Adversarial Search

Tomáš Svoboda

Vision for Robots and Autonomous Systems, Center for Machine Perception

Department of Cybernetics

Faculty of Electrical Engineering, Czech Technical University in Prague
March 8, 2019

Games, man vs. algorithm

- Deep Blue
- Alpha Go
- Deep Stack
- Why Games, actually?

Games, man vs. algorithm

- Deep Blue
- Alpha Go
- Deep Stack
- Why Games, actually?

Games are interesting for AI because they are hard (to solve).

More: Adversarial Learning

Video: Adversing visual segmentation
Vision for Robotics and Autonomous Systems, http://cyber.felk.cvut.cz/vras

Elements of the game

Considering the notation, we are making slight transition from [1] to [2].

- Players: $P=\{1,2, \ldots, N\}$ (often just $N=2$)
- Transition functions: $S \times A \rightarrow S$.
- Terminal utilities: $S \times P \rightarrow R .(R-$ as a Reward $)$

What are we loking for? A strategy/policy $S \rightarrow A$

Elements of the game

- s_{0} : The initial state
- Player(s). Which player has to move in s.

Considering the notation, we are making slight transition from [1] to [2].

- Players: $P=\{1,2, \ldots, N\}$ (often just $N=2$)
- Transition functions: $S \times A \rightarrow S$.
- Terminal utilities: $S \times P \rightarrow R .(R-$ as a Reward $)$

What are we loking for? A strategy/policy $S \rightarrow A$

Elements of the game

- s_{0} : The initial state
- PLAYER(s). Which player has to move in s.
- Actions(s). What are the legal moves?

Considering the notation, we are making slight transition from [1] to [2]

- Players: $P=\{1,2, \ldots, N\}$ (often just $N=2$)
- Transition functions: $S \times A \rightarrow S$.
- Terminal utilities: $S \times P \rightarrow R .(R-$ as a Reward $)$

What are we loking for? A strategy/policy $S \rightarrow A$

Elements of the game

- s_{0} : The initial state
- PLAYer(s). Which player has to move in s.
- actions(s). What are the legal moves?
- Result(s, a). Transition, result of a move.

Considering the notation, we are making slight transition from [1] to [2]

- Players: $P=\{1,2, \ldots, N\}$ (often just $N=2$)
- Transition functions: $S \times A \rightarrow S$.
- Terminal utilities: $S \times P \rightarrow R .(R-$ as a Reward $)$

What are we loking for? A strategy/policy $S \rightarrow A$

Elements of the game

- s_{0} : The initial state
- PLAYer(s). Which player has to move in s.
- actions(s). What are the legal moves?
- $\operatorname{Result}(s, a)$. Transition, result of a move.
- terminal-test(s). Game over?

Considering the notation, we are making slight transition from [1] to [2]

- Players: $P=\{1,2, \ldots, N\}$ (often just $N=2$)
- Transition functions: $S \times A \rightarrow S$.
- Terminal utilities: $S \times P \rightarrow R .(R-$ as a Reward $)$

What are we loking for? A strategy/policy $S \rightarrow A$

Elements of the game

- s_{0} : The initial state
- PLAYER(s). Which player has to move in s.
- ACtions(s). What are the legal moves?
- $\operatorname{ReSUlT}(s, a)$. Transition, result of a move.
- terminal-test(s). Game over?
- terminal-Utility (s, p). What is prize? Examples for some games ..

https://commons.wikimedia.org/ wiki/File:Tic-tac-toe_5.png

Considering the notation, we are making slight transition from [1] to [2]

- Players: $P=\{1,2, \ldots, N\}$ (often just $N=2$)
- Transition functions: $S \times A \rightarrow S$.
- Terminal utilities: $S \times P \rightarrow R .(R-$ as a Reward $)$

