Uncertainty, Chances, and Utilities

Tomáš Svoboda

Vision for Robots and Autonomous Systems, Center for Machine Perception
Department of Cybernetics
Faculty of Electrical Engineering, Czech Technical University in Prague

March 11, 2019

 b_1, b_2, b_3 - probable branches, uncertain outcomes of a_1 action

 b_1, b_2, b_3 - probable branches, uncertain outcomes of a_1 action

 b_1, b_2, b_3 - probable branches, uncertain outcomes of a_1 actionnes

 b_1, b_2, b_3 - probable branches, uncertain outcomes of a_1 action.

Why? Actions may fail, ...

Vision for Robotics and Autonomous Systems, http://cyber.felk.cvut.cz/vras

A At home

tram bike car

Random variable: Situation on rails R

 r_1 free rails

r₂ accident

r₃ congestion

MAX/MIN depends on what the $r_{?}$ otions and terminal numbers mean. The goal may be to get to work as fast as possible.

Random variable: Situation on rails R

 r_1 free rails

r₂ accident

r₃ congestion

MAX/MIN depends on what the $\it r_{
m ?}$ otions and terminal numbers mean. The goal may be to get to work as fast as possible.

Random variable: Situation on rails R

 r_1 free rails

r₂ accident

r₃ congestion

MAX/MIN depends on what the $r_{
m ?}$ otions and terminal numbers mean. The goal may be to get to work as fast as possible.

Random variable: Situation on rails R

 r_1 free rails

r₂ accident

r₃ congestion

MAX/MIN depends on what the $r_{?}$ otions and terminal numbers mean. The goal may be to get to work as fast as possible.

Random variable: Situation on rails R

 r_1 free rails

r₂ accident

r₃ congestion

MAX/MIN depends on what the $r_{?}$ otions and terminal numbers mean. The goal may be to get to work as fast as possible.

- Average case, not the worst case
- Calculate expected utilities
- i.e. take weighted average (expectation) of successors

- Average case, not the worst case.
- Calculate expected utilities
- i.e. take weighted average (expectation) of successors

- Average case, not the worst case.
- Calculate expected utilities . . .
- i.e. take weighted average (expectation) of successors

- ► Average case, not the worst case.
- ► Calculate expected utilities . . .
- i.e. take weighted average (expectation) of successors

Expectimax

```
function EXPECTIMAX(state) return a value
   if TERMINAL-TEST(state): return UTILITY(state)
   if state (next agent) is MAX: return MAX-VALUE(state)
   if state (next agent) is CHANCE: return EXP-VALUE(state)
end function
function MAX-VALUE(state) return value v
   v \leftarrow -\infty
   for a in ACTIONS(state) do
       v \leftarrow \max(v, \text{EXPECTIMAX}(\text{RESULT}(\text{state}, a)))
   end for
end function
```

```
unction EXP-VALUE(state) return value v \leftarrow 0 for all r \in \text{random events do} v \leftarrow v + P(r) EXPECTIMAX(RESULT(state,r)) end for
```

Expectimax

```
function EXPECTIMAX(state) return a value
   if TERMINAL-TEST(state): return UTILITY(state)
   if state (next agent) is MAX: return MAX-VALUE(state)
   if state (next agent) is CHANCE: return EXP-VALUE(state)
end function
function MAX-VALUE(state) return value v
    v \leftarrow -\infty
   for a in ACTIONS(state) do
       v \leftarrow \max(v, \text{EXPECTIMAX}(\text{RESULT}(\text{state}, a)))
   end for
end function
function EXP-VALUE(state) return value v
    v \leftarrow 0
   for all r \in \text{random events } \mathbf{do}
       v \leftarrow v + P(r) EXPECTIMAX(RESULT(state, r))
   end for
end function
```

- ► Random variable an event with unknown outcome
- Probability distribution assignment of weights to the outcomes

- Random variable: R situation on rails
- ightharpoonup Outcomes/events: $r \in \{\text{free rails, accindent, congestion}\}$
- Probability distribution: P(R = free rails) = 0.3, P(R = accident) = 0.1, P(R = congestion) = 0.6

Few reminders from laws of probabilities: Probabilities:

- always non-negative
- sum over all possible outcomes is equal to 1.

