Comﬁuter Architectures

Branch Prediction + Hyper-Threading

Richard Susta, Pavel Pisa

f

Czech Technical University in Prague, Faculty of Electrical Engineering

AEOB36APO Computer Architectures 2019 1

Control Hazards

« Jump and Branch are great performance losses.

« Jump instruction needs only the jJump target
address

« Branch instruction requires 2 operations:

 Branch Result Taken or Not Taken
* Branch Target Address
e PC+4 If Branch is NOT Taken

« PC+4+ 4 ximmediate If Branch is Taken

AEOB36APO Computer Architectures 2

Branch Not Taken

Branch to Z

NOOm>

cycle b cycle b+1 cycle b+2 cycle b+3 cycle b+4

v

P »d »d »d
< Ll | Ll | Ll |

Branch fetched Branch decoded Branch decision PC keeps D
(br. not taken)

A fetched A decoded A executed A continues
B fetched B decoded B executed
C fetched C decoded
D fetched

AEOB36APO Computer Architectures 3

Branch Hazard

 Consider heuristic — branch Not taken.

« Continue fetching instructions In sequence
following the branch instructions.

* If branch is taken (indicated by zero output of
ALU):
« Control generates branch signal in ID cycle.

 branch activates PCSource signal in the MEM
cycle to load PC with new branch address.

* |nstructions in the pipeline must be flushed
If branch is taken — can this penalty be reduced?

AEOB36APO Computer Architectures 4

Branch Taken

Branch to Z

NOOm>

cycle b cycle b+1 cycle b+2 cycle b+3 cycle b+4

v

P »d »d »d
< Ll | Ll | Ll |

Branch fetched Branch decoded Branch decision PC gets Z

(br. taken)
A fetched A decoded Nop
B fetched Nop
Nop
Z fetched

AEOB36APO Computer Architectures 5

Pipeline Flush

 If branch is taken (as indicated by zero), then
control does the following:

« Change all control signals to O, similar to the case of stall
for data hazard, i.e., insert bubble in the pipeline.

* Generate a signal IF.Flush that changes the instruction in
the pipeline register IF/ID to O (nop).

« Penalty of branch hazard is reduced by

« Adding branch detection and address generation
hardware in the decode cycle — one bubble needed — a
next address generation logic in the decode stage writes
PC+4, branch address, or jump address into PC.

« Using branch prediction.

AEOB36APO Computer Architectures 6

Control Hazards

1 2 3 4 5 6 7 8 9

20 beq $tl, $t2, 40 lMi[I{HF 52

\
\
\
III
a ss0m . =
24 and $t0, $s0, $sl M 2]{RF o ﬁ_]_r DM |_ oF
\
\
\

.

Time (cycles)

RF

vy |
e |
b X
]
=

g £5< N N Flush
28 or &tl, %$s4, 5=0 IM i[{ RF ssc-]:a—- -I—DM— RF these
\ L] L instructions
H"-.I . ss0M o
2C sub 5tZ, $s0, s$sb IM =]—[FIF 2eh E_I _I_DM | F
II' — -
\
|1
1
30 ... \
\
|1
|1
- oo i
l \ ; 5=l - =
64 slt $t3, $s2, $s3 1IM =l Re s3] [0 I DM b_a I

* The result of the comparison is only known in the 4th cycle. Why?

AEOB36APO Computer Architectures 7

Control Hazard — rather know the result earlier...

4

5

6 7 9
-
Time (cycles)
St =
20 beq $tl, $t2, 40 h]:B—--EDM— RF
24 and $t0, $s0, &sl :B— DM—D—HF
28 or 5tl, ss4, 5s0
2C sub st2, 5s0, &sb
30
64 slt $t3, $s2, $s3

HE | <

T B
[N
Lad B2

* |If we can determine the result of the comparison already in the 2nd cycle, we
can reduce misprediction penalty.

