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Games, man vs. algorithm

» Deep Blue

» Alpha Go

» Deep Stack

» Why Games, actually?
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Games, man vs. algorithm

» Deep Blue

» Alpha Go

» Deep Stack

» Why Games, actually?

Games are interesting for Al because they are hard (to solve).
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More: Adversarial Learning

Video: Adversing visual segmentation
Vision for Robotics and Autonomous Systems, http://cyber.felk.cvut.cz/vras
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Considering the notation, we are making slight transition from [1] to [2].
Elements of the game

e Players: P ={1,2,... N} (often just N = 2)
e Transition functions: S x A — S.

e Terminal utilities: S x P — R. (R - as a Reward)

O 1 0O What are we loking for? A strategy/policy S — A
> sp: The initial state | o 1

4/19


https://commons.wikimedia.org/wiki/File:Tic-tac-toe_5.png
https://commons.wikimedia.org/wiki/File:Tic-tac-toe_5.png

Considering the notation, we are making slight transition from [1] to [2].
Elements of the game

e Players: P ={1,2,... N} (often just N = 2)
e Transition functions: S x A — S.

e Terminal utilities: S x P — R. (R - as a Reward)

O | O What are we loking for? A strategy/policy S — A
> sp: The initial state e o 1
» PLAYER(S). Which player has to move in s. . 8000
O
@)
O

4/19


https://commons.wikimedia.org/wiki/File:Tic-tac-toe_5.png
https://commons.wikimedia.org/wiki/File:Tic-tac-toe_5.png

Considering the notation, we are making slight transition from [1] to [2].
Elements of the game

e Players: P ={1,2,... N} (often just N = 2)
e Transition functions: S x A — S.

e Terminal utilities: S x P — R. (R - as a Reward)

O O What are we loking for? A strategy/policy S — A
> sp: The initial state e o 1
» PLAYER(s). Which player has to move in s. QOO0
OXO
» ACTIONS(S). What are the legal moves? O
@)
O

4/19


https://commons.wikimedia.org/wiki/File:Tic-tac-toe_5.png
https://commons.wikimedia.org/wiki/File:Tic-tac-toe_5.png

Considering the notation, we are making slight transition from [1] to [2].
Elements of the game

e Players: P ={1,2,... N} (often just N = 2)
e Transition functions: S x A — S.

e Terminal utilities: S x P — R. (R - as a Reward)

O 1 0O What are we loking for? A strategy/policy S — A
> sp: The initial state e o 1
» PLAYER(s). Which player has to move in s. QOO0
OX0O)
» ACTIONS(S). What are the legal moves? O
» RESULT(S, a). Transition, result of a move. O 0O

4/19


https://commons.wikimedia.org/wiki/File:Tic-tac-toe_5.png
https://commons.wikimedia.org/wiki/File:Tic-tac-toe_5.png

Elements of the game

vVvyVvyYVvyy

so: The initial state

PLAYER(s). Which player has to move in s.
ACTIONS(s). What are the legal moves?
RESULT(s, a). Transition, result of a move.

TERMINAL-TEST(s). Game over?
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Elements of the game
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so: The initial state

PLAYER(s). Which player has to move in s.

ACTIONS(s). What are the legal moves?
RESULT(s, a). Transition, result of a move.
TERMINAL-TEST(s). Game over?

TERMINAL-UTILITY (s, p). What is prize?
Examples for some games ...

Considering the notation, we are making slight transition from [1] to [2].
e Players: P ={1,2,... N} (often just N = 2)
e Transition functions: S x A — S.
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Terminal utilitity: Zero-Sum and General games

> Zero-sum: players have opposite utilities (values)

> Zero-sum: playing against
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Terminal utilitity: Zero-Sum and General games

> Zero-sum: players have opposite utilities (values)
» Zero-sum: playing against
» General game: independent utilities

» General game: cooperations, competition, ...
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Game Tree(s)

Me (x)
thinking
Me playing
ol X A K
thinking X
Opp playing \
X|o X| o] [X
Me (x) o)
thinking
Me playing
Opp (0) X[O|X| [|X|O X|0
thinking X X
Opp playing
terminal X|Oo|X| [X[O[X| [X|O[X
O[X| [0[O|X X
states (o] X|X[O0] [X]|O]|O
-1 0 +1

TERMINAL-UTILITY(s, X)
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Init state, ACTIONS function, and RESULT function defines game tree



Think about the State Value. It is a theoretical construct, definition.
State Value V(S) Depending on the problem, there may be various computational algorithms.
In a game, what State Values are known? Usually, only terminal states.

