
Adversarial Search

Tomáš Svoboda

Vision for Robots and Autonomous Systems, Center for Machine Perception
Department of Cybernetics

Faculty of Electrical Engineering, Czech Technical University in Prague

March 8, 2019

1 / 19

http://cyber.felk.cvut.cz/vras
http://cmp.felk.cvut.cz
http://cyber.felk.cvut.cz
http://fel.cvut.cz
http://cvut.cz

Games, man vs. algorithm

I Deep Blue

I Alpha Go

I Deep Stack

I Why Games, actually?

Games are interesting for AI because they are hard (to solve).

2 / 19

https://en.wikipedia.org/wiki/Deep_Blue_(chess_computer)
https://en.wikipedia.org/wiki/AlphaGo
https://arxiv.org/pdf/1701.01724.pdf

Games, man vs. algorithm

I Deep Blue

I Alpha Go

I Deep Stack

I Why Games, actually?

Games are interesting for AI because they are hard (to solve).

2 / 19

https://en.wikipedia.org/wiki/Deep_Blue_(chess_computer)
https://en.wikipedia.org/wiki/AlphaGo
https://arxiv.org/pdf/1701.01724.pdf

More: Adversarial Learning

Video: Adversing visual segmentation
Vision for Robotics and Autonomous Systems, http://cyber.felk.cvut.cz/vras

3 / 19

file:///localdata/svoboda-git-clones/kui-felgit/kui-lectures/04_adversarial/figures/advers-pedestrians.avi
http://cyber.felk.cvut.cz/vras

Elements of the game

I s0: The initial state

I player(s). Which player has to move in s.

I actions(s). What are the legal moves?

I result(s, a). Transition, result of a move.

I terminal-test(s). Game over?

I terminal-utility(s, p). What is prize?
Examples for some games ...

https://commons.wikimedia.org/

wiki/File:Tic-tac-toe_5.png

4 / 19

Considering the notation, we are making slight transition from [1] to [2].

• Players: P = {1, 2, . . . ,N} (often just N = 2)

• Transition functions: S × A→ S .

• Terminal utilities: S × P → R. (R - as a Reward)

What are we loking for? A strategy/policy S → A

https://commons.wikimedia.org/wiki/File:Tic-tac-toe_5.png
https://commons.wikimedia.org/wiki/File:Tic-tac-toe_5.png

Elements of the game

I s0: The initial state

I player(s). Which player has to move in s.

I actions(s). What are the legal moves?

I result(s, a). Transition, result of a move.

I terminal-test(s). Game over?

I terminal-utility(s, p). What is prize?
Examples for some games ...

https://commons.wikimedia.org/

wiki/File:Tic-tac-toe_5.png

4 / 19

Considering the notation, we are making slight transition from [1] to [2].

• Players: P = {1, 2, . . . ,N} (often just N = 2)

• Transition functions: S × A→ S .

• Terminal utilities: S × P → R. (R - as a Reward)

What are we loking for? A strategy/policy S → A

https://commons.wikimedia.org/wiki/File:Tic-tac-toe_5.png
https://commons.wikimedia.org/wiki/File:Tic-tac-toe_5.png

Elements of the game

I s0: The initial state

I player(s). Which player has to move in s.

I actions(s). What are the legal moves?

I result(s, a). Transition, result of a move.

I terminal-test(s). Game over?

I terminal-utility(s, p). What is prize?
Examples for some games ...

https://commons.wikimedia.org/

wiki/File:Tic-tac-toe_5.png

4 / 19

Considering the notation, we are making slight transition from [1] to [2].

• Players: P = {1, 2, . . . ,N} (often just N = 2)

• Transition functions: S × A→ S .

• Terminal utilities: S × P → R. (R - as a Reward)

What are we loking for? A strategy/policy S → A

https://commons.wikimedia.org/wiki/File:Tic-tac-toe_5.png
https://commons.wikimedia.org/wiki/File:Tic-tac-toe_5.png

Elements of the game

I s0: The initial state

I player(s). Which player has to move in s.

I actions(s). What are the legal moves?

I result(s, a). Transition, result of a move.

I terminal-test(s). Game over?

I terminal-utility(s, p). What is prize?
Examples for some games ...

https://commons.wikimedia.org/

wiki/File:Tic-tac-toe_5.png

4 / 19

Considering the notation, we are making slight transition from [1] to [2].

• Players: P = {1, 2, . . . ,N} (often just N = 2)

• Transition functions: S × A→ S .

• Terminal utilities: S × P → R. (R - as a Reward)

What are we loking for? A strategy/policy S → A

https://commons.wikimedia.org/wiki/File:Tic-tac-toe_5.png
https://commons.wikimedia.org/wiki/File:Tic-tac-toe_5.png

Elements of the game

I s0: The initial state

I player(s). Which player has to move in s.

I actions(s). What are the legal moves?

I result(s, a). Transition, result of a move.

I terminal-test(s). Game over?

I terminal-utility(s, p). What is prize?
Examples for some games ...

https://commons.wikimedia.org/

wiki/File:Tic-tac-toe_5.png

4 / 19

Considering the notation, we are making slight transition from [1] to [2].

• Players: P = {1, 2, . . . ,N} (often just N = 2)

• Transition functions: S × A→ S .

• Terminal utilities: S × P → R. (R - as a Reward)

What are we loking for? A strategy/policy S → A

https://commons.wikimedia.org/wiki/File:Tic-tac-toe_5.png
https://commons.wikimedia.org/wiki/File:Tic-tac-toe_5.png

Elements of the game

I s0: The initial state

I player(s). Which player has to move in s.

I actions(s). What are the legal moves?

I result(s, a). Transition, result of a move.

I terminal-test(s). Game over?

I terminal-utility(s, p). What is prize?
Examples for some games ...

https://commons.wikimedia.org/

wiki/File:Tic-tac-toe_5.png

4 / 19

Considering the notation, we are making slight transition from [1] to [2].

• Players: P = {1, 2, . . . ,N} (often just N = 2)

• Transition functions: S × A→ S .

• Terminal utilities: S × P → R. (R - as a Reward)

What are we loking for? A strategy/policy S → A

https://commons.wikimedia.org/wiki/File:Tic-tac-toe_5.png
https://commons.wikimedia.org/wiki/File:Tic-tac-toe_5.png

Terminal utilitity: Zero-Sum and General games

I Zero-sum: players have opposite utilities (values)

I Zero-sum: playing against

I General game: independent utilities

I General game: cooperations, competition, . . .

5 / 19

Terminal utilitity: Zero-Sum and General games

I Zero-sum: players have opposite utilities (values)

I Zero-sum: playing against

I General game: independent utilities

I General game: cooperations, competition, . . .

5 / 19

Game Tree(s)

XX

XX

X

X

X

XX

X X

O

OX O

O

X OX O

X

.

. . .

. . .

. . .

