Sequential decisions under uncertainty
Markov Decision Processes (MDP)

Tom3as Svoboda

Department of Cybernetics, Vision for Robotics and Autonomous Systems,

Center for Machine Perception (CMP)

May 28, 2018

/23

http://cyber.felk.cvut.cz
http://cyber.felk.cvut.cz/vras

. . . . Observable - agent knows where it is. However, it does not always obey
Unreliable actions in observable grid world S ——)

There is a treasure but there is also some danger.
The danger state - think about a mountaineous are with safer but longer
and shorter but more dangerous paths - a dangerous node may represent

0.8 a chasm.

0.1 0.1
=]

START

Unreliable actions in observable grid world

START

States s € S, actionsa€ A

0.1

0.8

0.1

Model T(s,a,s’) = P(s'|s,a) = probability that a in s leads to s’

/23

Observable - agent knows where it is. However, it does not always obey

the command.

There is a treasure but there is also some danger.

The danger state - think about a mountaineous are with safer but longer
and shorter but more dangerous paths - a dangerous node may represent
a chasm.

. . Actions: go over a glacier bridge or around?
Unreliable actions g g g

ey

N

» \

3/23

Plan? Policy

» In deterministic world: Plan —
sequence of actions from Start
to Goal.

What is the best policy, we will come to that in a minute, ...

What is the best policy, we will come to that in a minute, ...

Plan? Policy

» In deterministic world: Plan —
sequence of actions from Start
to Goal.

» MDPs, we need a policy
m:5 = A

» An action for each possible
state.

Plan? Policy

» In deterministic world: Plan —
sequence of actions from Start
to Goal.

» MDPs, we need a policy
m:S5— A

» An action for each possible
state.

» What is the best policy?

What is the best policy, we will come to that in a minute, ...

What do the rewards express? Reward to an agent to be/dwell in that

Rewards state? Obviously we want the robot to go to the goal and do not stay

too long in the maze.

Reward function R(s) (or R(s,a), R(s,a,s’))
{ —0.04 (small penalty) for nonterminal states

+1 for terminal states

Markov Decision Processes (MDPs)

3
2 [=1]
1 | START

1 2 3 4

(a) (b)

6/23

Markov Decision Processes (MDPs)

3
2 [=1]
1 | START
1 2 3 4
(a) (b)

States s € S, actions a€ A
Model T(s,a,s’) = P(s'|s,a) = probability that a in s leads to s’
Reward function R(s) (or R(s,a), R(s,a,s’))

[—0.04 (small penalty) for nonterminal states

- { +1 for terminal states

Markovian property

» Given the present state, the future and the past are independent.
» MDP: Markov means action depends only on the current state.

» In search: successor function depends on the current state only.

23

Optimal policies

On-line demos.
» R(S)={-0.04,1,-1}

23

Optimal policies

On-line demos.
» R(S)={-0.04,1,-1}
» R(S)={-2,1,-1}

23

Optimal policies

On-line demos.
» R(S)={-0.04,1,-1}
» R(S)={-2,1,-1}
> R(S)={-0.01,1,—1}

23

Optimal policies

On-line demos.
» R(S)={-0.04,1,-1}
» R(S)={-2,1,-1}
> R(S)={-0.01,1,—1}

How to measure quality of a policy?

23

What is the quality of a policy?

» Executing policy - sequence of states.

23

What is the quality of a policy?

» Executing policy - sequence of states.

» Utility of a state sequence.

23

Utilities of sequences

» State reward R(s)

» State sequence [sp, S1,52, - .-, |

10/23

Utilities of sequences

» State reward R(s)

» State sequence [sp, S1,52, - .-, |

Typically, consider stationary preferences on reward sequences:

[r,ro, 1, r2y...] = [r, ré, r,rs..] e [, n,rn,...] = [r(’), r,rs, ..

10/23

Utilities of sequences

» State reward R(s)

» State sequence [sp, S1,52, - .-, |

Typically, consider stationary preferences on reward sequences:
/ / / / / /
[r,ro, i, 1, ... = [r,rg, 11,1yl © [r0, 1,00, ...] = [rg, 11, 12, - -]
If stationary preferences:

Utility (h-history)
Un([s0, s1,%2,---,]) = R(s0) + R(s1) + R(s2) + - - -

Discounted utility, discount factor 0 < v < 1:
Uh([So,Sl, So, ... ,]) = R(So) + ’)/R(Sl) + 72R(S2) + -

10/23

Comparing policies; Finite vs infinite horizon

Problem: Infinite lifetime = additive utilities are infinite.

> Finite horizon: termination at a fixed time = nonstationary policy,
7(s) depends on the time left.

11/23

Comparing policies; Finite vs infinite horizon

Problem: Infinite lifetime = additive utilities are infinite.

> Finite horizon: termination at a fixed time = nonstationary policy,
7(s) depends on the time left.

