
Sequential decisions under uncertainty
Markov Decision Processes (MDP)

Tomáš Svoboda

Department of Cybernetics, Vision for Robotics and Autonomous Systems,
Center for Machine Perception (CMP)

May 28, 2018

1 / 23

http://cyber.felk.cvut.cz
http://cyber.felk.cvut.cz/vras

Unreliable actions in observable grid world

1

2

3

1 2 3 4

START

0.8

0.10.1

(a) (b)

–1

+ 1

States s ∈ S , actions a ∈ A
Model T (s, a, s ′) ≡ P(s ′|s, a) = probability that a in s leads to s ′

2 / 23

Observable - agent knows where it is. However, it does not always obey
the command.
There is a treasure but there is also some danger.

The danger state - think about a mountaineous are with safer but longer

and shorter but more dangerous paths - a dangerous node may represent

a chasm.

Unreliable actions in observable grid world

1

2

3

1 2 3 4

START

0.8

0.10.1

(a) (b)

–1

+ 1

States s ∈ S , actions a ∈ A
Model T (s, a, s ′) ≡ P(s ′|s, a) = probability that a in s leads to s ′

2 / 23

Observable - agent knows where it is. However, it does not always obey
the command.
There is a treasure but there is also some danger.

The danger state - think about a mountaineous are with safer but longer

and shorter but more dangerous paths - a dangerous node may represent

a chasm.

Unreliable actions

3 / 23

Actions: go over a glacier bridge or around?

Plan? Policy

I In deterministic world: Plan –
sequence of actions from Start
to Goal.

I MDPs, we need a policy
π : S → A.

I An action for each possible
state.

I What is the best policy?

0

0

1

1

2

2

3

3

0 0

1 1

2 2

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0

0

1

1

2

2

3

3

0 0

1 1

2 2

/\

> <

>

None

> None>

/\/\

/\

4 / 23

What is the best policy, we will come to that in a minute, ...

Plan? Policy

I In deterministic world: Plan –
sequence of actions from Start
to Goal.

I MDPs, we need a policy
π : S → A.

I An action for each possible
state.

I What is the best policy?

0

0

1

1

2

2

3

3

0 0

1 1

2 2

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.000

0

1

1

2

2

3

3

0 0

1 1

2 2

/\

> <

>

None

> None>

/\/\

/\

4 / 23

What is the best policy, we will come to that in a minute, ...

Plan? Policy

I In deterministic world: Plan –
sequence of actions from Start
to Goal.

I MDPs, we need a policy
π : S → A.

I An action for each possible
state.

I What is the best policy?

0

0

1

1

2

2

3

3

0 0

1 1

2 2

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.000

0

1

1

2

2

3

3

0 0

1 1

2 2

/\

> <

>

None

> None>

/\/\

/\

4 / 23

What is the best policy, we will come to that in a minute, ...

Rewards
0

0

1

1

2

2

3

3

0 0

1 1

2 2

-0.04

-0.04 -0.04

-0.04 1.00

-1.00-0.04

-0.04

-0.04

-0.04

-0.04

Reward function R(s) (or R(s, a), R(s, a, s ′))

=

{
−0.04 (small penalty) for nonterminal states
±1 for terminal states

5 / 23

What do the rewards express? Reward to an agent to be/dwell in that

state? Obviously we want the robot to go to the goal and do not stay

too long in the maze.

Markov Decision Processes (MDPs)

1

2

3

1 2 3 4

START

0.8

0.10.1

(a) (b)

–1

+ 1

States s ∈ S , actions a ∈ A
Model T (s, a, s ′) ≡ P(s ′|s, a) = probability that a in s leads to s ′

Reward function R(s) (or R(s, a), R(s, a, s ′))

=

{
−0.04 (small penalty) for nonterminal states
±1 for terminal states

6 / 23

Markov Decision Processes (MDPs)

1

2

3

1 2 3 4

START

0.8

0.10.1

(a) (b)

–1

+ 1

States s ∈ S , actions a ∈ A
Model T (s, a, s ′) ≡ P(s ′|s, a) = probability that a in s leads to s ′

Reward function R(s) (or R(s, a), R(s, a, s ′))

=

{
−0.04 (small penalty) for nonterminal states
±1 for terminal states

6 / 23

Markovian property

I Given the present state, the future and the past are independent.

I MDP: Markov means action depends only on the current state.

I In search: successor function depends on the current state only.

7 / 23

Optimal policies

On-line demos.

I R(S) = {−0.04, 1,−1}
I R(S) = {−2, 1,−1}
I R(S) = {−0.01, 1,−1}

How to measure quality of a policy?