XX

–1 0 +1

XX

X XO

X XOX XO

O

O

X

X XO

OO

O O X X

MAX (X)

MIN (O)

MAX (X)

MIN (O)

TERMINAL

Utility

Me (x)
thinking

Opp (o)
thinking

Me (x)
thinking

Opp (o)
thinking

terminal
states

Me playing

Me playing

Opp playing

Opp playing

Terminal-Utility(s,x)
<latexit sha1_base64="zdavbkJs7WA8sr3De73iVgu512I=">AAACSXicZVDLTtxAEBwvgZDlkQWOXEYsiUCClQ2HcERwyZFILCDh1ao9bsOImbE10yZYlv+Ar+EKf8AX5DNyizhldtmIACWNVKrqHnVVUijpKAx/Ba2pD9MzH2c/tefmFxY/d5aWT1xeWoF9kavcniXgUEmDfZKk8KywCDpReJpcHY7802u0TubmmKoCBxoujMykAPLSsPN1PSa8ISfqY7RaGlDb/hslqWo23FYdJxm/aTbXh51u2AvH4O9JNCFdNsHRcCmYi9NclBoNCQXOnUdhQYMaLEmhsGnHpcMCxBVc4LmnBjS6QT0O1PAvXkl5llv/DPGx+v9GDdq5Sid+UgNdurfeSHzxLBr8KXKtwaR1nIGWqkoxg1JRU8cu+8df30TZ3qCWpigJjXg+KSsVp5yPeuSptChIVZ6AsNKn4uISLAjybbfjAqw0qQ/Pfey2ry96W9Z7crLTi3Z74Y+d7v7BpMhZtsrW2AaL2De2z76zI9Zngt2yO3bPHoLH4HfwJ3h6Hm0Fk50V9gqtqb+gVLJP</latexit>

6 / 19

Init state, actions function, and result function defines game tree

State Value V (s)

V (s) – value V of a state s : The best utility achievable from this state.

V (s) = max
s′∈children(s)

V (s ′)

7 / 19

Think about the State Value. It is a theoretical construct, definition.
Depending on the problem, there may be various computational algorithms.
In a game, what State Values are known? Usually, only terminal states.

Think, for a moment, you are the only player. You can control every step.

How would you compute the V (s) for a given state s?

State Value V (s)

V (s) – value V of a state s : The best utility achievable from this state.

V (s) = max
s′∈children(s)

V (s ′)

7 / 19

Think about the State Value. It is a theoretical construct, definition.
Depending on the problem, there may be various computational algorithms.
In a game, what State Values are known? Usually, only terminal states.

Think, for a moment, you are the only player. You can control every step.

How would you compute the V (s) for a given state s?

Two-ply game: max for me, min for the opponent.

A

B

3 12 8

C

2 4 16

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

a1 = arg max
a∈Actions(A)

Result(A, a)

8 / 19

I’m player that starts (state A) and want to decide what to play, ac-

tions/plays/moves a1, a2, a3 are the options. B, C, D are the possible

outcomes of my moves. Now the opponent is about to play. The numbers

in terminal states denote my profit/utility.

Two-ply game: max for me, min for the opponent.

A

B

3 12 8

C

2 4 16

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

a1 = arg max
a∈Actions(A)

Result(A, a)

8 / 19

I’m player that starts (state A) and want to decide what to play, ac-

tions/plays/moves a1, a2, a3 are the options. B, C, D are the possible

outcomes of my moves. Now the opponent is about to play. The numbers

in terminal states denote my profit/utility.

Two-ply game: max for me, min for the opponent.

A

B

3 12 8

C

2 4 16

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

a1 = arg max
a∈Actions(A)

Result(A, a)

8 / 19

I’m player that starts (state A) and want to decide what to play, ac-

tions/plays/moves a1, a2, a3 are the options. B, C, D are the possible

outcomes of my moves. Now the opponent is about to play. The numbers

in terminal states denote my profit/utility.

Two-ply game: max for me, min for the opponent.

A

B

3 12 8

C

2 4 16

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

a1 = arg max
a∈Actions(A)

Result(A, a)

8 / 19

I’m player that starts (state A) and want to decide what to play, ac-

tions/plays/moves a1, a2, a3 are the options. B, C, D are the possible

outcomes of my moves. Now the opponent is about to play. The numbers

in terminal states denote my profit/utility.

Two-ply game: max for me, min for the opponent.

A

B

3 12 8

C

2 4 16

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

a1 = arg max
a∈Actions(A)

Result(A, a)

8 / 19

I’m player that starts (state A) and want to decide what to play, ac-

tions/plays/moves a1, a2, a3 are the options. B, C, D are the possible

outcomes of my moves. Now the opponent is about to play. The numbers

in terminal states denote my profit/utility.

Two-ply game: max for me, min for the opponent.

A

B

3 12 8

C

2 4 16

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

a1 = arg max
a∈Actions(A)

Result(A, a)

8 / 19

I’m player that starts (state A) and want to decide what to play, ac-

tions/plays/moves a1, a2, a3 are the options. B, C, D are the possible

outcomes of my moves. Now the opponent is about to play. The numbers

in terminal states denote my profit/utility.

Two-ply game: max for me, min for the opponent.

A

B

3 12 8

C

2 4 16

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

a1 = arg max
a∈Actions(A)

Result(A, a)

8 / 19

I’m player that starts (state A) and want to decide what to play, ac-

tions/plays/moves a1, a2, a3 are the options. B, C, D are the possible

outcomes of my moves. Now the opponent is about to play. The numbers

in terminal states denote my profit/utility.

Two-ply game: max for me, min for the opponent.

A

B

3 12 8

C

2 4 16

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

a1 = arg max
a∈Actions(A)

Result(A, a)

8 / 19

I’m player that starts (state A) and want to decide what to play, ac-

tions/plays/moves a1, a2, a3 are the options. B, C, D are the possible

outcomes of my moves. Now the opponent is about to play. The numbers

in terminal states denote my profit/utility.

Two-ply game: max for me, min for the opponent.

A

B

3 12 8

C

2 4 16

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

a1 = arg max
a∈Actions(A)

Result(A, a)

8 / 19

I’m player that starts (state A) and want to decide what to play, ac-

tions/plays/moves a1, a2, a3 are the options. B, C, D are the possible

outcomes of my moves. Now the opponent is about to play. The numbers

in terminal states denote my profit/utility.

Two-ply game: max for me, min for the opponent.

A

B

3 12 8

C

2 4 16

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

a1 = arg max
a∈Actions(A)

Result(A, a)

8 / 19

I’m player that starts (state A) and want to decide what to play, ac-

tions/plays/moves a1, a2, a3 are the options. B, C, D are the possible

outcomes of my moves. Now the opponent is about to play. The numbers

in terminal states denote my profit/utility.

Two-ply game: max for me, min for the opponent.

A

B

3 12 8

C

2 4 16

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

a1 = arg max
a∈Actions(A)

Result(A, a)

8 / 19

I’m player that starts (state A) and want to decide what to play, ac-

tions/plays/moves a1, a2, a3 are the options. B, C, D are the possible

outcomes of my moves. Now the opponent is about to play. The numbers

in terminal states denote my profit/utility.

Zero-Sum game: max for me, min for the opponent.

XX

XX

X

X

X

XX

X X

O

OX O

O

X OX O

X

.

. . .

. . .

. . .

XX

–1 0 +1

XX

X XO

X XOX XO

O

O

X

X XO

OO

O O X X

MAX (X)

MIN (O)

MAX (X)

MIN (O)

TERMINAL

Utility

XX

XX

X

X

X

XX

X X

O

OX O

O

X OX O

X

.

. . .

. . .

. . .

XX

–1 0 +1

XX

X XO

X XOX XO

O

O

X

X XO

OO

O O X X

MAX (X)

MIN (O)

MAX (X)

MIN (O)

TERMINAL

Utility

minimax(s) =

utility(s) if terminal-test(s)

max
a∈actions(s)

minimax(result(s, a)) if player(s) = max

min
a∈actions(s)

minimax(result(s, a)) if player(s) = min

9 / 19

Max step: I want to maximize my outcome.