What are we loking for? A strategy/policy $S \rightarrow A$

- Zero-sum: players have opposite utilities (values)
- Zero-sum: playing against
- Zero-sum: players have opposite utilities (values)
- Zero-sum: playing against
- General game: independent utilities
- General game: cooperations, competition,

Game Tree(s)

State Value $V(s)$

Think about the State Value. It is a theoretical construct, definition. Depending on the problem, there may be various computational algorithms In a game, what State Values are known? Usually, only terminal states.
Think, for a moment, you are the only player. You can control every step. How would you compute the $V(s)$ for a given state s ?

$$
V(s)=\max _{s^{\prime} \in \text { children }(s)} V\left(s^{\prime}\right)
$$

State Value $V(s)$

Think about the State Value. It is a theoretical construct, definition. Depending on the problem, there may be various computational algorithms In a game, what State Values are known? Usually, only terminal states.
Think, for a moment, you are the only player. You can control every step. How would you compute the $V(s)$ for a given state s ?

$$
V(s)=\max _{s^{\prime} \in \text { children }(s)} V\left(s^{\prime}\right)
$$

Two-ply game: max for me, min for the opponent.

I'm player that starts (state A) and want to decide what to play, actions/plays/moves a_{1}, a_{2}, a_{3} are the options. $\mathrm{B}, \mathrm{C}, \mathrm{D}$ are the possible outcomes of my moves. Now the opponent is about to play. The numbers in terminal states denote my profit/utility.

Two-ply game: $\boldsymbol{\operatorname { m a x }}$ for me, $\boldsymbol{\operatorname { m i n }}$ for the opponent.

I'm player that starts (state A) and want to decide what to play, actions/plays/moves a_{1}, a_{2}, a_{3} are the options. B, C, D are the possible outcomes of my moves. Now the opponent is about to play. The numbers in terminal states denote my profit/utility.

Two-ply game: $\boldsymbol{m a x}$ for me, $\boldsymbol{\operatorname { m i n }}$ for the opponent.

I'm player that starts (state A) and want to decide what to play, actions/plays/moves a_{1}, a_{2}, a_{3} are the options. B, C, D are the possible outcomes of my moves. Now the opponent is about to play. The numbers in terminal states denote my profit/utility.

Two-ply game: $\boldsymbol{m a x}$ for me, $\boldsymbol{\operatorname { m i n }}$ for the opponent.

I'm player that starts (state A) and want to decide what to play, actions/plays/moves a_{1}, a_{2}, a_{3} are the options. B, C, D are the possible outcomes of my moves. Now the opponent is about to play. The numbers in terminal states denote my profit/utility.

Two-ply game: $\boldsymbol{m a x}$ for me, $\boldsymbol{\operatorname { m i n }}$ for the opponent.

I'm player that starts (state A) and want to decide what to play, actions/plays/moves a_{1}, a_{2}, a_{3} are the options. B, C, D are the possible outcomes of my moves. Now the opponent is about to play. The numbers in terminal states denote my profit/utility.

Two-ply game: $\boldsymbol{m a x}$ for me, $\boldsymbol{\operatorname { m i n }}$ for the opponent.

I'm player that starts (state A) and want to decide what to play, actions/plays/moves a_{1}, a_{2}, a_{3} are the options. B, C, D are the possible outcomes of my moves. Now the opponent is about to play. The numbers in terminal states denote my profit/utility.

Two-ply game: $\boldsymbol{m a x}$ for $m e, \boldsymbol{m i n}$ for the opponent.

I'm player that starts (state A) and want to decide what to play, actions/plays/moves a_{1}, a_{2}, a_{3} are the options. B, C, D are the possible outcomes of my moves. Now the opponent is about to play. The numbers in terminal states denote my profit/utility.

Two-ply game: $\boldsymbol{m a x}$ for $m e, \boldsymbol{m i n}$ for the opponent.

I'm player that starts (state A) and want to decide what to play, actions/plays/moves a_{1}, a_{2}, a_{3} are the options. B, C, D are the possible outcomes of my moves. Now the opponent is about to play. The numbers in terminal states denote my profit/utility.