- ► Random variable an event with unknown outcome
- Probability distribution assignment of weights to the outcomes

- Random variable: R situation on rails
- ightharpoonup Outcomes/events: $r \in \{\text{free rails, accindent, congestion}\}$
- Probability distribution: P(R = free rails) = 0.3, P(R = accident) = 0.1, P(R = congestion) = 0.6

Few reminders from laws of probabilities: Probabilities:

- always non-negative
- sum over all possible outcomes is equal to 1.

- Random variable an event with unknown outcome
- Probability distribution assignment of weights to the outcomes

- ▶ Random variable: *R* situation on rails
- ightharpoonup Outcomes/events: $r \in \{\text{free rails, accindent, congestion}\}$
- Probability distribution: P(R = free rails) = 0.3, P(R = accident) = 0.1, P(R = congestion) = 0.6

Few reminders from laws of probability, Probabilities:

- always non-negative,
- sum over all possible outcomes is equal to 1.

- Random variable an event with unknown outcome
- Probability distribution assignment of weights to the outcomes

- ▶ Random variable: R situation on rails
- ▶ Outcomes/events: $r \in \{\text{free rails, accindent, congestion}\}$
- Probability distribution: P(R = free rails) = 0.3, P(R = accident) = 0.1, P(R = congestion) = 0.6

Few reminders from laws of probability, Probabilities:

- always non-negative,
- sum over all possible outcomes is equal to 1.

- Random variable an event with unknown outcome
- Probability distribution assignment of weights to the outcomes

- ▶ Random variable: R situation on rails
- ▶ Outcomes/events: $r \in \{\text{free rails, accindent, congestion}\}$
- Probability distribution: P(R = free rails) = 0.3, P(R = accident) = 0.1, P(R = congestion) = 0.6

Few reminders from laws of probabilities:

- always non-negative
- sum over all possible outcomes is equal to 1.

- Random variable an event with unknown outcome
- Probability distribution assignment of weights to the outcomes

- ▶ Random variable: R situation on rails
- ▶ Outcomes/events: $r \in \{\text{free rails, accindent, congestion}\}$
- Probability distribution: P(R = free rails) = 0.3, P(R = accident) = 0.1, P(R = congestion) = 0.6

Few reminders from laws of probability, Probabilities:

- always non-negative,
- sum over all possible outcomes is equal to 1.

Expectations, ...

How long does it take to go to work by tram?

- ▶ Depends on the random variable R situation on rails with possible events r_1, r_2, r_3 .
- ▶ What is the expectation of the time?

$$t = P(r_1)t_1 + P(r_2)t_2 + P(r_3)t_3$$

Weighted average.

Expectations, ...

How long does it take to go to work by tram?

- ▶ Depends on the random variable R situation on rails with possible events r_1, r_2, r_3 .
- ▶ What is the expectation of the time?

$$t = P(r_1)t_1 + P(r_2)t_2 + P(r_3)t_3$$

Weighted average.

How about the Reversi game?

- Dangerous optimism
- Dangerous pessimism

Games with chances and strategy

Mixing MAX, CHANCE, and MIN nodes

Extra random agent that moves after each MAX and MIN agent

EXPECTIMINIMAX(
$$s$$
) =

UTILITY(s) if TERMINAL-TEST(s)

max₃EXPECTIMINIMAX(RESULT(s , a)) if PLAYER(s) = MAX

min₃EXPECTIMINIMAX(RESULT(s , a)) if PLAYER(s) = MIN

 $P(r)$ EXPECTIMINIMAX(RESULT(s , r)) if PLAYER(s) = CHANC

EXPECTIMINIMAX(
$$s$$
) =

UTILITY(s) if TERMINAL-TEST(s)