Min step: I want to minimize the outcome of the opponent.

Zero-Sum game: max for me, min for the opponent.

XX

XX

X

X

X

XX

X X

O

OX O

O

X OX O

X

.

. . .

. . .

. . .

XX

–1 0 +1

XX

X XO

X XOX XO

O

O

X

X XO

OO

O O X X

MAX (X)

MIN (O)

MAX (X)

MIN (O)

TERMINAL

Utility

XX

XX

X

X

X

XX

X X

O

OX O

O

X OX O

X

.

. . .

. . .

. . .

XX

–1 0 +1

XX

X XO

X XOX XO

O

O

X

X XO

OO

O O X X

MAX (X)

MIN (O)

MAX (X)

MIN (O)

TERMINAL

Utility

minimax(s) =

utility(s) if terminal-test(s)

max
a∈actions(s)

minimax(result(s, a)) if player(s) = max

min
a∈actions(s)

minimax(result(s, a)) if player(s) = min

9 / 19

Max step: I want to maximize my outcome.

Min step: I want to minimize the outcome of the opponent.

Zero-Sum game: max for me, min for the opponent.

XX

XX

X

X

X

XX

X X

O

OX O

O

X OX O

X

.

. . .

. . .

. . .

XX

–1 0 +1

XX

X XO

X XOX XO

O

O

X

X XO

OO

O O X X

MAX (X)

MIN (O)

MAX (X)

MIN (O)

TERMINAL

Utility

XX

XX

X

X

X

XX

X X

O

OX O

O

X OX O

X

.

. . .

. . .

. . .

XX

–1 0 +1

XX

X XO

X XOX XO

O

O

X

X XO

OO

O O X X

MAX (X)

MIN (O)

MAX (X)

MIN (O)

TERMINAL

Utility

minimax(s) =

utility(s) if terminal-test(s)

max
a∈actions(s)

minimax(result(s, a)) if player(s) = max

min
a∈actions(s)

minimax(result(s, a)) if player(s) = min

9 / 19

Max step: I want to maximize my outcome.

Min step: I want to minimize the outcome of the opponent.

Zero-Sum game: max for me, min for the opponent.

XX

XX

X

X

X

XX

X X

O

OX O

O

X OX O

X

.

. . .

. . .

. . .

XX

–1 0 +1

XX

X XO

X XOX XO

O

O

X

X XO

OO

O O X X

MAX (X)

MIN (O)

MAX (X)

MIN (O)

TERMINAL

Utility

XX

XX

X

X

X

XX

X X

O

OX O

O

X OX O

X

.

. . .

. . .

. . .

XX

–1 0 +1

XX

X XO

X XOX XO

O

O

X

X XO

OO

O O X X

MAX (X)

MIN (O)

MAX (X)

MIN (O)

TERMINAL

Utility

minimax(s) =

utility(s) if terminal-test(s)

max
a∈actions(s)

minimax(result(s, a)) if player(s) = max

min
a∈actions(s)

minimax(result(s, a)) if player(s) = min

9 / 19

Max step: I want to maximize my outcome.

Min step: I want to minimize the outcome of the opponent.

Zero-Sum game: max for me, min for the opponent.

XX

XX

X

X

X

XX

X X

O

OX O

O

X OX O

X

.

. . .

. . .

. . .

XX

–1 0 +1

XX

X XO

X XOX XO

O

O

X

X XO

OO

O O X X

MAX (X)

MIN (O)

MAX (X)

MIN (O)

TERMINAL

Utility

XX

XX

X

X

X

XX

X X

O

OX O

O

X OX O

X

.

. . .

. . .

. . .

XX

–1 0 +1

XX

X XO

X XOX XO

O

O

X

X XO

OO

O O X X

MAX (X)

MIN (O)

MAX (X)

MIN (O)

TERMINAL

Utility

minimax(s) =

utility(s) if terminal-test(s)

max
a∈actions(s)

minimax(result(s, a)) if player(s) = max

min
a∈actions(s)

minimax(result(s, a)) if player(s) = min

9 / 19

Max step: I want to maximize my outcome.

Min step: I want to minimize the outcome of the opponent.

Minimax algorithm
function minimax(state) returns an action

return argmax
a∈Actions(s)

min-value(result(state, a))

end function
function min-value(state) returns a utility value v

if terminal-test(state) then return utility(state)
end if
v ←∞
for all actions(state) do

v ← min(v , max-value(result(state,a)))
end for

end function
function max-value(state) returns a utility value v

if terminal-test(state) then return utility(state)
end if
v ← −∞
for all actions(state) do

v ← max(v , min-value(result(state,a)))
end for

end function
10 / 19

Minimax algorithm
function minimax(state) returns an action

return argmax
a∈Actions(s)

min-value(result(state, a))

end function
function min-value(state) returns a utility value v

if terminal-test(state) then return utility(state)
end if
v ←∞
for all actions(state) do

v ← min(v , max-value(result(state,a)))
end for

end function
function max-value(state) returns a utility value v

if terminal-test(state) then return utility(state)
end if
v ← −∞
for all actions(state) do

v ← max(v , min-value(result(state,a)))
end for

end function
10 / 19

Minimax algorithm
function minimax(state) returns an action

return argmax
a∈Actions(s)

min-value(result(state, a))

end function
function min-value(state) returns a utility value v

if terminal-test(state) then return utility(state)
end if
v ←∞
for all actions(state) do

v ← min(v , max-value(result(state,a)))
end for

end function
function max-value(state) returns a utility value v

if terminal-test(state) then return utility(state)
end if
v ← −∞
for all actions(state) do

v ← max(v , min-value(result(state,a)))
end for

end function
10 / 19

Minimax algorithm
function minimax(state) returns an action

return argmax
a∈Actions(s)

min-value(result(state, a))

end function
function min-value(state) returns a utility value v

if terminal-test(state) then return utility(state)
end if
v ←∞
for all actions(state) do

v ← min(v , max-value(result(state,a)))
end for

end function
function max-value(state) returns a utility value v

if terminal-test(state) then return utility(state)
end if
v ← −∞
for all actions(state) do

v ← max(v , min-value(result(state,a)))
end for

end function
10 / 19

A two ply game, down to terminal and back again . . .

function minimax(s) returns a
argmax

a∈Actions(s)

minval(res(s, a))

end function
function minval(s) returns v

if terminal(s) then util(s)
end if
v ←∞
for all actions(s) do

v ← min(v , maxval(res(s, a)))
end for

end function
function maxval(s) returns v

if terminal(s) then util(s)
end if
v ← −∞
for all actions(s) do

v ← max(v , minval(res(s, a)))
end for

end function

MAX A

B C D

3 12 8 2 4 6 14 5 2

3 2 2

3
a1 a2

a3

b1
b2

b3 c1
c2

c3 d1
d2

d3

MIN

11 / 19

Before going to the animation on the next slide, try to follow the algorithm

by a pencil and paper.

A two ply game, recursive run

A

B

3 12 8

C

2 4 6

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

What is the complexity? How many nodes to visit?

Can we do better? How?

12 / 19

Efficiency/complexity:

• Exhaustive DFS

• Time O(bm)

• Space O(bm)

Chess b ≈ 35,m ≈ 100 . . .