Two-ply game: $\boldsymbol{m a x}$ for $m e, \boldsymbol{m i n}$ for the opponent.

I'm player that starts (state A) and want to decide what to play, actions/plays/moves a_{1}, a_{2}, a_{3} are the options. B, C, D are the possible outcomes of my moves. Now the opponent is about to play. The numbers in terminal states denote my profit/utility.

Two-ply game: $\boldsymbol{m a x}$ for me, $\boldsymbol{\operatorname { m i n }}$ for the opponent.

I'm player that starts (state A) and want to decide what to play, actions/plays/moves a_{1}, a_{2}, a_{3} are the options. B, C, D are the possible outcomes of my moves. Now the opponent is about to play. The numbers in terminal states denote my profit/utility.

Two-ply game: $\boldsymbol{m a x}$ for me, $\boldsymbol{\operatorname { m i n }}$ for the opponent.
I'm player that starts (state A) and want to decide what to play, actions/plays/moves a_{1}, a_{2}, a_{3} are the options. B, C, D are the possible outcomes of my moves. Now the opponent is about to play. The numbers in terminal states denote my profit/utility.

Zero-Sum game: max for me, min for the opponent.

Max step: I want to maximize my outcome.
Min step: I want to minimize the outcome of the opponent.

MIN (o)

MAX (x)

Zero-Sum game: max for me, min for the opponent.

Max step: I want to maximize my outcome.
Min step: I want to minimize the outcome of the opponent.

MIN (o)

$\operatorname{MAX}(\mathbf{x})$

$$
\operatorname{minimAX}(s)=
$$

Max step: I want to maximize my outcome.

Zero-Sum game: max for me, min for the opponent.

$\operatorname{MAX}(\mathbf{x})$

$\operatorname{MinimAX}(s)=$

Max step: I want to maximize my outcome.
Min step: I want to minimize the outcome of the opponent.

Zero-Sum game: max for me, min for the opponent.

$\operatorname{MAX}(\mathbf{x})$

$\operatorname{MinimAX}(s)=$
$\operatorname{UTILITY}(s)$ if TERMINAL-TEST(s)
max $\operatorname{MinimAx}(\operatorname{RESULT}(s, a))$ if $\operatorname{PLAYER}(s)=$ MAX $a \in \operatorname{ACTIONS}(s)$

Zero-Sum game: max for me, min for the opponent.

Max step: I want to maximize my outcome.
Min step: I want to minimize the outcome of the opponent.

Minimax algorithm

function MINIMAX(state) returns an action
function MIN-VALUE(state) returns a utility value v

function MAX-VALUE(state) returns a utility value v

Minimax algorithm

function minimax(state) returns an action
return argmax min-VALUE(Result(state, a))
$a \in$ Actions(s)
end function
function MIN-VALUE(state) returns a utility value v

function MAX-VALUE(state) returns a utility value v

Minimax algorithm

function MINIMAX(state) returns an action
return argmax min-VALUE(ReSult(state, a))
$a \in$ Actions(s)

end function

function MIN-VALUE(state) returns a utility value v if TERMINAL-TEST(state) then return UTILITY(state) end if
$v \leftarrow \infty$ for all ACTIONS(state) do
$v \leftarrow \boldsymbol{\operatorname { m i n }}(v$, MAX-VALUE(RESULT$($ state,$a)))$ end for
end function
function MAX-VALUE(state) returns a utility value v