8 / 23

Optimal policies

On-line demos.

I R(S) = {−0.04, 1,−1}
I R(S) = {−2, 1,−1}
I R(S) = {−0.01, 1,−1}

How to measure quality of a policy?

8 / 23

Optimal policies

On-line demos.

I R(S) = {−0.04, 1,−1}
I R(S) = {−2, 1,−1}
I R(S) = {−0.01, 1,−1}

How to measure quality of a policy?

8 / 23

Optimal policies

On-line demos.

I R(S) = {−0.04, 1,−1}
I R(S) = {−2, 1,−1}
I R(S) = {−0.01, 1,−1}

How to measure quality of a policy?

8 / 23

What is the quality of a policy?

I Executing policy - sequence of states.

I Utility of a state sequence.

9 / 23

What is the quality of a policy?

I Executing policy - sequence of states.

I Utility of a state sequence.

9 / 23

Utilities of sequences

I State reward R(s)

I State sequence [s0, s1, s2, . . . ,]

Typically, consider stationary preferences on reward sequences:

[r , r0, r1, r2, . . .] � [r , r ′0, r
′
1, r
′
2, . . .]⇔ [r0, r1, r2, . . .] � [r ′0, r

′
1, r
′
2, . . .]

If stationary preferences:
Utility (h-history)
Uh([s0, s1, s2, . . . ,]) = R(s0) + R(s1) + R(s2) + · · ·

Discounted utility, discount factor 0 ≤ γ ≤ 1:
Uh([s0, s1, s2, . . . ,]) = R(s0) + γR(s1) + γ2R(s2) + · · ·

10 / 23

Utilities of sequences

I State reward R(s)

I State sequence [s0, s1, s2, . . . ,]

Typically, consider stationary preferences on reward sequences:

[r , r0, r1, r2, . . .] � [r , r ′0, r
′
1, r
′
2, . . .]⇔ [r0, r1, r2, . . .] � [r ′0, r

′
1, r
′
2, . . .]

If stationary preferences:
Utility (h-history)
Uh([s0, s1, s2, . . . ,]) = R(s0) + R(s1) + R(s2) + · · ·

Discounted utility, discount factor 0 ≤ γ ≤ 1:
Uh([s0, s1, s2, . . . ,]) = R(s0) + γR(s1) + γ2R(s2) + · · ·

10 / 23

Utilities of sequences

I State reward R(s)

I State sequence [s0, s1, s2, . . . ,]

Typically, consider stationary preferences on reward sequences:

[r , r0, r1, r2, . . .] � [r , r ′0, r
′
1, r
′
2, . . .]⇔ [r0, r1, r2, . . .] � [r ′0, r

′
1, r
′
2, . . .]

If stationary preferences:
Utility (h-history)
Uh([s0, s1, s2, . . . ,]) = R(s0) + R(s1) + R(s2) + · · ·

Discounted utility, discount factor 0 ≤ γ ≤ 1:
Uh([s0, s1, s2, . . . ,]) = R(s0) + γR(s1) + γ2R(s2) + · · ·

10 / 23

Comparing policies; Finite vs infinite horizon

Problem: Infinite lifetime ⇒ additive utilities are infinite.

I Finite horizon: termination at a fixed time ⇒ nonstationary policy,
π(s) depends on the time left.

I Discounting, γ < 1,R(s) ≤ Rmax

U([s0, s1, s2, . . . , s∞]) =
∞∑
t=0

γtR(st) ≤
Rmax

1− γ

I Absorbing state.

11 / 23

Comparing policies; Finite vs infinite horizon

Problem: Infinite lifetime ⇒ additive utilities are infinite.

I Finite horizon: termination at a fixed time ⇒ nonstationary policy,
π(s) depends on the time left.

I Discounting, γ < 1,R(s) ≤ Rmax

U([s0, s1, s2, . . . , s∞]) =
∞∑
t=0

γtR(st) ≤
Rmax

1− γ

I Absorbing state.

11 / 23

Comparing policies; Finite vs infinite horizon

Problem: Infinite lifetime ⇒ additive utilities are infinite.

I Finite horizon: termination at a fixed time ⇒ nonstationary policy,
π(s) depends on the time left.

I Discounting, γ < 1,R(s) ≤ Rmax

U([s0, s1, s2, . . . , s∞]) =
∞∑
t=0

γtR(st) ≤
Rmax

1− γ

I Absorbing state.

11 / 23

MDPs recap

Markov decition processes (MDPs):

I Set of states S

I Set of actions A

I Transitions P(s ′|s, a) or T (s, a, s ′)

I Rewards R(s); and discount γ

MDP quantities:

I Policy π(s) – choice of action for each state

I Utility of a sequence – sum of (discounted) rewards.