max _{s} EXPECTIMINIMAX(RESULT(s , a)) if PLAYER(s) = MAX

min _{s} EXPECTIMINIMAX(RESULT(s , a)) if PLAYER(s) = MIN

 $P(r)$ EXPECTIMINIMAX(RESULT(s , r)) if PLAYER(s) = CHANCE

EXPECTIMINIMAX(
$$s$$
) =

UTILITY(s) if TERMINAL-TEST(s)

max_aEXPECTIMINIMAX(RESULT(s , a)) if PLAYER(s) = MAX

min_aEXPECTIMINIMAX(RESULT(s , a)) if PLAYER(s) = OHANCE

EXPECTIMINIMAX(s) =

```
\begin{split} & \text{UTILITY}(s) & \text{if} & \text{TERMINAL-TEST}(s) \\ & \text{max}_{a} \text{EXPECTIMINIMAX}(\text{RESULT}(s, a)) & \text{if} & \text{PLAYER}(s) = \text{MAX} \\ & \text{min}_{a} \text{EXPECTIMINIMAX}(\text{RESULT}(s, a)) & \text{if} & \text{PLAYER}(s) = \text{MIN} \end{split}
```


$$\text{EXPECTIMINIMAX}(s) = \\ \text{UTILITY}(s) \quad \text{if} \quad \text{TERMINAL-TEST}(s) \\ \text{max}_{a} \text{EXPECTIMINIMAX}(\text{RESULT}(s, a)) \quad \text{if} \quad \text{PLAYER}(s) = \text{MAX} \\ \text{min}_{a} \text{EXPECTIMINIMAX}(\text{RESULT}(s, a)) \quad \text{if} \quad \text{PLAYER}(s) = \text{MIN} \\ \sum_{r} P(r) \text{EXPECTIMINIMAX}(\text{RESULT}(s, r)) \quad \text{if} \quad \text{PLAYER}(s) = \text{CHANCE} \\ \end{cases}$$

Mixing chances into min/max tree, how big?

Evaluation function

- Scale matters! Not only ordering
- ightharpoonup Can we prune the tree? $(\alpha, \beta \text{ like?})$

Evaluation function

Scale matters! Not only ordering.

 \triangleright Can we prune the tree? (α , β like?)

Evaluation function

- Scale matters! Not only ordering.
- ▶ Can we prune the tree? $(\alpha, \beta \text{ like?})$

Prunning expectiminimax tree

Bounds on terminal utilities needed

Prunning expectiminimax tree

Bounds on terminal utilities needed.

Multi player games

- Utility tuples
- Each player maximizes its own
- Coalitions, cooperations, competions may be dynamic

Multi player games

- Utility tuples
- ► Each player maximizes its own
- Coalitions, cooperations, competions may be dynamic

Uncertainty recap

▶ Uncertain outcome of an action.

► Robot/Agent may not know the current state!

Uncertainty recap

- Uncertain outcome of an action.
- Robot/Agent may not know the current state!

Uncertain, partially observable environment

- Currents state s may be unknown, observations e
- Uncertain outcome, random variable RESULT(a)
- ▶ Probability of outcome s' given e is

$$P(\text{RESULT}(a) = s'|a, \mathbf{e})$$

- Utility function *U(s)* corresponds to agent preferences.
- Expected utility of an action a given e:

$$EU(a|\mathbf{e}) = \sum_{s'} P(\text{RESULT}(a) = s'|a,\mathbf{e})U(s')$$

Amatrice, Italy, 2016.

Rational agent

Agent's expected utility of an action a given e:

$$EU(a|\mathbf{e}) = \sum_{s'} P(\text{RESULT}(a) = s'|a,\mathbf{e})U(s')$$

What should a rational agent do?

Is it then all solved?

$$ightharpoonup P(\text{RESULT}(a) = s'|a, \mathbf{e})$$

Rational agent

Agent's expected utility of an action a given e:

$$EU(a|\mathbf{e}) = \sum_{s'} P(\text{RESULT}(a) = s'|a,\mathbf{e})U(s')$$

What should a rational agent do? Is it then all solved?

$$ightharpoonup P(\text{RESULT}(a) = s'|a, \mathbf{e})$$

 $ightharpoonup U(s')$

Rational agent

Agent's expected utility of an action a given e:

$$EU(a|\mathbf{e}) = \sum_{s'} P(\text{RESULT}(a) = s'|a,\mathbf{e})U(s')$$

What should a rational agent do? Is it then all solved?