Minimax algorithm

function MINIMAX(state) returns an action
return $\begin{aligned} & \text { argmax } \operatorname{MIN-VALUE}(\operatorname{RESULT}(\text { state }, ~ a))\end{aligned}$
$a \in$ Actions(s)

end function

function MIN-VALUE(state) returns a utility value v if TERMINAL-TEST(state) then return UTILITY(state) end if
$v \leftarrow \infty$ for all ACTIONS(state) do $v \leftarrow \boldsymbol{\operatorname { m i n }}(v, \operatorname{MAX}-\operatorname{VALUE}(\operatorname{RESULT}($ state,$a)))$ end for

end function

```
function MAX-VALUE(state) returns a utility value v
    if TERMINAL-TEST(state) then return UTILITY(state)
    end if
    v}\leftarrow-
    for all ACTIONS(state) do
            v\leftarrow\boldsymbol{max}(v, MIN-VALUE(RESULT(state,a)))
    end for
end function
```

A two ply game, down to terminal and back again
function MINIMAX (s) returns a $\operatorname{argmax} \operatorname{MINVAL}(\operatorname{RES}(s, a))$

$$
a \in \operatorname{Actions}(s)
$$

end function

$$
\text { function MINVAL(s) returns } v
$$

if TERMINAL(s) then UTIL(s) end if
$v \leftarrow \infty$
for all ACTIONS(s) do
$v \leftarrow \min (v, \operatorname{MAXVAL}(\operatorname{RES}(s, a)))$
end for
end function
function MAXVAL(s) returns v
if TERMINAL(s) then $\operatorname{UTIL}(s)$
end if
$v \leftarrow-\infty$
for all ACTIONS(s) do
$v \leftarrow \max (v, \operatorname{MiNVAL}(\operatorname{RES}(s, a)))$
end for end function

Before going to the animation on the next slide, try to follow the algorithm by a pencil and paper.

A two ply game, recursive run

Efficiency/complexity:

- Exhaustive DFS
- Time $O\left(b^{m}\right)$
- Space $O(b m)$

Chess $b \approx 35, m \approx 100 \ldots$

- We cannot go(dive) to the end
- Can we save something?

A two ply game, recursive run

Efficiency/complexity

- Exhaustive DFS
- Time $O\left(b^{m}\right)$
- Space $O(b m)$

Chess $b \approx 35, m \approx 100$

- We cannot go(dive) to the end
- Can we save something?

A two ply game, recursive run

Efficiency/complexity:

- Exhaustive DFS
- Time $O\left(b^{m}\right)$
- Space $O(b m)$

Chess $b \approx 35, m \approx 100$

- We cannot go(dive) to the end
- Can we save something?

A two ply game, recursive run

Efficiency/complexity:

- Exhaustive DFS
- Time $O\left(b^{m}\right)$
- Space $O(b m)$

Chess $b \approx 35, m \approx 100$

- We cannot go(dive) to the end
- Can we save something?

A two ply game, recursive run

Efficiency/complexity:

- Exhaustive DFS
- Time $O\left(b^{m}\right)$
- Space $O(b m)$

Chess $b \approx 35, m \approx 100$

- We cannot go(dive) to the end
- Can we save something?

A two ply game, recursive run

Efficiency/complexity:

- Exhaustive DFS
- Time $O\left(b^{m}\right)$
- Space $O(b m)$

Chess $b \approx 35, m \approx 100$

- We cannot go(dive) to the end
- Can we save something?

A two ply game, recursive run

Efficiency/complexity:

- Exhaustive DFS
- Time $O\left(b^{m}\right)$
- Space $O(b m)$

Chess $b \approx 35, m \approx 100$

- We cannot go(dive) to the end
- Can we save something?

A two ply game, recursive run

Efficiency/complexity:

- Exhaustive DFS
- Time $O\left(b^{m}\right)$
- Space $O(b m)$

Chess $b \approx 35, m \approx 100$

- We cannot go(dive) to the end
- Can we save something?

A two ply game, recursive run

Efficiency/complexity:

- Exhaustive DFS
- Time $O\left(b^{m}\right)$
- Space $O(b m)$

Chess $b \approx 35, m \approx 100$

- We cannot go(dive) to the end
- Can we save something?