• We cannot go(dive) to the end

• Can we save something?

A two ply game, recursive run

A

B

3 12 8

C

2 4 6

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

What is the complexity? How many nodes to visit?

Can we do better? How?

12 / 19

Efficiency/complexity:

• Exhaustive DFS

• Time O(bm)

• Space O(bm)

Chess b ≈ 35,m ≈ 100 . . .

• We cannot go(dive) to the end

• Can we save something?

A two ply game, recursive run

A

B

3 12 8

C

2 4 6

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

What is the complexity? How many nodes to visit?

Can we do better? How?

12 / 19

Efficiency/complexity:

• Exhaustive DFS

• Time O(bm)

• Space O(bm)

Chess b ≈ 35,m ≈ 100 . . .

• We cannot go(dive) to the end

• Can we save something?

A two ply game, recursive run

A

B

3 12 8

C

2 4 6

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

What is the complexity? How many nodes to visit?

Can we do better? How?

12 / 19

Efficiency/complexity:

• Exhaustive DFS

• Time O(bm)

• Space O(bm)

Chess b ≈ 35,m ≈ 100 . . .

• We cannot go(dive) to the end

• Can we save something?

A two ply game, recursive run

A

B

3 12 8

C

2 4 6

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

What is the complexity? How many nodes to visit?

Can we do better? How?

12 / 19

Efficiency/complexity:

• Exhaustive DFS

• Time O(bm)

• Space O(bm)

Chess b ≈ 35,m ≈ 100 . . .

• We cannot go(dive) to the end

• Can we save something?

A two ply game, recursive run

A

B

3 12 8

C

2 4 6

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

What is the complexity? How many nodes to visit?

Can we do better? How?

12 / 19

Efficiency/complexity:

• Exhaustive DFS

• Time O(bm)

• Space O(bm)

Chess b ≈ 35,m ≈ 100 . . .

• We cannot go(dive) to the end

• Can we save something?

A two ply game, recursive run

A

B

3 12 8

C

2 4 6

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

What is the complexity? How many nodes to visit?

Can we do better? How?

12 / 19

Efficiency/complexity:

• Exhaustive DFS

• Time O(bm)

• Space O(bm)

Chess b ≈ 35,m ≈ 100 . . .

• We cannot go(dive) to the end

• Can we save something?

A two ply game, recursive run

A

B

3 12 8

C

2 4 6

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

What is the complexity? How many nodes to visit?

Can we do better? How?

12 / 19

Efficiency/complexity:

• Exhaustive DFS

• Time O(bm)

• Space O(bm)

Chess b ≈ 35,m ≈ 100 . . .

• We cannot go(dive) to the end

• Can we save something?

A two ply game, recursive run

A

B

3 12 8

C

2 4 6

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

What is the complexity? How many nodes to visit?

Can we do better? How?

12 / 19

Efficiency/complexity:

• Exhaustive DFS

• Time O(bm)

• Space O(bm)

Chess b ≈ 35,m ≈ 100 . . .

• We cannot go(dive) to the end

• Can we save something?

A two ply game, recursive run

A

B

3 12 8

C

2 4 6

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

What is the complexity? How many nodes to visit?

Can we do better? How?

12 / 19

Efficiency/complexity:

• Exhaustive DFS

• Time O(bm)

• Space O(bm)

Chess b ≈ 35,m ≈ 100 . . .

• We cannot go(dive) to the end

• Can we save something?

A two ply game, recursive run

A

B

3 12 8

C

2 4 6

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

What is the complexity? How many nodes to visit?

Can we do better? How?

12 / 19

Efficiency/complexity:

• Exhaustive DFS

• Time O(bm)

• Space O(bm)

Chess b ≈ 35,m ≈ 100 . . .

• We cannot go(dive) to the end

• Can we save something?

A two ply game, recursive run

A

B

3 12 8

C

2 4 6

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

What is the complexity? How many nodes to visit?

Can we do better? How?

12 / 19

Efficiency/complexity:

• Exhaustive DFS

• Time O(bm)

• Space O(bm)

Chess b ≈ 35,m ≈ 100 . . .

• We cannot go(dive) to the end

• Can we save something?

A two ply game, recursive run

A

B

3 12 8

C

2 4 6

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

What is the complexity? How many nodes to visit?

Can we do better? How?

12 / 19

Efficiency/complexity:

• Exhaustive DFS

• Time O(bm)

• Space O(bm)

Chess b ≈ 35,m ≈ 100 . . .

• We cannot go(dive) to the end

• Can we save something?

A two ply game, recursive run

A

B

3 12 8

C

2 4 6

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

What is the complexity? How many nodes to visit?

Can we do better? How?

12 / 19

Efficiency/complexity:

• Exhaustive DFS

• Time O(bm)

• Space O(bm)

Chess b ≈ 35,m ≈ 100 . . .

• We cannot go(dive) to the end

• Can we save something?

A two ply game, recursive run

A

B

3 12 8

C

2 4 6

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

What is the complexity? How many nodes to visit?

Can we do better? How?

12 / 19

Efficiency/complexity:

• Exhaustive DFS

• Time O(bm)

• Space O(bm)

Chess b ≈ 35,m ≈ 100 . . .

• We cannot go(dive) to the end

• Can we save something?

A two ply game, recursive run

A

B

3 12 8

C

2 4 6

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

What is the complexity? How many nodes to visit?

Can we do better? How?

12 / 19

Efficiency/complexity:

• Exhaustive DFS

• Time O(bm)

• Space O(bm)

Chess b ≈ 35,m ≈ 100 . . .

• We cannot go(dive) to the end

• Can we save something?

A two ply game, recursive run

A

B

3 12 8

C

2 4 6

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

What is the complexity? How many nodes to visit?

Can we do better? How?

12 / 19

Efficiency/complexity:

• Exhaustive DFS

• Time O(bm)

• Space O(bm)

Chess b ≈ 35,m ≈ 100 . . .

• We cannot go(dive) to the end

• Can we save something?

A two ply game, recursive run

A

B

3 12 8

C

2 4 6

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

What is the complexity? How many nodes to visit?

Can we do better? How?

12 / 19

Efficiency/complexity:

• Exhaustive DFS

• Time O(bm)

• Space O(bm)

Chess b ≈ 35,m ≈ 100 . . .

• We cannot go(dive) to the end

• Can we save something?

A two ply game, recursive run

A

B

3 12 8

C

2 4 6

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

What is the complexity? How many nodes to visit?

Can we do better? How?

12 / 19

Efficiency/complexity:

• Exhaustive DFS

• Time O(bm)

• Space O(bm)

Chess b ≈ 35,m ≈ 100 . . .

• We cannot go(dive) to the end

• Can we save something?

A two ply game, recursive run

A

B

3 12 8

C

2 4 6

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

What is the complexity? How many nodes to visit?

Can we do better? How?

12 / 19

Efficiency/complexity:

• Exhaustive DFS

• Time O(bm)

• Space O(bm)

Chess b ≈ 35,m ≈ 100 . . .

• We cannot go(dive) to the end

• Can we save something?