» Discounting, v < 1, R(S) < Rmax

Rmax
11—~

U([507 51,52y« SOO]) = Z’th(St) <
t=0

11/23

Comparing policies; Finite vs infinite horizon

Problem: Infinite lifetime = additive utilities are infinite.
> Finite horizon: termination at a fixed time = nonstationary policy,
7(s) depends on the time left.
» Discounting, v < 1, R(S) < Rmax

> Rmax
U([So,Sl,SQ,...,SOO]):Z’}/tR(St) < 1_,_)/
t=0

» Absorbing state.

11/23

MDPs recap

Markov decition processes (MDPs):
» Set of states S
> Set of actions A
» Transitions P(s|s,a) or T(s,a,s’)

» Rewards R(s); and discount =

12/23

MDPs recap

Markov decition processes (MDPs):
» Set of states S
> Set of actions A
» Transitions P(s|s,a) or T(s,a,s’)
» Rewards R(s); and discount =
MDP quantities:

» Policy 7(s) — choice of action for each state

» Utility of a sequence — sum of (discounted) rewards.

12 /23

Solving MDPs: Finding the best policy

» Executing policy - sequence of states.

» Utility of a state sequence.

13/23

Solving MDPs: Finding the best policy

» Executing policy - sequence of states.
» Utility of a state sequence.

» But actions are unreliable - environment is stochastic.

13/23

Solving MDPs: Finding the best policy

v

Executing policy - sequence of states.

v

Utility of a state sequence.

But actions are unreliable - environment is stochastic.

v

v

Expected utility of a policy.

Ur=E [Z th(st)]
t=0

13/23

Solving MDPs: Finding the best policy

v

Executing policy - sequence of states.

v

Utility of a state sequence.

But actions are unreliable - environment is stochastic.

v

v

Expected utility of a policy.

Ur=E [Z VtR(st)]
t=0

Best policy m* maximizes above.

13/23

It is not “Go to the higher value"!

Utility of a state - State value

V(s) = expected (discounted) sum of rewards (until termination)
assuming optimal actions.

14 /23

Utility of a state - State value

V(s) = expected (discounted) sum of rewards (until termination)
assuming optimal actions. Hence:

V(s) = U™ (s)

Given V/(s’) choosing the best action for s is MEU:

7 (s) = arg max Z P(s'|s,a)V(s)

acA(s) "o

14 /23

It is not “Go to the higher value"!

Utility of a state - State value
V(s) = expected (discounted) sum of rewards (until termination)
assuming optimal actions. Hence:

V(s) = U™ (s)

Given V/(s') choosing the best action for s is MEU:
7*(s) = arg max Z P(s'ls,a)V(s')

acA(s) "
0 1 2 3 0 1 2 3
0 0 0 0
1 1 1 1
2 2 2 2
0 1 2 3 0 1 2 3

14 /23

It is not “Go to the higher value"!

Utility of a state - State value
V(s) = expected (discounted) sum of rewards (until termination)
assuming optimal actions. Hence:

V(s) = U™ (s)

Given V/(s') choosing the best action for s is MEU:
7*(s) = arg max Z P(s'ls,a)V(s')

acA(s) "
0 1 2 3 0 1 2 3
0 0 0 0
1 1 1 1
2 2 2 2
0 1 2 3 0 1 2 3

14 /23

It is not “Go to the higher value"!

How to compute V/(s)? Well, we could solve the expectimax search - but
MDP search tree : : . : .

it grows quickly. We can see R(s) as the price for leaving the state s just

anyhow.

The value of a g-state (s, a):
Q*(s,a) = T(s,a,s) [R(s,a,s") + v V*(s')] RN

15/23

How to compute V/(s)? Well, we could solve the expectimax search - but
MDP search tree P (s) p

it grows quickly. We can see R(s) as the price for leaving the state s just
anyhow.

The value of a g-state (s, a):

Q*(s,a) = T(s,a,s) [R(s,a,s") + v V*(s')] RN
Ja v .
The value of a state s: \\
JOE
V*(s) = R(s)+ymax Z T(s,a,s)V*(s) ’
a / // \\
’ “T(s,a,s)>
= max Q*(s,a) S » s N
a

15/23

How to compute V/(s)? Well, we could solve the expectimax search - but
MDP search tree P (s) p

it grows quickly. We can see R(s) as the price for leaving the state s just
anyhow.

The value of a g-state (s, a): @ V*(s)

Q*(57 a) = Zs’ T(S, a, 5/) [R(57 a, sl) + V*(Sl)] g
- BN
The value of a state s: \\
V*(s) = R(s)+ymax E T(s,a,s")V*(s) ’
a ; // \\
’ “T(s,a,s)>
= max Q*(s,a) S » s N
a

T\)

15/23

V(2,0) computation on the table - one row for each action. We got n

Bellman equation for state values : : :
equations for n unknown - n states. But max is a non-linear operator!