A two ply game, recursive run

Efficiency/complexity:

- Exhaustive DFS
- Time $O\left(b^{m}\right)$
- Space $O(b m)$

Chess $b \approx 35, m \approx 100$

- We cannot go(dive) to the end
- Can we save something?

A two ply game, recursive run

Efficiency/complexity:

- Exhaustive DFS
- Time $O\left(b^{m}\right)$
- Space $O(b m)$

Chess $b \approx 35, m \approx 100$

- We cannot go(dive) to the end
- Can we save something?

A two ply game, recursive run

Efficiency/complexity:

- Exhaustive DFS
- Time $O\left(b^{m}\right)$
- Space $O(b m)$

Chess $b \approx 35, m \approx 100$

- We cannot go(dive) to the end
- Can we save something?

A two ply game, recursive run

Efficiency/complexity

- Exhaustive DFS
- Time $O\left(b^{m}\right)$
- Space $O(b m)$

Chess $b \approx 35, m \approx 100$

- We cannot go(dive) to the end
- Can we save something?

A two ply game, recursive run

Efficiency/complexity

- Exhaustive DFS
- Time $O\left(b^{m}\right)$
- Space $O(b m)$

Chess $b \approx 35, m \approx 100$

- We cannot go(dive) to the end
- Can we save something?

A two ply game, recursive run

Efficiency/complexity

- Exhaustive DFS
- Time $O\left(b^{m}\right)$
- Space $O(b m)$

Chess $b \approx 35, m \approx 100$

- We cannot go(dive) to the end
- Can we save something?

A two ply game, recursive run

Efficiency/complexity

- Exhaustive DFS
- Time $O\left(b^{m}\right)$
- Space $O(b m)$

Chess $b \approx 35, m \approx 100$

- We cannot go(dive) to the end
- Can we save something?

A two ply game, recursive run

Efficiency/complexity

- Exhaustive DFS
- Time $O\left(b^{m}\right)$
- Space $O(b m)$

Chess $b \approx 35, m \approx 100$

- We cannot go(dive) to the end
- Can we save something?

A two ply game, recursive run

Efficiency/complexity

- Exhaustive DFS
- Time $O\left(b^{m}\right)$
- Space $O(b m)$

Chess $b \approx 35, m \approx 100$

- We cannot go(dive) to the end
- Can we save something?

A two ply game, recursive run

Efficiency/complexity:

- Exhaustive DFS
- Time $O\left(b^{m}\right)$
- Space $O(b m)$

Chess $b \approx 35, m \approx 100$

- We cannot go(dive) to the end
- Can we save something?

What is the complexity? How many nodes to visit?

A two ply game, recursive run

Efficiency/complexity:

- Exhaustive DFS
- Time $O\left(b^{m}\right)$
- Space $O(b m)$

Chess $b \approx 35, m \approx 100$

- We cannot go(dive) to the end
- Can we save something?

What is the complexity? How many nodes to visit?

Can we do better? How?

Nodes (sub-trees) worth visiting

A

Nodes (sub-trees) worth visiting

$$
\langle-(-\infty, \infty\rangle
$$

Nodes (sub-trees) worth visiting

$\alpha-\beta$ prunning

α highest (best) value choice found so far for any choice along MAX β lowest (best) value choice found so far for any choice along Min v value of the state

A
Functions scope: MAX-VALUE MIN-VALUE
In MAX nodes α is changing and β is stopping, in MIN nodes β is changing and α is stopping.
It is clear that ordering of child nodes matters. Draw tree of $\alpha-\beta$ search in case of perferct ordering. Effective branching factor becomes \sqrt{b} instead of b which effectively doubles the depth can be searched.

$\alpha-\beta$ prunning

α highest (best) value choice found so far for any choice along MAX β lowest (best) value choice found so far for any choice along min v value of the state
$\alpha=-\infty, \beta=\infty, v=?$

Functions scope: MAX-VALUE MIN-VALUE
In MAX nodes α is changing and β is stopping, in MIN nodes β is changing and α is stopping.
It is clear that ordering of child nodes matters. Draw tree of $\alpha-\beta$ search in case of perferct ordering. Effective branching factor becomes \sqrt{b} instead of b which effectively doubles the depth can be searched.

