Sequential decisions under uncertainty Markov Decision Processes (MDP)

Tomáš Svoboda

Department of Cybernetics, Vision for Robotics and Autonomous Systems, Center for Machine Perception (CMP)

May 28, 2018

Unreliable actions in observable grid world

States $s \in S$, actions $a \in A$ Model $T(s,a,s') \equiv P(s'|s,a) =$ probability that a in s leads to s' Observable - agent knows where it is. However, it does not always obey the command.

There is a treasure but there is also some danger.

The danger state - think about a mountaineous are with safer but longer and shorter but more dangerous paths - a dangerous node may represent a chasm.

Unreliable actions in observable grid world

States $s \in S$, actions $a \in A$ Model $T(s, a, s') \equiv P(s'|s, a) =$ probability that a in s leads to s' Observable - agent knows where it is. However, it does not always obey the command.

There is a treasure but there is also some danger.

The danger state - think about a mountaineous are with safer but longer and shorter but more dangerous paths - a dangerous node may represent a chasm.

Unreliable actions

Actions: go over a glacier bridge or around?

Plan? Policy

- ► In deterministic world: Plan sequence of actions from Start to Goal.
- ► MDPs, we need a policy $\pi: S \to A$
- An action for each possible state.
- ▶ What is the best policy?

What is the best policy, we will come to that in a minute, \dots

Plan? Policy

- ► In deterministic world: Plan sequence of actions from Start to Goal.
- ▶ MDPs, we need a policy $\pi: S \rightarrow A$.
- ► An action for each possible state.
- What is the best policy?

What is the best policy, we will come to that in a minute, \dots

Plan? Policy

- ► In deterministic world: Plan sequence of actions from Start to Goal.
- ▶ MDPs, we need a policy $\pi: S \rightarrow A$.
- ► An action for each possible state.
- ► What is the best policy?

What is the best policy, we will come to that in a minute, \dots

Reward function
$$R(s)$$
 (or $R(s, a)$, $R(s, a, s')$)
$$= \begin{cases}
-0.04 & \text{(small penalty) for nonterminal states} \\
\pm 1 & \text{for terminal states}
\end{cases}$$

What do the rewards express? Reward to an agent to be/dwell in that state? Obviously we want the robot to go to the goal and do not stay too long in the maze.

Markov Decision Processes (MDPs)

(b)

States $s \in S$, actions $a \in A$ Model $T(s, a, s') \equiv P(s'|s, a) = \text{probability that } a \text{ in } s \text{ leads to } s$ Reward function R(s) (or R(s, a), R(s, a, s')) $= \begin{cases} -0.04 & \text{(small penalty) for nonterminal states} \end{cases}$

Markov Decision Processes (MDPs)

(b)

States
$$s \in S$$
, actions $a \in A$
Model $T(s, a, s') \equiv P(s'|s, a) = \text{probability that } a \text{ in } s \text{ leads to } s'$
Reward function $R(s)$ (or $R(s, a)$, $R(s, a, s')$)
$$= \begin{cases} -0.04 & \text{(small penalty) for nonterminal states} \\ \pm 1 & \text{for terminal states} \end{cases}$$

Markovian property

- ▶ Given the present state, the future and the past are independent.
- ▶ MDP: Markov means action depends only on the current state.
- ▶ In search: successor function depends on the current state only.

On-line demos.

- Arr $R(S) = \{-0.04, 1, -1\}$
- $ightharpoonup R(S) = \{-2, 1, -1\}$
- $ightharpoonup R(S) = \{-0.01, 1, -1\}$

How to measure quality of a policy

On-line demos.

- Arr $R(S) = \{-0.04, 1, -1\}$
- Arr $R(S) = \{-2, 1, -1\}$
- $ightharpoonup R(S) = \{-0.01, 1, -1\}$

How to measure quality of a policy?

On-line demos.

- Arr $R(S) = \{-0.04, 1, -1\}$
- Arr $R(S) = \{-2, 1, -1\}$
- Arr $R(S) = \{-0.01, 1, -1\}$

How to measure quality of a policy?

