns: state values V
input: env - MDP problem, ¢
V' < 0 in all states

22/23

Value iteration algorithm

function VALUE-ITERATION(env,€) returns: state values V
input: env - MDP problem, ¢
V' < 0 in all states
repeat > iterate values until convergence

22/23

Value iteration algorithm

function VALUE-ITERATION(env,€) returns: state values V
input: env - MDP problem, ¢
V' < 0 in all states

repeat > iterate values until convergence
V«— V/ > keep the last known values
00 > reset the max difference

22/23

Value iteration algorithm

function VALUE-ITERATION(env,€) returns: state values V
input: env - MDP problem, ¢
V' < 0 in all states

repeat > iterate values until convergence
V«— V/ > keep the last known values
6+0 > reset the max difference

for each state s in S do
V'[s] <= R(s) +~v max > P(s'|s,a)V(s')
acA(s)

if |V/[s] — V][s]| > ¢ then § « |V'[s] — V[s]|
end for

22/23

Value iteration algorithm

function VALUE-ITERATION(env,€) returns: state values V
input: env - MDP problem, ¢
V' < 0 in all states

repeat > iterate values until convergence
V«— V/ > keep the last known values
6+0 > reset the max difference

for each state sin S do
V'[s] <= R(s) +~v max > P(s'|s,a)V(s')
acA(s)
if |V/[s] — V][s]| > ¢ then § « |V'[s] — V[s]|
end for

until 0 < €(1—7)/v
end function

22/23

References

Some figures from [1] but notation slightly changed adapting notation

from [2] (chaspter 3, 4) which will help us in the Reinforcement Learning
part of the course.

[1] Stuart Russell and Peter Norvig.
Artificial Intelligence: A Modern Approach.

Prentice Hall, 3rd edition, 2010.
http://aima.cs.berkeley.edu/.

[2] Richard S. Sutton and Andrew G. Barto.
Reinforcement Learning; an Introduction.
MIT Press, 2nd edition, 2018.

http://www.incompleteideas.net/book/the-book-2nd.html.

23/23

http://aima.cs.berkeley.edu/
http://www.incompleteideas.net/book/the-book-2nd.html

	Introduction
	Rewards

	MDPs
	Utilities

	Solving MDPs
	Utilities, Values, MEU
	Value iteration

	References

