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Games, man vs. algorithm

I Deep Blue

I Alpha Go

I Deep Stack

I Why Games, actually?

Games are interesting for AI because they are hard (to solve).
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More: Adversarial Learning

Video: Adversing visual segmentation
Vision for Robotics and Autonomous Systems, http://cyber.felk.cvut.cz/vras
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http://cyber.felk.cvut.cz/vras


Elements of the game

I s0: The initial state

I player(s). Which player has to move in s.

I actions(s). What are the legal moves?

I result(s, a). Transition, result of a move.

I terminal-test(s). Game over?

I terminal-utility(s, p). What is prize?
Examples for some games ...

https://commons.wikimedia.org/

wiki/File:Tic-tac-toe_5.png
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Considering the notation, we are making slight transition from [1] to [2].

• Players: P = {1, 2, . . . ,N} (often just N = 2)

• Transition functions: S × A→ S .

• Terminal utilities: S × P → R. (R - as a Reward)

What are we loking for? A strategy/policy S → A
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Terminal utilitity: Zero-Sum and General games

I Zero-sum: players have opposite utilities (values)

I Zero-sum: playing against

I General game: independent utilities

I General game: cooperations, competition, . . .
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Game Tree(s)
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Init state, actions function, and result function defines game tree



State Value V (s)

V (s) – value V of a state s : The best utility achievable from this state.

V (s) = max
s′∈children(s)

V (s ′)

7 / 19

Think about the State Value. It is a theoretical construct, definition.
Depending on the problem, there may be various computational algorithms.
In a game, what State Values are known? Usually, only terminal states.

Think, for a moment, you are the only player. You can control every step.

How would you compute the V (s) for a given state s?
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Two-ply game: max for me, min for the opponent.

A

B

3 12 8

C

2 4 16

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

a1 = arg max
a∈Actions(A)

Result(A, a)
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I’m player that starts (state A) and want to decide what to play, ac-

tions/plays/moves a1, a2, a3 are the options. B, C, D are the possible

outcomes of my moves. Now the opponent is about to play. The numbers

in terminal states denote my profit/utility.
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Zero-Sum game: max for me, min for the opponent.
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Max step: I want to maximize my outcome.

Min step: I want to minimize the outcome of the opponent.
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Minimax algorithm
function minimax(state) returns an action

return argmax
a∈Actions(s)

min-value(result(state, a))

end function
function min-value(state) returns a utility value v

if terminal-test(state) then return utility(state)
end if
v ←∞
for all actions(state) do

v ← min(v , max-value(result(state,a)))
end for

end function
function max-value(state) returns a utility value v

if terminal-test(state) then return utility(state)
end if
v ← −∞
for all actions(state) do

v ← max(v , min-value(result(state,a)))
end for

end function
10 / 19
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A two ply game, down to terminal and back again . . .

function minimax(s) returns a
argmax

a∈Actions(s)

minval(res(s, a))

end function
function minval(s) returns v

if terminal(s) then util(s)
end if
v ←∞
for all actions(s) do

v ← min(v , maxval(res(s, a)))
end for

end function
function maxval(s) returns v

if terminal(s) then util(s)
end if
v ← −∞
for all actions(s) do

v ← max(v , minval(res(s, a)))
end for

end function

MAX A

B C D

3 12 8 2 4 6 14 5 2

3 2 2

3
a1 a2

a3

b1
b2

b3 c1
c2

c3 d1
d2

d3

MIN
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Before going to the animation on the next slide, try to follow the algorithm

by a pencil and paper.
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What is the complexity? How many nodes to visit?

Can we do better? How?
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Efficiency/complexity:

• Exhaustive DFS

• Time O(bm)

• Space O(bm)

Chess b ≈ 35,m ≈ 100 . . .

• We cannot go(dive) to the end

• Can we save something?
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α-β prunning

α highest (best) value choice found so far for any choice along max
β lowest (best) value choice found so far for any choice along min
v value of the state
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β = 3, v = 3
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α = 3

v = 2, . . .
α = 3

β =∞, v =∞
α = 3

β = 14, v = 14
α = 3

v = 2, v < α, . . .

α = −∞, β =∞, v =?α = 3, β =∞, v = 3

In min-val: v ← 2
v ≤ α then: return v !

14 / 19

Functions scope: max-value min-value
In MAX nodes α is changing and β is stopping, in MIN nodes β is changing
and α is stopping.

It is clear that ordering of child nodes matters. Draw tree of α-β search in

case of perferct ordering. Effective branching factor becomes
√
b instead

of b which effectively doubles the depth can be searched.
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function alpha-beta-search(state) returns an action
v ← max-value(state, α = −∞, β =∞)
return action corresponding to v

end function
function max-value(state,α, β) returns a utility value v

if terminal-test(state) return utility(state)
v ← −∞
for all actions(state) do

v ← max(v , min-value(result(state,a),α, β))
if v ≥ β return v
α← max(α, v)

end for
end function
function min-value(state, α, β) returns a utility value v

if terminal-test(state) return utility(state)
v ←∞
for all actions(state) do

v ← min(v , max-value(result(state,a),α, β))
if v ≤ α return v
β ← min(β, v)

end for
end function

15 / 19

Take the tree from the previous slide and try to go step-by-step, watch α,

β and v
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Imperfect but real-time decisions - iterative deepening

h-minimax(s, d) =

eval(s) if cutoff-test(s, d)

max
a∈actions(s)

h-minimax(result(s, a), d + 1) if player(s) = max

min
a∈actions(s)

h-minimax(result(s, a, d + 1)) if player(s) = min

16 / 19

Even with perfect ordering, α-β prunning does not save us.
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Cutting off search

Replace
if terminal-test(s) then return utility(s)
with:
if cutoff-test(s,d) then return eval(s)

17 / 19

Cutting depends on d only, why we need s as the input parameter?



eval(s) – Evaluation functions

(estimate of) State value for non-terminal states

(b) White to move(a) White to move

Eval(s) = w1f1(s) + w2f2(s) + · · ·wnfn(s)

18 / 19

For many problems it is not so easy to find/construct proper function. We
may try more functions and combine them conveniently.

f1(s) = number of white pawns− number of black pawns

How to tune weights wi?
or Deep Nets! Yeah!

How the get training data for supervised learning? More later.
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