- $ightharpoonup P(\text{RESULT}(a) = s'|a, \mathbf{e})$
- ► U(s')

Utilities

- Where do utilities come frome?
- Does averging make sense?
- Do they exist?
- ▶ What if our preferences can't be described by utilities?

Agent/Robot Preferences

- ► Prizes A, B
- ▶ Lottery: uncertain prizes L = [p, A; (1 p), B]

Preference, indifference, ...

- ▶ Robot prefers A over B: $A \succ B$
- Robot has no preferences: $A \sim B$
- ightharpoonup in between: $A \gtrsim B$

Agent/Robot Preferences

- ► Prizes A, B
- ▶ Lottery: uncertain prizes L = [p, A; (1 p), B]

Preference, indifference, ...

- ▶ Robot prefers *A* over *B*: $A \succ B$
- ▶ Robot has no preferences: $A \sim B$
- ▶ in between: $A \succeq B$

Rational preferences

- Transitivity
- Orderability (Completeness)
- Continuity
- Substituability
- Monotonocity
- Decomposability (Reduction)

Axioms of utility theory.

Rational preferences

- Transitivity
- Orderability (Completeness)
- Continuity
- Substituability
- Monotonocity
- Decomposability (Reduction)

Axioms of utility theory.

Transitivity and decomposability

Goods A, B, C and agent (nontransitive) preferences $A \succ B \succ C \succ A$.

Maximum expected utility principle

Given the rational preferences (contraints), there exists a real valued function U such that:

$$U(A) > U(B) \Leftrightarrow A \succ B$$

 $U(A) = U(B) \Leftrightarrow A \sim B$

Expected utility of a Lotery L

$$L([p_1, S_1; \cdots; p_n, S_n]) = \sum_i p_i U(S_i)$$

Proof in [3]. Is a utility U unique?

Maximum expected utility principle

Given the rational preferences (contraints), there exists a real valued function U such that:

$$U(A) > U(B) \Leftrightarrow A \succ B$$

 $U(A) = U(B) \Leftrightarrow A \sim B$

Expected utility of a Lotery *L*:

$$L([p_1, S_1; \cdots; p_n, S_n]) = \sum_i p_i U(S_i)$$

Proof in [3].

Is a utility *U* unique?

Maximum expected utility principle

Given the rational preferences (contraints), there exists a real valued function U such that:

$$U(A) > U(B) \Leftrightarrow A \succ B$$

 $U(A) = U(B) \Leftrightarrow A \sim B$

Expected utility of a Lotery *L*:

$$L([p_1, S_1; \cdots; p_n, S_n]) = \sum_i p_i U(S_i)$$

Proof in [3]. Is a utility U unique?

Human utilities

Utility of money

You triumphed in a TV show!

- a) Take \$1,000,000 ... or
- b) Flip a coin and loose all or win \$2,500,000

The (human) Utility of money.

References

Some figures from [2], Chapters 5, 16. Human utilities are discussed in [1]. This lecture has been also greatly inspired by the 7th lecture of CS 188 at http://ai.berkeley.edu as it convenietly bridges the world of deterministic search and sequential decisions in uncertain worlds.

- [1] Daniel Kahneman.

 Thinking, Fast and Slow.
 Farrar, Straus and Giroux, 2011.
- [2] Stuart Russell and Peter Norvig.

 Artificial Intelligence: A Modern Approach.

 Prentice Hall, 3rd edition, 2010.

 http://aima.cs.berkeley.edu/.
- [3] John von Neumann and Oskar Morgenstern.

 Theory of Games and Economic Behavior.

 Princeton, 1944.

 https://en.wikipedia.org/wiki/Theory_of_Games_and_
 Economic_Behavior, Utility theorem.