Nodes (sub-trees) worth visiting

A

B

3 12 8

C

2 4 6

D

14 2 5

< −∞, 3 >< 3, 3 > < −∞, 2 > < −∞, 14 >< −∞, 2 >

< −∞,∞ >< 3,∞ >< 3, 14 >< 3, 3 >

13 / 19

Nodes (sub-trees) worth visiting

A

B

3 12 8

C

2 4 6

D

14 2 5

< −∞, 3 >< 3, 3 > < −∞, 2 > < −∞, 14 >< −∞, 2 >

< −∞,∞ >< 3,∞ >< 3, 14 >< 3, 3 >

13 / 19

Nodes (sub-trees) worth visiting

A

B

3 12 8

C

2 4 6

D

14 2 5

< −∞, 3 >< 3, 3 > < −∞, 2 > < −∞, 14 >< −∞, 2 >

< −∞,∞ >< 3,∞ >< 3, 14 >< 3, 3 >

13 / 19

Nodes (sub-trees) worth visiting

A

B

3 12 8

C

2 4 6

D

14 2 5

< −∞, 3 >< 3, 3 > < −∞, 2 > < −∞, 14 >< −∞, 2 >

< −∞,∞ >< 3,∞ >< 3, 14 >< 3, 3 >

13 / 19

Nodes (sub-trees) worth visiting

A

B

3 12 8

C

2 4 6

D

14 2 5

< −∞, 3 >< 3, 3 > < −∞, 2 > < −∞, 14 >< −∞, 2 >

< −∞,∞ >< 3,∞ >< 3, 14 >< 3, 3 >

13 / 19

Nodes (sub-trees) worth visiting

A

B

3 12 8

C

2 4 6

D

14 2 5

< −∞, 3 >< 3, 3 > < −∞, 2 > < −∞, 14 >< −∞, 2 >

< −∞,∞ >< 3,∞ >< 3, 14 >< 3, 3 >

13 / 19

Nodes (sub-trees) worth visiting

A

B

3 12 8

C

2 4 6

D

14 2 5

< −∞, 3 >< 3, 3 > < −∞, 2 > < −∞, 14 >< −∞, 2 >

< −∞,∞ >< 3,∞ >< 3, 14 >< 3, 3 >

13 / 19

Nodes (sub-trees) worth visiting

A

B

3 12 8

C

2 4 6

D

14 2 5

< −∞, 3 >< 3, 3 > < −∞, 2 > < −∞, 14 >< −∞, 2 >

< −∞,∞ >< 3,∞ >< 3, 14 >< 3, 3 >

13 / 19

Nodes (sub-trees) worth visiting

A

B

3 12 8

C

2 4 6

D

14 2 5

< −∞, 3 >< 3, 3 > < −∞, 2 > < −∞, 14 >< −∞, 2 >

< −∞,∞ >< 3,∞ >< 3, 14 >< 3, 3 >

13 / 19

Nodes (sub-trees) worth visiting

A

B

3 12 8

C

2 4 6

D

14 2 5

< −∞, 3 >< 3, 3 > < −∞, 2 > < −∞, 14 >< −∞, 2 >

< −∞,∞ >< 3,∞ >< 3, 14 >< 3, 3 >

13 / 19

Nodes (sub-trees) worth visiting

A

B

3 12 8

C

2 4 6

D

14 2 5

< −∞, 3 >< 3, 3 > < −∞, 2 > < −∞, 14 >< −∞, 2 >

< −∞,∞ >< 3,∞ >< 3, 14 >< 3, 3 >

13 / 19

Nodes (sub-trees) worth visiting

A

B

3 12 8

C

2 4 6

D

14 2 5

< −∞, 3 >< 3, 3 > < −∞, 2 > < −∞, 14 >< −∞, 2 >

< −∞,∞ >< 3,∞ >< 3, 14 >< 3, 3 >

13 / 19

Nodes (sub-trees) worth visiting

A

B

3 12 8

C

2 4 6

D

14 2 5

< −∞, 3 >< 3, 3 > < −∞, 2 > < −∞, 14 >< −∞, 2 >

< −∞,∞ >< 3,∞ >< 3, 14 >< 3, 3 >

13 / 19

Nodes (sub-trees) worth visiting

A

B

3 12 8

C

2 4 6

D

14 2 5

< −∞, 3 >< 3, 3 > < −∞, 2 > < −∞, 14 >< −∞, 2 >

< −∞,∞ >< 3,∞ >< 3, 14 >< 3, 3 >

13 / 19

Nodes (sub-trees) worth visiting

A

B

3 12 8

C

2 4 6

D

14 2 5

< −∞, 3 >< 3, 3 > < −∞, 2 > < −∞, 14 >< −∞, 2 >

< −∞,∞ >< 3,∞ >< 3, 14 >< 3, 3 >

13 / 19

Nodes (sub-trees) worth visiting

A

B

3 12 8

C

2 4 6

D

14 2 5

< −∞, 3 >< 3, 3 > < −∞, 2 > < −∞, 14 >< −∞, 2 >

< −∞,∞ >< 3,∞ >< 3, 14 >< 3, 3 >

13 / 19

Nodes (sub-trees) worth visiting

A

B

3 12 8

C

2 4 6

D

14 2 5

< −∞, 3 >< 3, 3 > < −∞, 2 > < −∞, 14 >< −∞, 2 >

< −∞,∞ >< 3,∞ >< 3, 14 >< 3, 3 >

13 / 19

Nodes (sub-trees) worth visiting

A

B

3 12 8

C

2 4 6

D

14 2 5

< −∞, 3 >< 3, 3 > < −∞, 2 > < −∞, 14 >< −∞, 2 >

< −∞,∞ >< 3,∞ >< 3, 14 >< 3, 3 >

13 / 19

Nodes (sub-trees) worth visiting

A

B

3 12 8

C

2 4 6

D

14 2 5

< −∞, 3 >< 3, 3 > < −∞, 2 > < −∞, 14 >< −∞, 2 >

< −∞,∞ >< 3,∞ >< 3, 14 >< 3, 3 >

13 / 19

Nodes (sub-trees) worth visiting

A

B

3 12 8

C

2 4 6

D

14 2 5

< −∞, 3 >< 3, 3 > < −∞, 2 > < −∞, 14 >< −∞, 2 >

< −∞,∞ >< 3,∞ >< 3, 14 >< 3, 3 >

13 / 19

α-β prunning

α highest (best) value choice found so far for any choice along max
β lowest (best) value choice found so far for any choice along min
v value of the state

A

B

3 12 8

C

2 4 6

D

14 2 5

α = −∞
β =∞, v = −∞

α = −∞
β = 3, v = 3
α = −∞

β = 3, v = 3
α = 3

β =∞, v =∞
α = 3

v = 2, . . .
α = 3

β =∞, v =∞
α = 3

β = 14, v = 14
α = 3

v = 2, v < α, . . .

α = −∞, β =∞, v =?α = 3, β =∞, v = 3

In min-val: v ← 2
v ≤ α then: return v !

14 / 19

Functions scope: max-value min-value
In MAX nodes α is changing and β is stopping, in MIN nodes β is changing
and α is stopping.

It is clear that ordering of child nodes matters. Draw tree of α-β search in

case of perferct ordering. Effective branching factor becomes
√
b instead

of b which effectively doubles the depth can be searched.

α-β prunning

α highest (best) value choice found so far for any choice along max
β lowest (best) value choice found so far for any choice along min
v value of the state

A

B

3 12 8

C

2 4 6

D

14 2 5

α = −∞
β =∞, v = −∞

α = −∞
β = 3, v = 3
α = −∞

β = 3, v = 3
α = 3

β =∞, v =∞
α = 3

v = 2, . . .
α = 3

β =∞, v =∞
α = 3

β = 14, v = 14
α = 3

v = 2, v < α, . . .