* Moving forward can introduce new RAW hazards !!!
AEOB36APO Computer Architectures

Solution of Hazards by Flush

(Conr L _RegWriteD %7 RegWriteE RegWriteM %7RegWriteW
unit MemToRegD MemToRegE MemToRegM
MemWriteD MemWriteE MemWriteM MemTo
31:26 ALUControlD ALUControlE RegW
== Op ALUSrcD ALUSrcE
5:0 RegDstD RegDstE
Funct ™™ BranchD
—
EquaD| ™pcsred
- = '
C PC . WE3 0
g “HA RD nstDY25:211 7\ 1 “RD1 o1 SrcAl ALuout | || Readbatan
Instruction 204802 RD2 81 O |SreBEJALU MData
A3 , 1 emory
Memory WD3 RFelg WriteDataE WriteDataM WD i
25:21 12 RsD RsE ALUOUW 0
20:16 RtD RtE| [R .)
. 0 WriteRegE 4:0 WriteRegM 4:0 |WriteRegW 4:0
15:11 — RdD RdE 1
+ 15:0 _— ignimm
4 SElgcp SignimmE
PCPlus4F § |cts PCPlus4D o
EN .
PCBranchD —
ResultW
= Forward| [Forward RegWrit
orwar orwar @ . egWrite
Stall F Stall D 3 AE| |BE 5 | RegWriteM W g
L =
. £
[Hazard unit =]

AEOB36APO Computer Architectures 9

1-Cycle Jump Delay

« If the control logic detects a Jump instruction in the 2nd
Stage, then Next instruction is fetched anyway.

« We flush only with one instruction.

ccl cc2 cc3 ccl cch ccb cc’/

J L1 H— IF H— ID

Jump
Ll: Target instruction Target I= II Reg lI'@I DM Il Reg
Addr

AEOB36APO Computer Architectures

Solution of RAW hazards by forwardin

Prennclat /
P . L] L] vrlvvuul. T
ozastavit .. Netreha
Pozastavit
(Conr L _RegWriteD RegWriteE %7 RegWriteM RegWriteW
mi:o MemToRegD MemToRegE MemToRegM
MemWriteD MemWriteE MemWriteM MemTo
31:26 ALUControlD ALUControlE RegW
== Op ALUSrcD ALUSrcE
5:0 RegDstD RegDstE
Funct ™™ BranchD
—
| EquaD| —pcsred |
Ve =
cT™™PC . WE3 0
0 A RDH meisti2s21l =20, 0 o7 SrcAl ALUOUtM ReadDatal}
1 EN 20:16 1 1 A RDM
Instruction —A2 RD2 0 0 ISrcBEJALU Data
Memory A3 Reg 0 2 Memory
WD3 Fi|é 1 WriteDataE WriteDataM WD 1
25:21 RsD RsE AL w0
fg;‘? EL% II:(tJIEE 6\| WriteRegE 4:0 WriteRegM 4:0 |WriteRegW 4:0
* 1
+ 15:0 Sian SignimmD)
4 Ext SignimmE
<<2
pcPlusaF] |cu PCPlus4D +
EN .
PCBranchD —
ResultW
3 = Forward| [Forward | 5| RegWrit
o orwar 2 . egWrite
Stall F Stall D IBranchD g By || 2 AE| |BE s %J RegWriteM W
fired] s b
Hazard unit = x

AEOB36APO Computer Architectures

11

Pipeline version

AEOB36APO Computer Architectures

Contr RegWriteD %7RquriteE %7RquriteM eﬂi_egWrite\L
ol unit HMemToRegD MemToRegE
| |MemWriteD MemWriteE MemTo
) Al UControlD AL UContro
bop [TALUSrcD A RegW
O unct IésgDstD RegDstE
EquaD ™pcsrc
r[ﬂ ALUOutM WE W
u ReadData
Instruction N :: ﬂ !! ! Data
Memory NriteDatal Memory
RsE ' 1Al ol
- 0
SE-10 WriteRegE 4:0 riteRegh 4: iteRegW 4:
SignimmE
|
N I R RE \
L
S 7z orward| [Forward || - . RegWrit
Stall F Stall D laranchn porward| 3 AE| |BE l‘ag Reghrit e
[@] B 1<
“ Hazard unit S W]
12