$\alpha-\beta$ prunning

α highest (best) value choice found so far for any choice along MAX β lowest (best) value choice found so far for any choice along min v value of the state

Functions scope: MAX-VALUE MIN-VALUE
In MAX nodes α is changing and β is stopping, in MIN nodes β is changing and α is stopping.
It is clear that ordering of child nodes matters. Draw tree of $\alpha-\beta$ search in case of perferct ordering. Effective branching factor becomes \sqrt{b} instead of b which effectively doubles the depth can be searched.

$\alpha-\beta$ prunning

α highest (best) value choice found so far for any choice along MAX β lowest (best) value choice found so far for any choice along min v value of the state

$\alpha-\beta$ prunning

α highest (best) value choice found so far for any choice along MAX β lowest (best) value choice found so far for any choice along min v value of the state

$\alpha-\beta$ prunning

α highest (best) value choice found so far for any choice along MAX β lowest (best) value choice found so far for any choice along min v value of the state

$\alpha-\beta$ prunning

α highest (best) value choice found so far for any choice along MAX β lowest (best) value choice found so far for any choice along min v value of the state

Functions scope: MAX-VALUE MIN-VALUE
In MAX nodes α is changing and β is stopping, in MIN nodes β is changing and α is stopping.
It is clear that ordering of child nodes matters. Draw tree of $\alpha-\beta$ search in case of perferct ordering. Effective branching factor becomes \sqrt{b} instead of b which effectively doubles the depth can be searched

$\alpha-\beta$ prunning

α highest (best) value choice found so far for any choice along MAX β lowest (best) value choice found so far for any choice along min v value of the state

$\alpha-\beta$ prunning

α highest (best) value choice found so far for any choice along MAX β lowest (best) value choice found so far for any choice along min v value of the state

$\alpha-\beta$ prunning

α highest (best) value choice found so far for any choice along MAX β lowest (best) value choice found so far for any choice along min v value of the state

Functions scope: MAX-VALUE MIN-VALUE
In MAX nodes α is changing and β is stopping, in MIN nodes β is changing and α is stopping.
It is clear that ordering of child nodes matters. Draw tree of $\alpha-\beta$ search in case of perferct ordering. Effective branching factor becomes \sqrt{b} instead of b which effectively doubles the depth can be searched.

$\alpha-\beta$ prunning

α highest (best) value choice found so far for any choice along MAX β lowest (best) value choice found so far for any choice along min v value of the state

Functions scope: MAX-VALUE MIN-VALUE
In MAX nodes α is changing and β is stopping, in MIN nodes β is changing and α is stopping.
It is clear that ordering of child nodes matters. Draw tree of $\alpha-\beta$ search in case of perferct ordering. Effective branching factor becomes \sqrt{b} instead of b which effectively doubles the depth can be searched.

$\alpha-\beta$ prunning

α highest (best) value choice found so far for any choice along MAX β lowest (best) value choice found so far for any choice along min v value of the state

Functions scope: MAX-VALUE MIN-VALUE
In MAX nodes α is changing and β is stopping, in MIN nodes β is changing and α is stopping.
It is clear that ordering of child nodes matters. Draw tree of $\alpha-\beta$ search in case of perferct ordering. Effective branching factor becomes \sqrt{b} instead of b which effectively doubles the depth can be searched

$\alpha-\beta$ prunning

α highest (best) value choice found so far for any choice along MAX β lowest (best) value choice found so far for any choice along Min v value of the state

Functions scope: MAX-VALUE MIN-VALUE
In MAX nodes α is changing and β is stopping, in MIN nodes β is changing and α is stopping.
It is clear that ordering of child nodes matters. Draw tree of $\alpha-\beta$ search in case of perferct ordering. Effective branching factor becomes \sqrt{b} instead of b which effectively doubles the depth can be searched.