α = −∞, β =∞, v =?α = 3, β =∞, v = 3

In min-val: v ← 2
v ≤ α then: return v !

14 / 19

Functions scope: max-value min-value
In MAX nodes α is changing and β is stopping, in MIN nodes β is changing
and α is stopping.

It is clear that ordering of child nodes matters. Draw tree of α-β search in

case of perferct ordering. Effective branching factor becomes
√
b instead

of b which effectively doubles the depth can be searched.

α-β prunning

α highest (best) value choice found so far for any choice along max
β lowest (best) value choice found so far for any choice along min
v value of the state

A

B

3 12 8

C

2 4 6

D

14 2 5

α = −∞
β =∞, v = −∞

α = −∞
β = 3, v = 3
α = −∞

β = 3, v = 3
α = 3

β =∞, v =∞
α = 3

v = 2, . . .
α = 3

β =∞, v =∞
α = 3

β = 14, v = 14
α = 3

v = 2, v < α, . . .

α = −∞, β =∞, v =?α = 3, β =∞, v = 3

In min-val: v ← 2
v ≤ α then: return v !

14 / 19

Functions scope: max-value min-value
In MAX nodes α is changing and β is stopping, in MIN nodes β is changing
and α is stopping.

It is clear that ordering of child nodes matters. Draw tree of α-β search in

case of perferct ordering. Effective branching factor becomes
√
b instead

of b which effectively doubles the depth can be searched.

α-β prunning

α highest (best) value choice found so far for any choice along max
β lowest (best) value choice found so far for any choice along min
v value of the state

A

B

3 12 8

C

2 4 6

D

14 2 5

α = −∞
β =∞, v = −∞

α = −∞
β = 3, v = 3
α = −∞

β = 3, v = 3
α = 3

β =∞, v =∞
α = 3

v = 2, . . .
α = 3

β =∞, v =∞
α = 3

β = 14, v = 14
α = 3

v = 2, v < α, . . .

α = −∞, β =∞, v =?α = 3, β =∞, v = 3

In min-val: v ← 2
v ≤ α then: return v !

14 / 19

Functions scope: max-value min-value
In MAX nodes α is changing and β is stopping, in MIN nodes β is changing
and α is stopping.

It is clear that ordering of child nodes matters. Draw tree of α-β search in

case of perferct ordering. Effective branching factor becomes
√
b instead

of b which effectively doubles the depth can be searched.

α-β prunning

α highest (best) value choice found so far for any choice along max
β lowest (best) value choice found so far for any choice along min
v value of the state

A

B

3 12 8

C

2 4 6

D

14 2 5

α = −∞
β =∞, v = −∞

α = −∞
β = 3, v = 3
α = −∞

β = 3, v = 3
α = 3

β =∞, v =∞
α = 3

v = 2, . . .
α = 3

β =∞, v =∞
α = 3

β = 14, v = 14
α = 3

v = 2, v < α, . . .

α = −∞, β =∞, v =?α = 3, β =∞, v = 3

In min-val: v ← 2
v ≤ α then: return v !

14 / 19

Functions scope: max-value min-value
In MAX nodes α is changing and β is stopping, in MIN nodes β is changing
and α is stopping.

It is clear that ordering of child nodes matters. Draw tree of α-β search in

case of perferct ordering. Effective branching factor becomes
√
b instead

of b which effectively doubles the depth can be searched.

α-β prunning

α highest (best) value choice found so far for any choice along max
β lowest (best) value choice found so far for any choice along min
v value of the state

A

B

3 12 8

C

2 4 6

D

14 2 5

α = −∞
β =∞, v = −∞

α = −∞
β = 3, v = 3
α = −∞

β = 3, v = 3
α = 3

β =∞, v =∞
α = 3

v = 2, . . .
α = 3

β =∞, v =∞
α = 3

β = 14, v = 14
α = 3

v = 2, v < α, . . .

α = −∞, β =∞, v =?α = 3, β =∞, v = 3

In min-val: v ← 2
v ≤ α then: return v !

14 / 19

Functions scope: max-value min-value
In MAX nodes α is changing and β is stopping, in MIN nodes β is changing
and α is stopping.

It is clear that ordering of child nodes matters. Draw tree of α-β search in

case of perferct ordering. Effective branching factor becomes
√
b instead

of b which effectively doubles the depth can be searched.

α-β prunning

α highest (best) value choice found so far for any choice along max
β lowest (best) value choice found so far for any choice along min
v value of the state

A

B

3 12 8

C

2 4 6

D

14 2 5

α = −∞
β =∞, v = −∞

α = −∞
β = 3, v = 3
α = −∞

β = 3, v = 3
α = 3

β =∞, v =∞
α = 3

v = 2, . . .
α = 3

β =∞, v =∞
α = 3

β = 14, v = 14
α = 3

v = 2, v < α, . . .

α = −∞, β =∞, v =?α = 3, β =∞, v = 3

In min-val: v ← 2
v ≤ α then: return v !

14 / 19

Functions scope: max-value min-value
In MAX nodes α is changing and β is stopping, in MIN nodes β is changing
and α is stopping.

It is clear that ordering of child nodes matters. Draw tree of α-β search in

case of perferct ordering. Effective branching factor becomes
√
b instead

of b which effectively doubles the depth can be searched.

α-β prunning

α highest (best) value choice found so far for any choice along max
β lowest (best) value choice found so far for any choice along min
v value of the state

A

B

3 12 8

C

2 4 6

D

14 2 5

α = −∞
β =∞, v = −∞

α = −∞
β = 3, v = 3
α = −∞

β = 3, v = 3
α = 3

β =∞, v =∞
α = 3

v = 2, . . .
α = 3

β =∞, v =∞
α = 3

β = 14, v = 14
α = 3

v = 2, v < α, . . .

α = −∞, β =∞, v =?α = 3, β =∞, v = 3

In min-val: v ← 2
v ≤ α then: return v !

14 / 19

Functions scope: max-value min-value
In MAX nodes α is changing and β is stopping, in MIN nodes β is changing
and α is stopping.

It is clear that ordering of child nodes matters. Draw tree of α-β search in

case of perferct ordering. Effective branching factor becomes
√
b instead

of b which effectively doubles the depth can be searched.

α-β prunning

α highest (best) value choice found so far for any choice along max
β lowest (best) value choice found so far for any choice along min
v value of the state

A

B

3 12 8

C

2 4 6

D

14 2 5

α = −∞
β =∞, v = −∞

α = −∞
β = 3, v = 3
α = −∞

β = 3, v = 3
α = 3

β =∞, v =∞
α = 3

v = 2, . . .
α = 3

β =∞, v =∞
α = 3

β = 14, v = 14
α = 3

v = 2, v < α, . . .

α = −∞, β =∞, v =?α = 3, β =∞, v = 3

In min-val: v ← 2
v ≤ α then: return v !

14 / 19

Functions scope: max-value min-value
In MAX nodes α is changing and β is stopping, in MIN nodes β is changing
and α is stopping.

It is clear that ordering of child nodes matters. Draw tree of α-β search in

case of perferct ordering. Effective branching factor becomes
√
b instead

of b which effectively doubles the depth can be searched.