Single cycle version

Return back to single cycle processor

_—

AEOB36APO Computer Architectures

~— _MemToReg
Control MemWrIte
; Branch
31:26 o;Jcr:::[je ALUControl 2:0
ALUScr
5:0
\ ARG Eeg\?veit AluOutW
_______/Reg\Writg
v '3_—, SrcA \'/\&
25:21 WE rc
-0 A RD |—lost Al RD1 N Zerg WE 0
: A RD
Instr. 21 A2 RD2 0 AUOWN “Dai | ReadDai
Memory A3 Reg. Memory
: RHO|JWriteReg
15711 Rd 1!
) ~LSign Ext [~ Signim PCBranch
PCPlus4F PCPlus4D PCPlus4E

13

sult

What we have designed?

Return back to single cycle processor

— Ridici gast

— _MemToReqg r
31:26 o;Jcr:::[je ALUControl 2:0 \
ALUScr
0 | Funct RegDest
: \ RegWiits | _|___ . i -% ————
:..___- ———————— 521 [V WES SrcA WE
A RD | 0 A rpE—lDsic Al RD1 LU A ROB sult
Instr. I 20:16 A2 RD2 'b
Memory | | A3
i Reg. [r vz
: oo DS File] 5 WriteData WD[Zitova cah
- Al \WriteReq At
I VT toi Yo WA CALCCA Ija-t
X/W : 15:11 Rle ” \ I
A RD| | 1”1/
Data : 4 Sign Ext Signim PCBranch
Memory | | PCPlus4F PCPlus4D PCPlus4E
WD :
i
i
i

AEOB36APO Computer Architectures 14

What we have designed?

Processor
Control unit
Y
PC A RD Instruction RD A PC
Instr.
Memory
Enable write
| Datapath
Address of V'WE e
ress
RD/WR A RD Read data RD A
Data
Written data Memory WD Results
WD

AEOB36APO Computer Architectures

15

Done - designed pipeline processor

0
1

(Cortol RegWriteD %7 RegWriteE %7 RegWriteM %7RegWriteW
unit MemToRegD MemToRegE MemToRegM
MemWriteD MemWriteE MemWriteM MemTo
31:26 ALUControlD ALUControlE RegW
= Op ALUSrcD ALUSrcE
5:0 RegDstD RegDstE
Funct ™™BranchD
~—
| EquaD| —pcsred |
CcTV|PC nstrDlo5:21| Y WE3 0 = 0 SrcAE
A RD == Al RD1 1 01 ALUOutM ReadDataW
2 20:16 1 A RDm
Instruction A2 RD2 0 0 [SrcBEJALU Data
Memory A3 Reg 0 2 Memory
WD3 F.l' 1 WriteDataE | |WriteDataM WD 1
25:21 L RsD RsE ALUOutW 0
: RtE| R : . . .
fg;‘? Eﬂ% RAE L\I WriteRegE 4:0 WriteRegM 4:0 |WriteRegW 4:0
+ 15:0 —|SignlmmD
Sign .
4 Ext SignimmE
<<2
pCPlusdr | o PCPlus4D L
EN L=
PCBranchD — —
ResultW
5 Forward I-"F,J, Forward| |Forward E’ kS ReaWriteM RegWrite
Stall F Stall D BranchD £| [gp = AE| |BE S| = egvirite W
LC . = 2
Hazard unit =

AEOB36APO Computer Architectures

16

Single cycle CPU — Throughput: IPS=I1C/T = IPC__.f

str'"CLK
« What is the maximal possible frequency of the CPU?
* ltis given by latency on the critical path — it is Iw instruction in our case:

Tc = tpC + t|\/|em + tRFread T 1:ALU t tMem + 1:Mux + tRFsetup

|
Instr 23:21 Xlw%)’[)l

12016 A2 RD2
A3 Reg. _
WD3 Fije WriteData WD
20:16 Rt@ WriteReg

15:11 Rd

5950 x|

0 | Result

ReadData

PCBranch

B35APO Computer Architectures 17

Single cycle CPU — Throughput: IPS =IC/ T = IPC__.f- .