In MIN-VAL: $v \leftarrow 2$ $v \leq \alpha$ then: return v !

$\alpha-\beta$ prunning

α highest (best) value choice found so far for any choice along MAX β lowest (best) value choice found so far for any choice along min v value of the state

Functions scope: MAX-VALUE MIN-VALUE
In MAX nodes α is changing and β is stopping, in MIN nodes β is changing and α is stopping.
It is clear that ordering of child nodes matters. Draw tree of $\alpha-\beta$ search in case of perferct ordering. Effective branching factor becomes \sqrt{b} instead of b which effectively doubles the depth can be searched.

In MIN-VAL: $v \leftarrow 2$ $v \leq \alpha$ then: return v !

$\alpha-\beta$ prunning

α highest (best) value choice found so far for any choice along MAX β lowest (best) value choice found so far for any choice along min v value of the state

Functions scope: MAX-VALUE MIN-VALUE
In MAX nodes α is changing and β is stopping, in MIN nodes β is changing and α is stopping
It is clear that ordering of child nodes matters. Draw tree of $\alpha-\beta$ search in case of perferct ordering. Effective branching factor becomes \sqrt{b} instead of b which effectively doubles the depth can be searched

$\alpha-\beta$ prunning

α highest (best) value choice found so far for any choice along MAX β lowest (best) value choice found so far for any choice along min v value of the state

Functions scope: MAX-VALUE MIN-VALUE
In MAX nodes α is changing and β is stopping, in MIN nodes β is changing and α is stopping.
It is clear that ordering of child nodes matters. Draw tree of $\alpha-\beta$ search in case of perferct ordering. Effective branching factor becomes \sqrt{b} instead of b which effectively doubles the depth can be searched

$\alpha-\beta$ prunning

α highest (best) value choice found so far for any choice along MAX β lowest (best) value choice found so far for any choice along min v value of the state

Functions scope: MAX-VALUE MIN-VALUE
In MAX nodes α is changing and β is stopping, in MIN nodes β is changing and α is stopping.
It is clear that ordering of child nodes matters. Draw tree of $\alpha-\beta$ search in case of perferct ordering. Effective branching factor becomes \sqrt{b} instead of b which effectively doubles the depth can be searched

$\alpha-\beta$ prunning

α highest (best) value choice found so far for any choice along MAX β lowest (best) value choice found so far for any choice along min v value of the state

Functions scope: MAX-VALUE MIN-VALUE
In MAX nodes α is changing and β is stopping, in MIN nodes β is changing and α is stopping.
It is clear that ordering of child nodes matters. Draw tree of $\alpha-\beta$ search in case of perferct ordering. Effective branching factor becomes \sqrt{b} instead of b which effectively doubles the depth can be searched.

$\alpha-\beta$ prunning

α highest (best) value choice found so far for any choice along MAX β lowest (best) value choice found so far for any choice along min v value of the state

Functions scope: MAX-VALUE MIN-VALUE
In MAX nodes α is changing and β is stopping, in MIN nodes β is changing and α is stopping.
It is clear that ordering of child nodes matters. Draw tree of $\alpha-\beta$ search in case of perferct ordering. Effective branching factor becomes \sqrt{b} instead of b which effectively doubles the depth can be searched.