Think, for a moment, you are the only player. You can control every step.
How would you compute the V(s) for a given state s?

V(s) — value V of a state s : The best utility achievable from this state.

V(s) = V(s'
(S S’EChmilgr);n(s) (S)
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I'm player that starts (state A) and want to decide what to play, ac-

TWO_ply game: max for me, min for the opponent. tions/plays/moves ay, as, a3 are the options. B, C, D are the possible
outcomes of my moves. Now the opponent is about to play. The numbers

in terminal states denote my profit/utility.

/AN
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Two-ply game: max for me, min for the opponent.

3 12 8 2 16 14 2
a; = argmax RESULT(A, a)
acAcTIONS(A)

I'm player that starts (state A) and want to decide what to play, ac-
tions/plays/moves aj, ap, a3 are the options. B, C, D are the possible
outcomes of my moves. Now the opponent is about to play. The numbers
in terminal states denote my profit/utility.
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. Max step: | want to maximize my outcome.
Zero-Sum game: max for me, min for the opponent.

Min step: | want to minimize the outcome of the opponent.
MAX ()
X X X
MIN (o) X X X
o ol &
MAX (x) 5 ‘ ‘ ‘ ‘
X|0[X X|O|X| [X[O[X
TERMINAL [ [o[x| [ojox] [ [X
o X|X|0| [X[0|O
Utility -1 0+l
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Zero-Sum game: max for me, min for the opponent.
MAX (x)

X X X
MIN (o) X X X
\ X X X
ol 1 ol Tk
MAX (x) 0 ‘ ‘ ‘ ‘
X|0[X X|0[X X|O0[X
TERMINAL [ Jo]x| [o[o[X| [ [X
[o] X|X|0| [X[0|O
Utility -1 0 +1
MINIMAX(S) =

UTILITY(s) if TERMINAL-TEST(S)
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Max step: | want to maximize my outcome.
Min step: | want to minimize the outcome of the opponent.
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Max step: | want to maximize my outcome.
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Minimax algorithm

function MINIMAX(state) returns an action

function MIN-VALUE(state) returns a utility value v

function MAX-VALUE(state) returns a utility value v
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Minimax algorithm

function MINIMAX(state) returns an action

return argmax MIN-VALUE(RESULT(state, a))
acActions(s)
end function
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Minimax algorithm

function MINIMAX(state) returns an action

return argmax MIN-VALUE(RESULT(state, a))
a€Actions(s)

end function

function MIN-VALUE(state) returns a utility value v
if TERMINAL-TEST(state) then return UTILITY(state)
end if
V ¢ 00
for all AcTIONS(state) do

v + min(v, MAX-VALUE(RESULT(state,a)))

end for

end function

function MAX-VALUE(state) returns a utility value v
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function MINIMAX(state) returns an action

return argmax MIN-VALUE(RESULT(state, a))
a€Actions(s)

end function

function MIN-VALUE(state) returns a utility value v
if TERMINAL-TEST(state) then return UTILITY(state)
end if
V 4 00
for all AcTIONS(state) do
v + min(v, MAX-VALUE(RESULT(state,a)))
end for
end function

function MAX-VALUE(state) returns a utility value v
if TERMINAL-TEST(state) then return UTILITY(state)
end if
V4 —00
for all AcTIONS(state) do
v + max(v, MIN-VALUE(RESULT(state,a)))
end for
end function
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Before going to the animation on the next slide, try to follow the algorithm

A two ply game, down to terminal and back again ... by a pencil and paper.