On-line demos.

- $Arr R(S) = \{-0.04, 1, -1\}$
- Arr $R(S) = \{-2, 1, -1\}$
- Arr $R(S) = \{-0.01, 1, -1\}$

How to measure quality of a policy?

What is the quality of a policy?

- ► Executing policy sequence of states.
- Utility of a state sequence

What is the quality of a policy?

- ► Executing policy sequence of states.
- Utility of a state sequence.

Utilities of sequences

- ightharpoonup State reward R(s)
- ▶ State sequence $[s_0, s_1, s_2, ...,]$

Typically, consider stationary preferences on reward sequences

$$[r, r_0, r_1, r_2, \ldots] \succ [r, r'_0, r'_1, r'_2, \ldots] \Leftrightarrow [r_0, r_1, r_2, \ldots] \succ [r'_0, r'_1, r'_2, \ldots]$$

If stationary preferences:

Utility (*h*-history)

$$U_h([s_0, s_1, s_2, \dots,]) = R(s_0) + R(s_1) + R(s_2) + \cdots$$

Discounted utility, discount factor $0 \le \gamma \le 1$:

$$U_h([s_0, s_1, s_2, \dots,]) = R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \cdots$$

Utilities of sequences

- ▶ State reward R(s)
- ▶ State sequence $[s_0, s_1, s_2, ...,]$

Typically, consider stationary preferences on reward sequences:

$$[r, r_0, r_1, r_2, \ldots] \succ [r, r'_0, r'_1, r'_2, \ldots] \Leftrightarrow [r_0, r_1, r_2, \ldots] \succ [r'_0, r'_1, r'_2, \ldots]$$

If stationary preferences

$$U_h([s_0, s_1, s_2, \dots,]) = R(s_0) + R(s_1) + R(s_2) + \cdots$$

Discounted utility, discount factor
$$0 \le \gamma \le 1$$
:

$$U_h([s_0, s_1, s_2, \dots,]) = R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \cdots$$

Utilities of sequences

- ▶ State reward R(s)
- ▶ State sequence $[s_0, s_1, s_2, ...,]$

Typically, consider stationary preferences on reward sequences:

$$[r, r_0, r_1, r_2, \ldots] \succ [r, r_0', r_1', r_2', \ldots] \Leftrightarrow [r_0, r_1, r_2, \ldots] \succ [r_0', r_1', r_2', \ldots]$$

If stationary preferences:

Utility (h-history)

$$U_h([s_0, s_1, s_2, \ldots,]) = R(s_0) + R(s_1) + R(s_2) + \cdots$$

Discounted utility, discount factor $0 \le \gamma \le 1$:

$$U_h([s_0, s_1, s_2, \dots,]) = R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \cdots$$

Comparing policies; Finite vs infinite horizon

Problem: Infinite lifetime ⇒ additive utilities are infinite.

- ▶ Finite horizon: termination at a fixed time \Rightarrow nonstationary policy, $\pi(s)$ depends on the time left.
- ▶ Discounting, $\gamma < 1, R(s) \leq R_{\text{max}}$

$$U([s_0, s_1, s_2, \dots, s_\infty]) = \sum_{t=0}^{\infty} \gamma^t R(s_t) \leq \frac{R_{\mathsf{max}}}{1 - \gamma}$$

Absorbing state.

Comparing policies; Finite vs infinite horizon

Problem: Infinite lifetime ⇒ additive utilities are infinite.

- Finite horizon: termination at a fixed time \Rightarrow nonstationary policy, $\pi(s)$ depends on the time left.
- ▶ Discounting, $\gamma < 1, R(s) \le R_{\text{max}}$

$$U([s_0, s_1, s_2, \dots, s_\infty]) = \sum_{t=0}^{\infty} \gamma^t R(s_t) \leq \frac{R_{\mathsf{max}}}{1 - \gamma}$$

► Absorbing state

Comparing policies; Finite vs infinite horizon

Problem: Infinite lifetime \Rightarrow additive utilities are infinite.