« Tc= TCinstr T TCproc
= (tPC + 1:I\/Iem) T (tRFread + 1:ALU t tMem T tMux T tRFsetup)
« Consider following parameters:

toe =30 ns tyem = 300 NS
lRFread =50 ns tacu =200ns
thux =20 ns tRFsetup =20ns
If Tc;r IS €xecuted paralel with Tc,,.

then Tc; < Tc,, and Tc, = 50+200+300+20+20
=590 ns=1.69 MHz ->
IPS =1 690 000 [instructions per second]

B35APO Computer Architectures

18

Pipeline Processor Performance

If pipeline processor has
T, clock cycle
P number of pipeline steps
N number of instructions in a program

Tprogram = (P+ (N'l)) * Tc

because the 1st instruction needs P cycles to fill the pipeline
but each additional instruction only adds one extra clock.

AEOB36APO Computer Architectures

19

Pipeline Processor Performance : IPS=I1C /T

The cycle time is determined by the slowest step

In our case memory is weak step:
Tmen =300 Ns --> T, =300 ns --> 3 333 kHz

 If we don't consider stall and flush pipelines, then we can

say that a program with many N instructions will execute one
Instruction per cycle.

IPS = 1/T,,,, = 3333333 instructions per second

« By introducing a 5-step pipeline, we have improved
throughput: 3 333333/ 1 690 000 = 1,97 = ~2 times!

Why so little? Our simple five-point pipeline depends too much
Oon memory access time.

AEOB36APO Computer Architectures 20

*Prediction of branches

Benchtests of Branch Statistics

« Branches occur every 4-7 instructions on average in integer
programs, commercial and desktop applications;
somewhat less frequently in scientific ones :-)

« Unconditional branches : approx. 20% (of branches)

« Conditional branches approx. 80% (of branches)
 66% is forward. Most of them (~60%) are often Not Taken.
« 33% is backward. Almost all of them are Taken.

« We can estimate the probability that a branch is taken
Piaken = 0-2 + 0.8* (0.66 * 0.4 + 0.33) = 0.67

In fact, many simulations show that p,,., IS from 60 to 70%.

See: Lizy Kurian John, Lieven Eeckhout:
Performance Evaluation and Benchmarking, CRC Press 2018

AEOB36APO Computer Architectures 22

One-hit Branch Prediction

« A one-bit prediction scheme:
a one “history bit” tells what happened on the last branch
Instruction execution:

 History bit = 1, branch was previously Taken
 History bit = O, branch was previously Not taken

Not taken

taken Not taken

AEOB36APO Computer Architectures 23

Branch Prediction for a Loop

Execution of Instruction 4

s

N
o
*

1 o | 5 [1]2]1
2 | 17 2 |2 2] 1 |Good
3 1| 2 [3| 2| 1 |Good
4 1T 2 |4l 21 1 |Good
5 1 2 | 5| 2 [1 |Good
—
6 1 2 | 6| 2 | 1 |Good
7 | 17 [2 | 7] 2] 1 [cood
8 14—1 8 | 2 —1 | Good
9 1 | 2 | 9] 21 1 |Good
10 | 1] 2 [10] 5] o [NEEEN

bit = 0 branch not taken, bit = 1 branch taken.

AEOB36APO Computer Architectures

24

Typical Organization of Branch Prediction Table

A

table update

Actual outcome

PC (32})itS) { Hash } 2N entries
7 >
N bits
I
\ 4
Prediction

Note: FSM - Finite State Machine (cz: koneény automat

AEOB36APO Computer Architectures

Branch Prediction

Address of Target

History

recent branch addresses bit(s)

instructions

Low-order

bits used

A 4
®

as index

A 4

? C

PC hash -

AEOB36APO Computer Architectures

A 4

4

A

Next PC

26

Simplest Dynamic Branch Predictor

for (i=0; i<100; i++)
{ if (arr[i]==0){ ..}

s

NT

NT

0x400100F8 la $18, arr
0x400100FC addi $10, $0, 100
0x40010100 or $1, $0, $0

Loopl:

0x40010104 sll $3, $1
0x40010108 add , $18, $3
0x400101 $2, ($19)

Loop?2:
Loop3:
0x40010B08 addi $1, %1, 1

AEOB36APO Computer Architectures

NT

0x40010210 beq $2, $2;1oecp2

0x40010214 beq $0,%$0, Loop3

NT

0x40010B bne $1, $10, Loop1l

NT

1-bit

Branch
History

Table

27

Two-Bit Prediction Buffer Type |

 Itis called 2-bit saturating counter. This one has no
hysteresis.

Strongly Taken Weakly Taken

Not taken

taken

Not taken

Not taken

Not taken

Strongly Not Taken Weakly Not Taken

AEOB36APO Computer Architectures 28

Branch Prediction for a Loop

* Execution of Instruction 4

1 2 1| 2 — Good

2 n- 2 |2 J,,ﬂ Good

3 1< 2 | 3| 2111 | Good

4 11 2 | 4] 2111 | Good

5 | mM“] 2 |5 | 2 |11 |Good

6 n | 2 6 | 2 (11 | Good

v 7 | n-7 2 | 7| 2| 1 |Good

8 1< 2 | 8| 2111 | Good

* 9 11 2 | 9] 211 |Good
10 | n-T 2 |10] 5 | 10 [NESEN

AEOB36APO Computer Architectures 29

Two-Bit Prediction Buffer Type II.

This 2-bit saturating counter was modified by adding hysteresis.
Prediction must miss twice before it is changed.

Strongly Taken Weakly Taken

Not taken

taken

Not taken

Not taken

Not taken

Weakly Not Taken Strongly Not Taken

AEOB36APO Computer Architectures

30

Some result of benchtest

OVERALL PERFORMANCE
ANALYSIS

BALWAYSTAKEN
® ONEBIT
B SATURATING COUNTER

SATURATING .. I <175 Here, a higher number
ONEBIT I 68.75 means the better
ALWAYSTAKEN s 59 25 prediction

Source: https://ieeexplore.ieee.org/document/6918861
H. Arora, S. Kotecha and R. Samyal, "Dynamic Branch Prediction Modeller for

RISC Architecture," 2013 International Conference on Machine Intelligence and
Research Advancement, Katra, 2013, pp. 397-401.

Note: This study has used saturating counter with hysteresis (type II).

AEOB36APO Computer Architectures 31

https://ieeexplore.ieee.org/document/6918861

Correlating Predictors

We can look at other branches for clues

if (x==2)
if (y==2)
if(xi=y) {...}

AEOB36APO Computer Architectures

/| branch bl
// -branch b2

// branch b3 depends on the
results of bl and b2

32

(2,1) Correlated predictor

We use 4 predictors: P00 | PO1 | P10 | P11

] T

={0]0) PO1 P10
This predictor is This predictor is This predictor is
used if the used if the used if the
previous 2 previous 2 previous 2
branches in the branches have branches have
program history: 29 |ast history: 2"d |ast
have both status branch Not taken, branch Taken,
Not taken. and the last and the last
branch Taken branch Not taken.

A (2,1) correlated branch predictor

* (2,1) means 22 =4 predictors buffers each contains 1 bit

« and uses the behavior of the last 2 branches to choose
from 22 predictors.

AEOB36APO Computer Architectures

P11

This predictor is
used if the
previous 2
branches in the
program

have both status
Taken.

33

Correlating Predictors

> Example (2,1) predictor 2 bits of global history

Hash of branch address means that we look at

‘ T/NT behavior of last 2
branches to determine the
behavior of THIS branch.

« The buffer can be
Implemented as an one
dimensional array.

* (m,n) predictor uses
behavior of last m

I branches to choose from

2™ predictor each of them

IS n-bit predictor.