α-β prunning

α highest (best) value choice found so far for any choice along max
β lowest (best) value choice found so far for any choice along min
v value of the state

A

B

3 12 8

C

2 4 6

D

14 2 5

α = −∞
β =∞, v = −∞

α = −∞
β = 3, v = 3
α = −∞

β = 3, v = 3
α = 3

β =∞, v =∞
α = 3

v = 2, . . .
α = 3

β =∞, v =∞
α = 3

β = 14, v = 14
α = 3

v = 2, v < α, . . .

α = −∞, β =∞, v =?α = 3, β =∞, v = 3

In min-val: v ← 2
v ≤ α then: return v !

14 / 19

Functions scope: max-value min-value
In MAX nodes α is changing and β is stopping, in MIN nodes β is changing
and α is stopping.

It is clear that ordering of child nodes matters. Draw tree of α-β search in

case of perferct ordering. Effective branching factor becomes
√
b instead

of b which effectively doubles the depth can be searched.

α-β prunning

α highest (best) value choice found so far for any choice along max
β lowest (best) value choice found so far for any choice along min
v value of the state

A

B

3 12 8

C

2 4 6

D

14 2 5

α = −∞
β =∞, v = −∞

α = −∞
β = 3, v = 3
α = −∞

β = 3, v = 3
α = 3

β =∞, v =∞
α = 3

v = 2, . . .
α = 3

β =∞, v =∞
α = 3

β = 14, v = 14
α = 3

v = 2, v < α, . . .

α = −∞, β =∞, v =?α = 3, β =∞, v = 3

In min-val: v ← 2
v ≤ α then: return v !

14 / 19

Functions scope: max-value min-value
In MAX nodes α is changing and β is stopping, in MIN nodes β is changing
and α is stopping.

It is clear that ordering of child nodes matters. Draw tree of α-β search in

case of perferct ordering. Effective branching factor becomes
√
b instead

of b which effectively doubles the depth can be searched.

α-β prunning

α highest (best) value choice found so far for any choice along max
β lowest (best) value choice found so far for any choice along min
v value of the state

A

B

3 12 8

C

2 4 6

D

14 2 5

α = −∞
β =∞, v = −∞

α = −∞
β = 3, v = 3
α = −∞

β = 3, v = 3
α = 3

β =∞, v =∞
α = 3

v = 2, . . .
α = 3

β =∞, v =∞
α = 3

β = 14, v = 14
α = 3

v = 2, v < α, . . .

α = −∞, β =∞, v =?α = 3, β =∞, v = 3

In min-val: v ← 2
v ≤ α then: return v !

14 / 19

Functions scope: max-value min-value
In MAX nodes α is changing and β is stopping, in MIN nodes β is changing
and α is stopping.

It is clear that ordering of child nodes matters. Draw tree of α-β search in

case of perferct ordering. Effective branching factor becomes
√
b instead

of b which effectively doubles the depth can be searched.

α-β prunning

α highest (best) value choice found so far for any choice along max
β lowest (best) value choice found so far for any choice along min
v value of the state

A

B

3 12 8

C

2 4 6

D

14 2 5

α = −∞
β =∞, v = −∞

α = −∞
β = 3, v = 3
α = −∞

β = 3, v = 3
α = 3

β =∞, v =∞
α = 3

v = 2, . . .
α = 3

β =∞, v =∞
α = 3

β = 14, v = 14
α = 3

v = 2, v < α, . . .

α = −∞, β =∞, v =?α = 3, β =∞, v = 3

In min-val: v ← 2
v ≤ α then: return v !

14 / 19

Functions scope: max-value min-value
In MAX nodes α is changing and β is stopping, in MIN nodes β is changing
and α is stopping.

It is clear that ordering of child nodes matters. Draw tree of α-β search in

case of perferct ordering. Effective branching factor becomes
√
b instead

of b which effectively doubles the depth can be searched.

α-β prunning

α highest (best) value choice found so far for any choice along max
β lowest (best) value choice found so far for any choice along min
v value of the state

A

B

3 12 8

C

2 4 6

D

14 2 5

α = −∞
β =∞, v = −∞

α = −∞
β = 3, v = 3
α = −∞

β = 3, v = 3
α = 3

β =∞, v =∞
α = 3

v = 2, . . .
α = 3

β =∞, v =∞
α = 3

β = 14, v = 14
α = 3

v = 2, v < α, . . .

α = −∞, β =∞, v =?α = 3, β =∞, v = 3

In min-val: v ← 2
v ≤ α then: return v !

14 / 19

Functions scope: max-value min-value
In MAX nodes α is changing and β is stopping, in MIN nodes β is changing
and α is stopping.

It is clear that ordering of child nodes matters. Draw tree of α-β search in

case of perferct ordering. Effective branching factor becomes
√
b instead

of b which effectively doubles the depth can be searched.

α-β prunning

α highest (best) value choice found so far for any choice along max
β lowest (best) value choice found so far for any choice along min
v value of the state

A

B

3 12 8

C

2 4 6

D

14 2 5

α = −∞
β =∞, v = −∞

α = −∞
β = 3, v = 3
α = −∞

β = 3, v = 3
α = 3

β =∞, v =∞
α = 3

v = 2, . . .
α = 3

β =∞, v =∞
α = 3

β = 14, v = 14
α = 3

v = 2, v < α, . . .

α = −∞, β =∞, v =?α = 3, β =∞, v = 3

In min-val: v ← 2
v ≤ α then: return v !

14 / 19

Functions scope: max-value min-value
In MAX nodes α is changing and β is stopping, in MIN nodes β is changing
and α is stopping.

It is clear that ordering of child nodes matters. Draw tree of α-β search in

case of perferct ordering. Effective branching factor becomes
√
b instead

of b which effectively doubles the depth can be searched.

α-β prunning

α highest (best) value choice found so far for any choice along max
β lowest (best) value choice found so far for any choice along min
v value of the state

A

B

3 12 8

C

2 4 6

D

14 2 5

α = −∞
β =∞, v = −∞

α = −∞
β = 3, v = 3
α = −∞

β = 3, v = 3
α = 3

β =∞, v =∞
α = 3

v = 2, . . .
α = 3

β =∞, v =∞
α = 3

β = 14, v = 14
α = 3

v = 2, v < α, . . .

α = −∞, β =∞, v =?α = 3, β =∞, v = 3

In min-val: v ← 2
v ≤ α then: return v !

14 / 19

Functions scope: max-value min-value
In MAX nodes α is changing and β is stopping, in MIN nodes β is changing
and α is stopping.

It is clear that ordering of child nodes matters. Draw tree of α-β search in

case of perferct ordering. Effective branching factor becomes
√
b instead

of b which effectively doubles the depth can be searched.

α-β prunning

α highest (best) value choice found so far for any choice along max
β lowest (best) value choice found so far for any choice along min
v value of the state

A

B

3 12 8

C

2 4 6

D

14 2 5

α = −∞
β =∞, v = −∞

α = −∞
β = 3, v = 3
α = −∞

β = 3, v = 3
α = 3

β =∞, v =∞
α = 3

v = 2, . . .
α = 3

β =∞, v =∞
α = 3

β = 14, v = 14
α = 3

v = 2, v < α, . . .

α = −∞, β =∞, v =?α = 3, β =∞, v = 3

In min-val: v ← 2
v ≤ α then: return v !

14 / 19

Functions scope: max-value min-value
In MAX nodes α is changing and β is stopping, in MIN nodes β is changing
and α is stopping.