- ▶ Finite horizon: termination at a fixed time \Rightarrow nonstationary policy, $\pi(s)$ depends on the time left.
- ▶ Discounting, $\gamma < 1, R(s) \le R_{\text{max}}$

$$U([s_0, s_1, s_2, \dots, s_{\infty}]) = \sum_{t=0}^{\infty} \gamma^t R(s_t) \leq \frac{R_{\mathsf{max}}}{1-\gamma}$$

► Absorbing state.

MDPs recap

Markov decition processes (MDPs):

- ▶ Set of states *S*
- ▶ Set of actions *A*
- ▶ Transitions P(s'|s,a) or T(s,a,s')
- ▶ Rewards R(s); and discount γ

MDP quantities:

- Policy $\pi(s)$ choice of action for each state
- ▶ Utility of a sequence sum of (discounted) rewards

MDPs recap

Markov decition processes (MDPs):

- ▶ Set of states *S*
- ▶ Set of actions *A*
- ▶ Transitions P(s'|s, a) or T(s, a, s')
- ▶ Rewards R(s); and discount γ

MDP quantities:

- ▶ Policy $\pi(s)$ choice of action for each state
- ▶ Utility of a sequence sum of (discounted) rewards.

- ► Executing policy sequence of states.
- ▶ Utility of a state sequence.
- ▶ But actions are unreliable environment is stochastic
- Expected utility of a policy.

$$U^{\pi} = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t R(s_t)\right]$$

Best policy π^* maximizes above.

- ► Executing policy sequence of states.
- ▶ Utility of a state sequence.
- ▶ But actions are unreliable environment is stochastic.
- Expected utility of a policy

$$U^{\pi} = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t R(s_t)\right]$$

Best policy π^* maximizes above.

- ► Executing policy sequence of states.
- ▶ Utility of a state sequence.
- ▶ But actions are unreliable environment is stochastic.
- ► Expected utility of a policy.

$$U^{\pi} = \mathsf{E}\left[\sum_{t=0}^{\infty} \gamma^t R(s_t)
ight]$$

Best policy π^* maximizes above

- ► Executing policy sequence of states.
- ▶ Utility of a state sequence.
- ▶ But actions are unreliable environment is stochastic.
- ► Expected utility of a policy.

$$U^{\pi} = \mathsf{E}\left[\sum_{t=0}^{\infty} \gamma^t R(s_t)
ight]$$

Best policy π^* maximizes above.

Utility of a state - State value

V(s) =expected (discounted) sum of rewards (until termination) assuming *optimal* actions.

$$V(s) = U^{\pi^*}(s)$$

Given V(s') choosing the best action for s is MEU:

$$\pi^*(s) = \operatorname*{arg\,max}_{a \in A(s)} \sum_{s'} P(s'|s,a) V(s')$$

It is not "Go to the higher value"!

V(s) =expected (discounted) sum of rewards (until termination) assuming *optimal* actions. Hence:

$$V(s)=U^{\pi^*}(s)$$

Given V(s') choosing the best action for s is MEU:

$$\pi^*(s) = \operatorname*{arg\,max}_{a \in \mathcal{A}(s)} \sum_{s'} P(s'|s,a) V(s')$$

Utility of a state - State value

V(s) =expected (discounted) sum of rewards (until termination) assuming *optimal* actions. Hence:

$$V(s)=U^{\pi^*}(s)$$

Given V(s') choosing the best action for s is MEU:

$$\pi^*(s) = \operatorname*{arg\; max}_{a \in A(s)} \sum_{s'} P(s'|s,a) V(s')$$

It is not "Go to the higher value"!

Utility of a state - State value

V(s) =expected (discounted) sum of rewards (until termination) assuming *optimal* actions. Hence:

$$V(s)=U^{\pi^*}(s)$$

Given V(s') choosing the best action for s is MEU:

$$\pi^*(s) = \operatorname*{arg\,max}_{a \in A(s)} \sum_{s'} P(s'|s,a) V(s')$$

It is not "Go to the higher value"!