1-bits per branch predictor

el mm e 1 Prediction

| | |
2-bit global branch history

AEOB36APO Computer Architectures 34

Correlating Predictors in SPEC89

1%

ser [0% N bl por ey Note: SPEC89 is older SPEC CPU

" o o unimied enies: | PE€NChMark suite that is nowadays
maim3ao | - 0% 2bitsper ey replaced by newer sets. It contained:
R gy e « gcc INT1 GNU C compiler
Toiegly 0% » espresso INT PLA optimizing tool

" . * spice2g6 FP2 Circuit simulation and

doduc — 5% analysis
: > o - doduc FP Monte Carlo simulation

= « nasa7 FP Seven floating-point kernels

SPECS9 [5% « |i INT LISP interpreter

wor: T 3% - eqntott INT Conversions of equations

i 5% to truth table
goo e Wi * matrix300 FP Matrix solutions
i 11% « fpppp FP Quantum chemistry
— 5% application
e 25 « tomcatv FP Mesh generation

— 18% application

eqntott 18%

6%
— 10% Source of picture: J. L. Hennessy and D. A. Patterson,
. = Tos Computer Architecture: A Quantitative Approach.

0% 2% 4% 6% 8% 10% 12% 14% 16% 18%

Tournament Predictors

 Motivation for correlating branch predictors is
2-bit predictor failed on important branches; by adding
global information, performance was improved.

 Tournament predictors: use 2 predictors, 1 based on
global information and 1 based on local information
(local branch was taken, not taken), and combine them
with a selector.

 They use n-bit saturating counter to choose between
predictors.

* Hopes to select right predictor for right branch.

AEOB36APO Computer Architectures 36

Benchtest of Accurancy

Conditional branch misprediction rate

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128
Total predictor size KBytes

AEOB36APO Computer Architectures 37

*More pipeline steps

Balancing pipeline steps

Linear pipeline:

IO CHOOO000H

(also: used also in tree summator, multiplier, iterative divider ...)

« Balancing: The goal is to divide the individual blocks into N
degrees so that the delays at all levels are as equal as
possible ...

« The number of degrees depends on preference: throughput
vS. latency

AEOB36APO Computer Architectures 39

IF

IS

RF
DF
DS
TC

Superzretézeni

unbalanced 5-step pipeline:

IM *ﬂ RF DM *ﬂ* RF

IF ID EX MEM WB

deeper pipelining resulting from further decomposition brings the possibility of further
increasing the operating frequency, but also a number of other problems such as
further forwarding, increase in pipeline suspensions, hazards and an increase in the
cost of erroneous branch prediction.

IM]7 RF DM ~ﬂ— RF

IF IS RF EX DF DS TC wB

First half of instruction fetch; PC selection actually happens here, together with initiation of instruction
cache access.

Second half of instruction fetch, complete instruction cache access.

Instruction decode and register fetch, hazard checking, and instruction cache hit detection.

Data fetch, first half of data cache access.

Second half of data fetch, completion of data cache access.

Tag check, to determine whether the data cache access hit.

AEOB36APO Computer Architectures 40

A small example how to Avoid Branches

On web, you can found out many tricks suitable for time critical loops. This example
present how to calculate absolute value of 32 bit signed integer x without branches.

Code with unpredictable branch dependable on data

C code MIPS if x in $2 Comment
If(x<0) x=-x; slt $1, $2, $0 Il tmp=x<0?1:0
beq $1, $0, Skipl // if(tmp==0) goto Skip
nop /[delay slot
sub $2, $0, $2 Il Xx=-X;
Skipl: :
Fast C code MIPS if x in $2 Comment
inttmp =x>>31; sra$l,$2,31 // tmp=x<0?-1:0
X A= tmp; xor $2, $2, $1 // 1st compliment of x, if tmp=-1
X -= tmp; sub$2,$2,$1 // add 1liftmp=1

Note: On MIPS with static prediction, we save just 1 instruction. If we compile the C code for
an Intel processor with longer pipeline, then a branch miss-prediction is more expensive.

AEOB36APO Computer Architectures 41

What are pipeline lengths? ...