It is clear that ordering of child nodes matters. Draw tree of α-β search in

case of perferct ordering. Effective branching factor becomes
√
b instead

of b which effectively doubles the depth can be searched.

α-β prunning

α highest (best) value choice found so far for any choice along max
β lowest (best) value choice found so far for any choice along min
v value of the state

A

B

3 12 8

C

2 4 6

D

14 2 5

α = −∞
β =∞, v = −∞

α = −∞
β = 3, v = 3
α = −∞

β = 3, v = 3
α = 3

β =∞, v =∞
α = 3

v = 2, . . .
α = 3

β =∞, v =∞
α = 3

β = 14, v = 14
α = 3

v = 2, v < α, . . .

α = −∞, β =∞, v =?α = 3, β =∞, v = 3

In min-val: v ← 2
v ≤ α then: return v !

14 / 19

Functions scope: max-value min-value
In MAX nodes α is changing and β is stopping, in MIN nodes β is changing
and α is stopping.

It is clear that ordering of child nodes matters. Draw tree of α-β search in

case of perferct ordering. Effective branching factor becomes
√
b instead

of b which effectively doubles the depth can be searched.

α-β prunning

α highest (best) value choice found so far for any choice along max
β lowest (best) value choice found so far for any choice along min
v value of the state

A

B

3 12 8

C

2 4 6

D

14 2 5

α = −∞
β =∞, v = −∞

α = −∞
β = 3, v = 3
α = −∞

β = 3, v = 3
α = 3

β =∞, v =∞
α = 3

v = 2, . . .
α = 3

β =∞, v =∞
α = 3

β = 14, v = 14
α = 3

v = 2, v < α, . . .

α = −∞, β =∞, v =?α = 3, β =∞, v = 3

In min-val: v ← 2
v ≤ α then: return v !

14 / 19

Functions scope: max-value min-value
In MAX nodes α is changing and β is stopping, in MIN nodes β is changing
and α is stopping.

It is clear that ordering of child nodes matters. Draw tree of α-β search in

case of perferct ordering. Effective branching factor becomes
√
b instead

of b which effectively doubles the depth can be searched.

function alpha-beta-search(state) returns an action
v ← max-value(state, α = −∞, β =∞)
return action corresponding to v

end function
function max-value(state,α, β) returns a utility value v

if terminal-test(state) return utility(state)
v ← −∞
for all actions(state) do

v ← max(v , min-value(result(state,a),α, β))
if v ≥ β return v
α← max(α, v)

end for
end function
function min-value(state, α, β) returns a utility value v

if terminal-test(state) return utility(state)
v ←∞
for all actions(state) do

v ← min(v , max-value(result(state,a),α, β))
if v ≤ α return v
β ← min(β, v)

end for
end function

15 / 19

Take the tree from the previous slide and try to go step-by-step, watch α,

β and v

function alpha-beta-search(state) returns an action
v ← max-value(state, α = −∞, β =∞)
return action corresponding to v

end function
function max-value(state,α, β) returns a utility value v

if terminal-test(state) return utility(state)
v ← −∞
for all actions(state) do

v ← max(v , min-value(result(state,a),α, β))
if v ≥ β return v
α← max(α, v)

end for
end function
function min-value(state, α, β) returns a utility value v

if terminal-test(state) return utility(state)
v ←∞
for all actions(state) do

v ← min(v , max-value(result(state,a),α, β))
if v ≤ α return v
β ← min(β, v)

end for
end function

15 / 19

Take the tree from the previous slide and try to go step-by-step, watch α,

β and v

function alpha-beta-search(state) returns an action
v ← max-value(state, α = −∞, β =∞)
return action corresponding to v

end function
function max-value(state,α, β) returns a utility value v

if terminal-test(state) return utility(state)
v ← −∞
for all actions(state) do

v ← max(v , min-value(result(state,a),α, β))
if v ≥ β return v
α← max(α, v)

end for
end function
function min-value(state, α, β) returns a utility value v

if terminal-test(state) return utility(state)
v ←∞
for all actions(state) do

v ← min(v , max-value(result(state,a),α, β))
if v ≤ α return v
β ← min(β, v)

end for
end function

15 / 19

Take the tree from the previous slide and try to go step-by-step, watch α,

β and v

Imperfect but real-time decisions - iterative deepening

h-minimax(s, d) =

eval(s) if cutoff-test(s, d)

max
a∈actions(s)

h-minimax(result(s, a), d + 1) if player(s) = max

min
a∈actions(s)

h-minimax(result(s, a, d + 1)) if player(s) = min

16 / 19

Even with perfect ordering, α-β prunning does not save us.

Imperfect but real-time decisions - iterative deepening

h-minimax(s, d) =

eval(s) if cutoff-test(s, d)

max
a∈actions(s)

h-minimax(result(s, a), d + 1) if player(s) = max

min
a∈actions(s)

h-minimax(result(s, a, d + 1)) if player(s) = min

16 / 19

Even with perfect ordering, α-β prunning does not save us.

Imperfect but real-time decisions - iterative deepening

h-minimax(s, d) =

eval(s) if cutoff-test(s, d)

max
a∈actions(s)

h-minimax(result(s, a), d + 1) if player(s) = max

min
a∈actions(s)

h-minimax(result(s, a, d + 1)) if player(s) = min

16 / 19

Even with perfect ordering, α-β prunning does not save us.

Imperfect but real-time decisions - iterative deepening

h-minimax(s, d) =

eval(s) if cutoff-test(s, d)

max
a∈actions(s)

h-minimax(result(s, a), d + 1) if player(s) = max

min
a∈actions(s)

h-minimax(result(s, a, d + 1)) if player(s) = min

16 / 19

Even with perfect ordering, α-β prunning does not save us.

Cutting off search

Replace
if terminal-test(s) then return utility(s)
with:
if cutoff-test(s,d) then return eval(s)

17 / 19

Cutting depends on d only, why we need s as the input parameter?

eval(s) – Evaluation functions

(estimate of) State value for non-terminal states

(b) White to move(a) White to move

Eval(s) = w1f1(s) + w2f2(s) + · · ·wnfn(s)

18 / 19

For many problems it is not so easy to find/construct proper function. We
may try more functions and combine them conveniently.

f1(s) = number of white pawns− number of black pawns

How to tune weights wi?
or Deep Nets! Yeah!

How the get training data for supervised learning? More later.

eval(s) – Evaluation functions

(estimate of) State value for non-terminal states

(b) White to move(a) White to move

Eval(s) = w1f1(s) + w2f2(s) + · · ·wnfn(s)

18 / 19

For many problems it is not so easy to find/construct proper function. We
may try more functions and combine them conveniently.

f1(s) = number of white pawns− number of black pawns

How to tune weights wi?
or Deep Nets! Yeah!

How the get training data for supervised learning? More later.

References

[1] Stuart Russell and Peter Norvig.
Artificial Intelligence: A Modern Approach.
Prentice Hall, 3rd edition, 2010.
http://aima.cs.berkeley.edu/.

[2] Richard S. Sutton and Andrew G. Barto.
Reinforcement Learning; an Introduction.
MIT Press, 2nd edition, 2018.
http://www.incompleteideas.net/book/the-book-2nd.html.

19 / 19

http://aima.cs.berkeley.edu/
http://www.incompleteideas.net/book/the-book-2nd.html

	Introduction
	Minimax strategy
	Minimax algorithm
	Two-ply example

	Alpha-beta prunning
	Cut-off search
	References