MDP search tree

The value of a q-state
$$(s, a)$$
:

$$Q^*(s, a) = \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

The value of a state s:

$$V^*(s) = R(s) + \gamma \max_{s} \sum_{s'} T(s, a, s') V^*(s')$$

$$= \max_{s} Q^*(s, a)$$

$$T(s)$$

How to compute V(s)? Well, we could solve the expectimax search - but it grows quickly. We can see R(s) as the price for leaving the state s just anyhow.

q-state

MDP search tree

The value of a q-state (s, a):

$$Q^*(s, a) = \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

The value of a state
$$s$$
:
$$V^*(s) = R(s) + \gamma \max_{a} \sum_{s'} T(s, a, s') V^*(s')$$

$$= \max_{a} Q^*(s, a)$$

How to compute V(s)? Well, we could solve the expectimax search - but it grows quickly. We can see R(s) as the price for leaving the state s just anyhow.

MDP search tree

The value of a
$$q$$
-state (s, a) :
$$Q^*(s, a) = \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$
The value of a state s :
$$V^*(s) = R(s) + \gamma \max_{a} \sum_{s'} T(s, a, s') V^*(s')$$

$$= \max_{a} Q^*(s, a)$$

$$T(s, a, s')$$

$$T(s, a, s')$$

How to compute V(s)? Well, we could solve the expectimax search - but it grows quickly. We can see R(s) as the price for leaving the state s just anyhow.

Bellman equation for state values

$$V(s) = R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s, a) V(s')$$

V(2,0) computation on the table - one row for each action. We got n equations for n unknown - n states. But max is a non-linear operator!

Value iteration

What is the complexity of each iteration? $O(S^2A)$

- ▶ Start with arbitrary $V_0(s)$
- ► Compute Bellman update (one ply of expectimax from each state

$$V_{k+1}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s, a) V_k(s')$$

► Repeat until convergence

The idea: Bellman update makes local consistency with the Bellmann equation. Everywhere locally consistent \Rightarrow globally optimal.

Value iteration

- ► Start with arbitrary $V_0(s)$
- ► Compute Bellman update (one ply of expectimax from each state)

$$V_{k+1}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s, a) V_k(s')$$

► Repeat until convergence

The idea: Bellman update makes local consistency with the Bellmann equation. Everywhere locally consistent \Rightarrow globally optimal.

What is the complexity of each iteration? $O(S^2A)$

Value iteration

- ▶ Start with arbitrary $V_0(s)$
- ► Compute Bellman update (one ply of expectimax from each state)

$$V_{k+1}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s, a) V_k(s')$$

► Repeat until convergence

The idea: Bellman update makes local consistency with the Bellmani equation. Everywhere locally consistent \Rightarrow globally optimal.

What is the complexity of each iteration? $O(S^2A)$

- ▶ Start with arbitrary $V_0(s)$
- ► Compute Bellman update (one ply of expectimax from each state)

$$V_{k+1}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s,a) V_k(s')$$

► Repeat until convergence

The idea: Bellman update makes local consistency with the Bellmann equation. Everywhere locally consistent \Rightarrow globally optimal.

Convergence

$$V_{k+1}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s, a) V_k(s')$$

$$\gamma < 1$$

$$-R_{\text{max}} \le R(s) \le R_{\text{max}}$$

Max norm:

$$\mathcal{J}([s_0, s_1, s_2, \dots, s_\infty]) = \sum_{t=0}^{\infty} \gamma^t R(s_t) \le \frac{R_{\text{max}}}{1 - \epsilon}$$

Convergence

$$V_{k+1}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s, a) V_k(s')$$

$$\gamma < 1$$

$$-R_{\mathsf{max}} \le R(s) \le R_{\mathsf{max}}$$

Max norm:

$$||V|| = \max_{s} |V(s)|$$

$$U([s_0, s_1, s_2, \dots, s_\infty]) = \sum_{t=0}^\infty \gamma^t R(s_t) \leq \frac{R_{\mathsf{max}}}{1-\gamma}$$