12 / 23

MDPs recap

Markov decition processes (MDPs):

I Set of states S

I Set of actions A

I Transitions P(s ′|s, a) or T (s, a, s ′)

I Rewards R(s); and discount γ

MDP quantities:

I Policy π(s) – choice of action for each state

I Utility of a sequence – sum of (discounted) rewards.

12 / 23

Solving MDPs: Finding the best policy

I Executing policy - sequence of states.

I Utility of a state sequence.

I But actions are unreliable - environment is stochastic.

I Expected utility of a policy.

Uπ = E

[∞∑
t=0

γtR(st)

]

Best policy π∗ maximizes above.

13 / 23

Solving MDPs: Finding the best policy

I Executing policy - sequence of states.

I Utility of a state sequence.

I But actions are unreliable - environment is stochastic.

I Expected utility of a policy.

Uπ = E

[∞∑
t=0

γtR(st)

]

Best policy π∗ maximizes above.

13 / 23

Solving MDPs: Finding the best policy

I Executing policy - sequence of states.

I Utility of a state sequence.

I But actions are unreliable - environment is stochastic.

I Expected utility of a policy.

Uπ = E

[∞∑
t=0

γtR(st)

]

Best policy π∗ maximizes above.

13 / 23

Solving MDPs: Finding the best policy

I Executing policy - sequence of states.

I Utility of a state sequence.

I But actions are unreliable - environment is stochastic.

I Expected utility of a policy.

Uπ = E

[∞∑
t=0

γtR(st)

]

Best policy π∗ maximizes above.

13 / 23

Utility of a state - State value

V (s) = expected (discounted) sum of rewards (until termination)
assuming optimal actions. Hence:

V (s) = Uπ∗(s)

Given V (s ′) choosing the best action for s is MEU:

π∗(s) = arg max
a∈A(s)

∑
s′

P(s ′|s, a)V (s ′)

14 / 23

It is not “Go to the higher value”!

Utility of a state - State value

V (s) = expected (discounted) sum of rewards (until termination)
assuming optimal actions. Hence:

V (s) = Uπ∗(s)

Given V (s ′) choosing the best action for s is MEU:

π∗(s) = arg max
a∈A(s)

∑
s′

P(s ′|s, a)V (s ′)

14 / 23

It is not “Go to the higher value”!

Utility of a state - State value
V (s) = expected (discounted) sum of rewards (until termination)
assuming optimal actions. Hence:

V (s) = Uπ∗(s)

Given V (s ′) choosing the best action for s is MEU:

π∗(s) = arg max
a∈A(s)

∑
s′

P(s ′|s, a)V (s ′)

0

0

1

1

2

2

3

3

0 0

1 1

2 2

0.76

0.65 0.39

0.81 1.00

-1.000.66

0.92

0.61

0.87

0.70

0

0

1

1

2

2

3

3

0 0

1 1

2 2

/\

< <

> 1.00

-1.00/\

>

<

>

/\

14 / 23

It is not “Go to the higher value”!

Utility of a state - State value
V (s) = expected (discounted) sum of rewards (until termination)
assuming optimal actions. Hence:

V (s) = Uπ∗(s)

Given V (s ′) choosing the best action for s is MEU:

π∗(s) = arg max
a∈A(s)

∑
s′

P(s ′|s, a)V (s ′)

0

0

1

1

2

2

3

3

0 0

1 1

2 2

0.94

0.91 0.80

0.95 1.00

-1.000.89

0.98

0.90

0.96

0.92

0

0

1

1

2

2

3

3

0 0

1 1

2 2

/\

< \/

> 1.00

-1.00<

>

<

>

/\

14 / 23

It is not “Go to the higher value”!

MDP search tree

The value of a q-state (s, a):
Q∗(s, a) =

∑
s′ T (s, a, s ′) [R(s, a, s ′) + γ V ∗(s ′)]

The value of a state s:

V ∗(s) = R(s) + γmax
a

∑
s′

T (s, a, s ′)V ∗(s ′)

= max
a

Q∗(s, a)

s

s, a

s ′

a

T (s, a, s ′)

q-stateQ∗(s, a)

V ∗(s ′)

V ∗(s)

15 / 23

How to compute V (s)? Well, we could solve the expectimax search - but

it grows quickly. We can see R(s) as the price for leaving the state s just

anyhow.