P5 (Pentium) : 5

P6 (Pentium 3): 10

P6 (Pentium Pro): 14

NetBurst (Willamette, 180 nm) - Celeron, Pentium 4: 20

NetBurst (Northwood, 130 nm) - Celeron, Pentium 4, Pentium 4 HT. 20

NetBurst (Prescott, 90 nm) - Celeron D, Pentium 4, Pentium 4 HT, Pentium 4 ExEd: 31
NetBurst (Cedar Mill, 65 nm): 31

NetBurst (Presler 65 nm) - Pentium D: 31

Core : 14

Bonnell: 16

K7 Architecture - Athlon : 10-15
K8 - Athlon 64, Sempron, Opteron, Turion 64: 12-17

ARM 8-9: 5

ARM 11: 8

Cortex A7: 8-10
Cortex A8: 13
Cortex Al5: 15-25

 The Optimum Pipeline Depth for a Microprocessor:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.93.4333&rep=repl&type=pdf

AEOB36APO Computer Architectures 42

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.93.4333&rep=rep1&type=pdf

What are
Dynamic multiple-issue processors
aka Superscalar processors ?

Definition

Wiki:

* In contrast to a scalar processor that can
execute at most one single instruction per
clock cycle, a superscalar processor can
execute more than one Instruction during a
clock cycle by simultaneously dispatching

multiple instructions to different execution units
on the processor.

Q: What does it actually mean "more than one"?

AEOB36APO Computer Architectures 44

A pipeline that supports multiple outstanding FP operations

Integer unit

EX

S

FP/integer multiply
M1 M2 M3 M4 M5 M6 M7

MEM WB
FP adder

Al A2 A3 A4

FP/integer divider

Source of picture: J. L. Hennessy and D. A. Patterson,
Computer Architecture: A Quantitative Approach.

AEOB36APO Computer Architectures 45

Pentium 4 - Out-of-order Execution pipeline

Reglster Ragister
|-Fetch Quause Raname Queus Sched Raad Exacute L1 Cache Write Ratira

o
Buifiss

Hegistaf -
Enam

¥ T ¥ RY

[Source: Intel]

AEOB36APO Computer Architectures

Hyper-Threading

Arch State Arch State || Arch State
Processor Execution Processor Execution
Resources Resources

4—|_>4_|_>

Processor with out Hyper- Processor with Hyper-
Threading Technology Threading Technology

Ref: Intel Technology Journal, Volume 06 Issue 01, February 14, 2002
AEOB36APO Computer Architectures

Pentium 4: Netburst Microarchitecture’s execution pipeline

|-Fetch

Trace
Cache

Fetch
Queue

Rename

Uop
Queue

W-

W—l

Sched

ks

Dy

p

Register
Read

»

Registers

Execute

e
)

)

D-Cache

Store
Buffer

L1 D-Cache

»

Register
Write

Registers

Picture is simplified because the pipeline has actually 20 steps.
The branch miss prediction penalty is here extremely high.

AEOB36APO Computer Architectures

Retire
Queue

ROB

Sample from: Hyper-Threading Benchtest

Cinebench 11.5

multi-threaded

&&tom's

% hardware

Core i7-980X 3.33 GHz HT on (Turbo 3.46/3.6 GHz)

Core i7-980X 3.33 GHz HT off (Turbo 3.46/3.6 GHz)

Core i7-975 3.33 GHz HT on (Turbo 3.46/3.6 GHz)
Core i7-975 3.33 GHz HT off (Turbo 3.46/3.6 GHz)

3 g 9
piz

[}

& tom's

% hardware

Adobe Photoshop CS5 4

Image Processing
Apphving & fiters to a 69 MB TIF image

Core i7-880X 3.33 GHz HT off (Turbo 3.46/3.6 GHz)

Core i7-930X 3.33 GHz HT on (Turbo 3.46/3.6 GHz) [

Core i7-875 3.33 GHz HT on (Turbo 3.46/3.6 GHz)
Core iT-875 3.33 GHz HT off (Turbo 3.46/3.6 GHz)

00:00 00:20 00:40 01:00 01:20 01:40
Time [mm:zs]