V(s) = R(s P(s
(s) = +7;€“j‘>;)z 'Is,a)V(s')

0 0.8

0.1 0.1
1 =]

2| sTART

16/23

. . What is the complexity of each iteration? O(S%A
Value iteration ' mplexity iteration? O(S%A)

» Start with arbitrary Vp(s)

17/23

. . What is the complexity of each iteration? O(S%A
Value iteration ' mplexity iteration? O(S%A)

» Start with arbitrary Vp(s)

» Compute Bellman update (one ply of expectimax from each state)

Vier1(s) < R(s) +~ ma, P(s'|s,a) Vi(s')
acA(s
s/

17/23

. . What is the complexity of each iteration? O(S%A
Value iteration ' mplexity iteration? O(S%A)

» Start with arbitrary Vy(s)
» Compute Bellman update (one ply of expectimax from each state)
Vir1(s) + R(s) +~ max P(s'|s, a) Vk(s")

acA(s) "

» Repeat until convergence

17/23

Value iteration

» Start with arbitrary Vp(s)

» Compute Bellman update (one ply of expectimax from each state)

Vier1(s) < R(s) +~ ma, P(s'|s,a) Vi(s')
acA(s
s/

» Repeat until convergence

The idea: Bellman update makes local consistency with the Bellmann
equation. Everywhere locally consistent = globally optimal.

17/23

What is the complexity of each iteration? O(S2A)

Convergence

Vir1(s) < R(s) +7~ m:(x) P(s'|s, a) Vi(s)
ac S ;

v<1
_Rmax S R(S) S Rmax

18/23

Convergence

Vir1(s) < R(s) +7~ mAa(x) P(s'|s, a) Vi(s)
ac S ;

v<1
_Rmax S R(S) S Rmax

Max norm:
VI = max|V(s)|

> RmaX
U([s0, 51,5, -+, 500]) = tZ;fth(st) < T

18/23

Convergence cont'd

Vk+1 — B\/k

1BVi — BV <+[[Vic — V]

HBVk - VtrueH < ’Y”Vk - VtrueH

Rewards are bounded, at the beginning then Value error is

HVO - Vtrue” § 21Rfm;X

We run N iterations and reduce the error by factor v in each and want to
stop the error is below e:

YN2Rmax /(1 — 7) < € Taking logs, we find: N > %

To stop the iteration we want to find a bound relating the error to the size
of one Bellman update for any given iteration.

We stop if

e(l —
Wiewr — Vi < 2=

then also: || Vki1 — Viruell < € Proof on the next slide

19/23

Convergence cont'd

IVkt1 — Viruel| < € is the same as || Vi1 — Vo < €
Assume H Vk+1 — Vk” = err

In each of the following iteration steps we reduce the error by the factor ~.

Till oo, the total sum of reduced errors is:

yerr

total = ~err + ’y2err + ’y3err + 74err 4=
(1-7)

We want to have total < e.

From it follows that

1
err < ——=

Hence we can stop if ||Vii1 — V|| < e(1—7)/v

20/23

. . Run mdp_agents.py and try to compute next state value in advance.
Value iteration demo mep-agents.py and oy P e .
Remind the R(s) = —0.04 and v = 1 in order to simplify computation.

Then discuss the course of the Values.

Vii1(s) < R(s) +~ max P(s'|s, a) Vi(s)

acA(s) "

21/23

Value iteration algorithm

function VALUE-ITERATION(env,€) returns: state values V
input: env - MDP problem, ¢
V' < 0 in all states

Value iteration algorithm

function VALUE-ITERATION(env,€) returns: state values V
input: env - MDP problem, ¢
V' < 0 in all states
repeat > iterate values until convergence

Value iteration algorithm

function VALUE-ITERATION(env,€) returns: state values V
input: env - MDP problem, ¢
V' < 0 in all states
repeat > iterate values until convergence
V«— V/ > keep the last known values
6+0 > reset the max difference

Value iteration algorithm

function VALUE-ITERATION(env,€) returns: state values V
input: env - MDP problem, ¢
V' < 0 in all states

repeat > iterate values until convergence
V«— V/ > keep the last known values
6+0 > reset the max difference

for each state s in S do
V'[s] <= R(s) +~v max > P(s'|s,a)V(s')
acA(s)

if |V/[s] — V][s]| > ¢ then § « |V'[s] — V[s]|
end for

Value iteration algorithm

function VALUE-ITERATION(env,€) returns: state values V
input: env - MDP problem, ¢
V' < 0 in all states

repeat > iterate values until convergence
V«— V/ > keep the last known values
6+0 > reset the max difference

for each state sin S do
V'[s] <= R(s) +~v max > P(s'|s,a)V(s')
acA(s)
if |V/[s] — V][s]| > ¢ then § « |V'[s] — V[s]|
end for

until 0 < €(1—7)/v
end function

References
Some figures from [1].

[1] Stuart Russell and Peter Norvig.

Artificial Intelligence: A Modern Approach.

Prentice Hall, 3rd edition, 2010.
http://aima.cs.berkeley.edu/.

23/23

http://aima.cs.berkeley.edu/

	Introduction
	Rewards

	MDPs
	Utilities

	Solving MDPs
	Utilities, Values, MEU
	Value iteration

	References