function MINIMAX(s) returns a

MAX
argmax MINVAL(RES(s, a))
a€Actions(s)
end function
MIN

function MINVAL(s) returns v
if TERMINAL(S) then UTIL(s)
end if
V < 00
for all AcTIONS(S) do
v + min(v, MAXVAL(RES(s, a)))
end for
end function
function MAXVAL(s) returns v
if TERMINAL(s) then UTIL(s)
end if
V < —00
for all AcTIONS(s) do
v < max(v, MINVAL(RES(s, a)))
end for
end function
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. Efficiency /complexity:
A two ply game, recursive run
e Exhaustive DFS

@ e Time O(b™)
e Space O(bm)
Chess b~ 35, m~ 100 ...

e We cannot go(dive) to the end

e Can we save something?
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A two ply game, recursive run

A

ai an

a7 ‘

/1N

by by bs
SN
3 12 8

12/19

Efficiency /complexity:
e Exhaustive DFS
e Time O(b™)
e Space O(bm)
Chess b~ 35, m~ 100 ...
e We cannot go(dive) to the end

e Can we save something?



. Efficiency /complexity:
A two ply game, recursive run
e Exhaustive DFS

P -

a1 ‘:12 e Space O(bm)
ng/ Chess b~ 35, m~ 100 ...
/ ‘ \ e We cannot go(dive) to the end
/bl bf b3\ e Can we save something?

12 8 2 4

12/19



. Efficiency /complexity:
A two ply game, recursive run
e Exhaustive DFS

P -

a1 ‘:12 e Space O(bm)
ng/ Chess b~ 35, m~ 100 ...
/ ‘ \ e We cannot go(dive) to the end
/bl bf b3\ e Can we save something?

12 8 2 4 6

12/19



A two ply game, recursive run
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A two ply game, recursive run

Ny
\

7T e 27
2 J1\6 1/i\2

/1N

by by bs
VAN RN
3 12 8 4

What is the complexity? How many nodes to visit?

Can we do better? How?

Efficiency /complexity:
e Exhaustive DFS
e Time O(b™)
e Space O(bm)
Chess b~ 35, m~ 100 ...
e We cannot go(dive) to the end

e Can we save something?
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Nodes (sub-trees) worth visiting
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a- prunning

« highest (best) value choice found so far for any choice along MAX
B lowest (best) value choice found so far for any choice along MIN

v value of the state

LA\
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Functions scope: [MAX-VALUE| MIN-VALUE

In MAX nodes « is changing and (3 is stopping, in MIN nodes 3 is changing
and « is stopping.

It is clear that ordering of child nodes matters. Draw tree of a-(3 search in
case of perferct ordering. Effective branching factor becomes v/b instead
of b which effectively doubles the depth can be searched.
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. .. . . . Even with perfect ordering, a-3 prunning does not save us.
Imperfect but real-time decisions - iterative deepening P 5GPk .
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Imperfect but real-time decisions - iterative deepening

H-MINIMAX(S, d) =
EVAL(s) if CUTOFF-TEST(s,d)

max  H-MINIMAX(RESULT(s,a),d + 1) if PLAYER(S) = MAX
aEACTIONS(S)

min  H-MINIMAX(RESULT(s,a,d + 1)) if PLAYER(s) = MIN
aEACTIONS(s)

16/19

Even with perfect ordering, a-8 prunning does not save us.



Cutting depends on d only, why we need s as the input parameter?

Cutting off search

Replace
if TERMINAL-TEST(s) then return UTILITY(s)

with:
if CUTOFF-TEST(s,d) then return EVAL(s)

17/19



. . For many problems it is not so easy to find/construct proper function. We
EVAL(S) — Evaluation functions may try more functions and combine them conveniently.

(estimate of)) State value for non-terminal states fi(s) = number of white pawns — number of black pawns

How to tune weights w;?
or Deep Nets! Yeah!

How the get training data for supervised learning? More later.

(a) White to move (b) White to move
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EVAL(s) = wifi(s) + wafa(s) + - - - wyfn(s)
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