AEOB36APO Computer Architectures

SiSoftware Sandra 2010 Pro

ALU Performance
Dhrystone GIPS

&&tom's

% hardware

Core i7-9280X 3.33 GHz HT on (Turbo 3.48/3.8 GHzZ)
Core i7-930X 3.33 GHz HT off (Turbo 3.48/3.6 GHz)
Core i7-975 3.33 GHz HT off (Turbo 3.48/3.8 GHz)
Core i7-575 3.33 GHz HT on (Turbo 3.45/3.6 GHz)

(=1
[
=1
o
=1
w
=]

120 150
Score

No influence on integer arithmetic
performance or memory bandwidth!
Why?

& tom's

% hardware

SiSoftware Sandra 2010 Pro
Memory Bandwidth

Core i7-975 3.33 GHz HT off (Turbo 3.46/3.6 GHz)
Core i7-575 3.33 GHz HT on (Turbo 3.45/3.56 GHz)
Core i7-380X 3.33 GHz HT off (Turbo 3.48/3.6 GHZ)
Core i7-920X 3.33 GHz HT on (Turbo 3.46/3.6 GHz)

49

AMD Bulldozer 15h (FX, Opteron) - 2011

’ L1 instruction cache
B4kB two-way

Module block
{incl. 2 cores)

Instruction
Fetch

Branch
Prediction

Instruction decoder

Predecode/Pick

Micro Fast

Micro
Decode

Micro
Decode

Dispatch ir : 4

Resource

' Dispatch
Monitor

Confroller

AEOB36APO Computer Architectures

Integer Cluster 1 - Integer Cluster 2
Int Shared FP Shared FP It
Scheduler q Regs Srmclbar A= Reg File Roas Scheduler
v v |
A G LLAL U G AL ALUIRGU [ALUKGL
AlATAIATIMIMIM]M
F plo(p|olfalalalallFMsC A
pjoD|blDljc|lc|c|le
Thraad 4 x 64b 4 x 64b th;gad
Retirement LSU etiremer
Resource Resource
L1 data cache Monitor Monitor L1 data cache
16KE four-way Write Coalescing Cache 16 kB four-way
| L2 Data Cache
> Core Interface Unit 2048kB (shared,Max)

http://en.wikipedia.org/wiki/File:AMD_Bulldozer_block_diagram_(CPU_core_bloack).PNG

50

Intel Nehalem (Core i7) - 2008

128-entry TLB-4K, 7 TLB-2/4M per thread

guadruple associative Instruction Cache 32 KByte,

1128

Branch
Prefetch Buffer (16 B
© uffer (16 Bytes) Prediction
1 global/bimodal,
Predecode & loop, indirect
Instruction Length Decoder jmp
443331 [
Instruction Queue
18 x86 Instructions
Alignment, MacroOp Fusion
il I L L
Complex Simple Simple Simple
Decoder Decoder Decoder Decoder|
Loop LI T - S \
Stream —|Deccded Instruction Queue (28 HOP entries) |<— Micro
Decoder l l l l Instruction
| MicroOp Fusion Sequencer
- 4 1 1 1

Retirement | [Register Allocation Table (RAT)

Register |
= Reorder Buffer (128-entry) fused

File M

Port 4 Port 3

| Reservation Station (128-entry) fused |
PortQ

Integer/
MMX ALU
21 AGU

Result Bus

octuple associative Data Cache 32 KByte,

64-entry TLB-4K, 32-entry TLB-2/4M

AEOB36APO Computer Architectures

http://en.wikipedia.org/wiki/File:Intel_Nehalem_arch.svg

256

Intel Nehalem microarchitecture

Uncore

Quick Path
Inter-
connect

A

A\

DDR3
Memory
Controller

4 x 20 Bit
6,4 GT/s

AAA

Common
L3-Cache
8 MByte

I

1 |

256 KByte
8-way,
64 Byte

Cacheline,
private

L2-Cache

512-entry
L2-TLB-4K

Yvy

3 X 64 Bit
1,33 GTls

51