Convergence cont'd

$$\begin{aligned} & V_{k+1} \leftarrow BV_k \\ & \|BV_k - BV_k'\| \le \gamma \|V_k - V_k'\| \\ & \|BV_k - V_{\mathsf{true}}\| \le \gamma \|V_k - V_{\mathsf{true}}\| \end{aligned}$$

Rewards are bounded, at the beginning then Value error is

$$||V_0 - V_{true}|| \leq \frac{2R_{\text{max}}}{1-\gamma}$$

We run N iterations and reduce the error by factor γ in each and want to stop the error is below ϵ :

$$\gamma^{N} 2R_{\text{max}}/(1-\gamma) \leq \epsilon$$
 Taking logs, we find: $N \geq \frac{\log(2R_{\text{max}}/\epsilon(1-\gamma))}{\log(1/\gamma)}$

To stop the iteration we want to find a bound relating the error to the size of *one* Bellman update for any given iteration.

We stop if

$$\|V_{k+1} - V_k\| \le \frac{\epsilon(1-\gamma)}{\gamma}$$

then also: $||V_{k+1} - V_{\text{true}}|| \le \epsilon$ Proof on the next slide

Convergence cont'd

$$\|V_{k+1} - V_{\text{true}}\| \le \epsilon$$
 is the same as $\|V_{k+1} - V_{\infty}\| \le \epsilon$

Assume $||V_{k+1} - V_k|| = \text{err}$

In each of the following iteration steps we reduce the error by the factor γ .

Till ∞ , the total sum of reduced errors is:

total =
$$\gamma \operatorname{err} + \gamma^{2} \operatorname{err} + \gamma^{3} \operatorname{err} + \gamma^{4} \operatorname{err} + \dots = \frac{\gamma \operatorname{err}}{(1 - \gamma)}$$

We want to have total $< \epsilon$.

$$\frac{\gamma \text{err}}{(1-\gamma)} < \epsilon$$

From it follows that

$$\operatorname{\mathsf{err}} < rac{\epsilon (1-\gamma)}{\gamma}$$

Hence we can stop if $||V_{k+1} - V_k|| < \epsilon(1 - \gamma)/\gamma$

Value iteration demo

$$V_{k+1}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s, a) V_k(s')$$

Run mdp_agents.py and try to compute next state value in advance. Remind the R(s)=-0.04 and $\gamma=1$ in order to simplify computation. Then discuss the course of the Values.

```
function VALUE-ITERATION(env,\epsilon) returns: state values V
   input: env - MDP problem, \epsilon
    V' \leftarrow 0 in all states
```

```
function VALUE-ITERATION(env,\epsilon) returns: state values V
  input: env - MDP problem, \epsilon
   V' \leftarrow 0 in all states
                                 repeat
```

```
function VALUE-ITERATION(env,\epsilon) returns: state values V
  input: env - MDP problem, \epsilon
   V' \leftarrow 0 in all states
                             repeat
     V \leftarrow V'
                                \delta \leftarrow 0
```

```
function VALUE-ITERATION(env,\epsilon) returns: state values V
   input: env - MDP problem, \epsilon
    V' \leftarrow 0 in all states
                                      repeat
       V \leftarrow V'
                                          \delta \leftarrow 0
                                             for each state s in S do
          V'[s] \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s, a) V(s')
          if |V'[s] - V[s]| > \delta then \delta \leftarrow |V'[s] - V[s]|
       end for
```

```
function VALUE-ITERATION(env,\epsilon) returns: state values V
   input: env - MDP problem, \epsilon
    V' \leftarrow 0 in all states
    repeat

    iterate values until convergence

        V \leftarrow V'
                                                 \delta \leftarrow 0
                                                    for each state s in S do
            V'[s] \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s, a) V(s')
           if |V'[s] - V[s]| > \delta then \delta \leftarrow |V'[s] - V[s]|
        end for
   until \delta < \epsilon (1 - \gamma)/\gamma
end function
```

References

Some figures from [1].

[1] Stuart Russell and Peter Norvig.

Artificial Intelligence: A Modern Approach.

Prentice Hall, 3rd edition, 2010.

http://aima.cs.berkeley.edu/.