MDP search tree

The value of a q-state (s, a):
Q∗(s, a) =

∑
s′ T (s, a, s ′) [R(s, a, s ′) + γ V ∗(s ′)]

The value of a state s:

V ∗(s) = R(s) + γmax
a

∑
s′

T (s, a, s ′)V ∗(s ′)

= max
a

Q∗(s, a)

s

s, a

s ′

a

T (s, a, s ′)

q-stateQ∗(s, a)

V ∗(s ′)

V ∗(s)

15 / 23

How to compute V (s)? Well, we could solve the expectimax search - but

it grows quickly. We can see R(s) as the price for leaving the state s just

anyhow.

MDP search tree

The value of a q-state (s, a):
Q∗(s, a) =

∑
s′ T (s, a, s ′) [R(s, a, s ′) + γ V ∗(s ′)]

The value of a state s:

V ∗(s) = R(s) + γmax
a

∑
s′

T (s, a, s ′)V ∗(s ′)

= max
a

Q∗(s, a)

s

s, a

s ′

a

T (s, a, s ′)

q-stateQ∗(s, a)

V ∗(s ′)

V ∗(s)

15 / 23

How to compute V (s)? Well, we could solve the expectimax search - but

it grows quickly. We can see R(s) as the price for leaving the state s just

anyhow.

Bellman equation for state values

V (s) = R(s) + γ max
a∈A(s)

∑
s′

P(s ′|s, a)V (s ′)

16 / 23

V (2, 0) computation on the table - one row for each action. We got n

equations for n unknown - n states. But max is a non-linear operator!

Value iteration

I Start with arbitrary V0(s)

I Compute Bellman update (one ply of expectimax from each state)

Vk+1(s)← R(s) + γ max
a∈A(s)

∑
s′

P(s ′|s, a)Vk(s ′)

I Repeat until convergence

The idea: Bellman update makes local consistency with the Bellmann
equation. Everywhere locally consistent ⇒ globally optimal.

17 / 23

What is the complexity of each iteration? O(S2A)

Value iteration

I Start with arbitrary V0(s)

I Compute Bellman update (one ply of expectimax from each state)

Vk+1(s)← R(s) + γ max
a∈A(s)

∑
s′

P(s ′|s, a)Vk(s ′)

I Repeat until convergence

The idea: Bellman update makes local consistency with the Bellmann
equation. Everywhere locally consistent ⇒ globally optimal.

17 / 23

What is the complexity of each iteration? O(S2A)

Value iteration

I Start with arbitrary V0(s)

I Compute Bellman update (one ply of expectimax from each state)

Vk+1(s)← R(s) + γ max
a∈A(s)

∑
s′

P(s ′|s, a)Vk(s ′)

I Repeat until convergence

The idea: Bellman update makes local consistency with the Bellmann
equation. Everywhere locally consistent ⇒ globally optimal.

17 / 23

What is the complexity of each iteration? O(S2A)

Value iteration

I Start with arbitrary V0(s)

I Compute Bellman update (one ply of expectimax from each state)

Vk+1(s)← R(s) + γ max
a∈A(s)

∑
s′

P(s ′|s, a)Vk(s ′)

I Repeat until convergence

The idea: Bellman update makes local consistency with the Bellmann
equation. Everywhere locally consistent ⇒ globally optimal.

17 / 23

What is the complexity of each iteration? O(S2A)

Convergence

Vk+1(s)← R(s) + γ max
a∈A(s)

∑
s′

P(s ′|s, a)Vk(s ′)

γ < 1

−Rmax ≤ R(s) ≤ Rmax

Max norm:
‖V ‖ = max

s
|V (s)|

U([s0, s1, s2, . . . , s∞]) =
∞∑
t=0

γtR(st) ≤
Rmax

1− γ

18 / 23

Convergence

Vk+1(s)← R(s) + γ max
a∈A(s)

∑
s′

P(s ′|s, a)Vk(s ′)

γ < 1

−Rmax ≤ R(s) ≤ Rmax

Max norm:
‖V ‖ = max

s
|V (s)|

U([s0, s1, s2, . . . , s∞]) =
∞∑
t=0

γtR(st) ≤
Rmax

1− γ

18 / 23

Convergence cont’d

Vk+1 ← BVk

‖BVk − BV ′k‖ ≤ γ‖Vk − V ′k‖
‖BVk − Vtrue‖ ≤ γ‖Vk − Vtrue‖
Rewards are bounded, at the beginning then Value error is
‖V0 − Vtrue‖ ≤ 2Rmax

1−γ
We run N iterations and reduce the error by factor γ in each and want to
stop the error is below ε:
γN2Rmax/(1− γ) ≤ ε Taking logs, we find: N ≥ log(2Rmax/ε(1−γ))

log(1/γ)
To stop the iteration we want to find a bound relating the error to the size
of one Bellman update for any given iteration.
We stop if