Take the tree from the previous slide and try to go step-by-step, watch α
function ALPHA-BETA-SEARCH(state) returns an action
$v \leftarrow \operatorname{MAX}-\operatorname{VALUE}($ state, $\alpha=-\infty, \beta=\infty)$
return action corresponding to v

end function

function MAX-VALUE(state, α, β) returns a utility value v
if TERMINAL-TEST(state) return UTILITY(state)
$v \leftarrow-\infty$
for all ACTIONS(state) do
$v \leftarrow \boldsymbol{\operatorname { m a x }}(v, \operatorname{MIN}-\operatorname{VALUE}(\operatorname{RESULT}($ state,$a), \alpha, \beta))$
if $v \geq \beta$ return v
$\alpha \leftarrow \max (\alpha, v)$
end for end function

Take the tree from the previous slide and try to go step-by-step, watch α, β and v
function ALPHA-BETA-SEARCH(state) returns an action
$v \leftarrow \operatorname{MAX}-\operatorname{VALUE}($ state, $\alpha=-\infty, \beta=\infty)$
return action corresponding to v

end function

function MAX-VALUE(state, α, β) returns a utility value v
if TERMINAL-TEST(state) return UTILITY(state)
$v \leftarrow-\infty$
for all ACTIONS(state) do
$v \leftarrow \boldsymbol{\operatorname { m a x }}(v, \operatorname{MIN}-\operatorname{VALUE}(\operatorname{RESULT}($ state,$a), \alpha, \beta))$
if $v \geq \beta$ return v
$\alpha \leftarrow \max (\alpha, v)$
end for
end function
function MIN-VALUE(state, α, β) returns a utility value v
if TERMINAL-TEST(state) return UTILITY(state)
$v \leftarrow \infty$
for all ACTIONS(state) do
$v \leftarrow \boldsymbol{\operatorname { m i n }}(v, \operatorname{MAX}-\operatorname{VALUE}(\operatorname{RESULT}($ state,$a), \alpha, \beta))$
if $v \leq \alpha$ return v
$\beta \leftarrow \min (\beta, v)$
end for
end function

Take the tree from the previous slide and try to go step-by-step, watch α β and v

[^0]```
H-MinimAX (s,d)=
 EVAL(s) if CUTOFF-TEST}(s,d
```

```
 H-Minimax (s,d) =
 EVAL(s) if CUTOFF-TEST(s,d)
 max H-MinimAx(RESULT}(s,a),d+1) if PlayER(s) = MAX
ma_ACTIONS(s)
```

```
 H-MinimAX (s,d)=
 EVAL(s) if CUTOFF-TEST(s,d)
 max ctions(s)}\operatorname{H-MINIMAX(RESULT}(s,a),d+1) if PLAYER(s)= MAX
min
a\inACTIONS(s)
```


## Replace

if TERMINAL-TEST(s) then return UTILITY(s)
with:
if Cutoff-TEst( $(\mathrm{s}, \mathrm{d})$ then return $\operatorname{EvaL}(\mathrm{s})$

EVAL(s) - Evaluation functions
(estimate of) State value for non-terminal states

(a) White to move

(b) White to move

For many problems it is not so easy to find/construct proper function. We may try more functions and combine them conveniently.
$f_{1}(s)=$ number of white pawns - number of black pawns
How to tune weights $w_{i}$ ?
or Deep Nets! Yeah!
How the get training data for supervised learning? More later.

EVAL(s) - Evaluation functions
(estimate of) State value for non-terminal states

(a) White to move

(b) White to move

For many problems it is not so easy to find/construct proper function. We may try more functions and combine them conveniently.
$f_{1}(s)=$ number of white pawns - number of black pawns
How to tune weights $w_{i}$ ?
or Deep Nets! Yeah!
How the get training data for supervised learning? More later.

$$
\operatorname{EvaL}(s)=w_{1} f_{1}(s)+w_{2} f_{2}(s)+\cdots w_{n} f_{n}(s)
$$

## References

[1] Stuart Russell and Peter Norvig.
Artificial Intelligence: A Modern Approach.
Prentice Hall, 3rd edition, 2010.
http://aima.cs.berkeley.edu/.
[2] Richard S. Sutton and Andrew G. Barto.
Reinforcement Learning; an Introduction.
MIT Press, 2nd edition, 2018
http://www.incompleteideas.net/book/the-book-2nd.html.


[^0]:    h-minimax $(s, d)=$