‖Vk+1 − Vk‖ ≤
ε(1− γ)

γ

then also: ‖Vk+1 − Vtrue‖ ≤ ε Proof on the next slide

19 / 23

Convergence cont’d

‖Vk+1 − Vtrue‖ ≤ ε is the same as ‖Vk+1 − V∞‖ ≤ ε
Assume ‖Vk+1 − Vk‖ = err
In each of the following iteration steps we reduce the error by the factor γ.
Till ∞, the total sum of reduced errors is:

total = γerr + γ2err + γ3err + γ4err + · · · =
γerr

(1− γ)

We want to have total < ε.

γerr

(1− γ)
< ε

From it follows that

err <
ε(1− γ)

γ

Hence we can stop if ‖Vk+1 − Vk‖ < ε(1− γ)/γ

20 / 23

Value iteration demo

Vk+1(s)← R(s) + γ max
a∈A(s)

∑
s′

P(s ′|s, a)Vk(s ′)

0

0

1

1

2

2

3

3

0 0

1 1

2 2

0.76

0.65 0.39

0.81 1.00

-1.000.66

0.92

0.61

0.87

0.70

21 / 23

Run mdp agents.py and try to compute next state value in advance.

Remind the R(s) = −0.04 and γ = 1 in order to simplify computation.

Then discuss the course of the Values.

Value iteration algorithm

function value-iteration(env,ε) returns: state values V
input: env - MDP problem, ε
V ′ ← 0 in all states
repeat . iterate values until convergence

V ← V ′ . keep the last known values
δ ← 0 . reset the max difference
for each state s in S do

V ′[s]← R(s) + γ max
a∈A(s)

∑
s′ P(s ′|s, a)V (s ′)

if |V ′[s]− V [s]| > δ then δ ← |V ′[s]− V [s]|
end for

until δ < ε(1− γ)/γ
end function

22 / 23

Value iteration algorithm

function value-iteration(env,ε) returns: state values V
input: env - MDP problem, ε
V ′ ← 0 in all states
repeat . iterate values until convergence

V ← V ′ . keep the last known values
δ ← 0 . reset the max difference
for each state s in S do

V ′[s]← R(s) + γ max
a∈A(s)

∑
s′ P(s ′|s, a)V (s ′)

if |V ′[s]− V [s]| > δ then δ ← |V ′[s]− V [s]|
end for

until δ < ε(1− γ)/γ
end function

22 / 23

Value iteration algorithm

function value-iteration(env,ε) returns: state values V
input: env - MDP problem, ε
V ′ ← 0 in all states
repeat . iterate values until convergence

V ← V ′ . keep the last known values
δ ← 0 . reset the max difference
for each state s in S do

V ′[s]← R(s) + γ max
a∈A(s)

∑
s′ P(s ′|s, a)V (s ′)

if |V ′[s]− V [s]| > δ then δ ← |V ′[s]− V [s]|
end for

until δ < ε(1− γ)/γ
end function

22 / 23

Value iteration algorithm

function value-iteration(env,ε) returns: state values V
input: env - MDP problem, ε
V ′ ← 0 in all states
repeat . iterate values until convergence

V ← V ′ . keep the last known values
δ ← 0 . reset the max difference
for each state s in S do

V ′[s]← R(s) + γ max
a∈A(s)

∑
s′ P(s ′|s, a)V (s ′)

if |V ′[s]− V [s]| > δ then δ ← |V ′[s]− V [s]|
end for

until δ < ε(1− γ)/γ
end function

22 / 23

Value iteration algorithm

function value-iteration(env,ε) returns: state values V
input: env - MDP problem, ε
V ′ ← 0 in all states
repeat . iterate values until convergence

V ← V ′ . keep the last known values
δ ← 0 . reset the max difference
for each state s in S do

V ′[s]← R(s) + γ max
a∈A(s)

∑
s′ P(s ′|s, a)V (s ′)

if |V ′[s]− V [s]| > δ then δ ← |V ′[s]− V [s]|
end for

until δ < ε(1− γ)/γ
end function

22 / 23

References

Some figures from [1].

[1] Stuart Russell and Peter Norvig.
Artificial Intelligence: A Modern Approach.
Prentice Hall, 3rd edition, 2010.
http://aima.cs.berkeley.edu/.

23 / 23

http://aima.cs.berkeley.edu/

	Introduction
	Rewards

	MDPs
	Utilities

	Solving MDPs
	Utilities, Values, MEU
	Value iteration

	References

