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Control Hazards 

• Jump and Branch are great performance losses. 

• Jump instruction needs only the jump target 

address 

• Branch instruction requires 2 operations: 

• Branch Result Taken or Not Taken 

• Branch Target Address 

• PC + 4 If Branch is NOT Taken 

• PC + 4 + 4 × immediate If Branch is Taken 
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Branch Not Taken 

Branch fetched Branch decoded Branch decision PC keeps D 

      (br. not taken) 

  A fetched A decoded A executed A continues 

 

    B fetched B decoded B executed 

 

      C fetched C decoded 

 

        D fetched 

        cycle b    cycle b+1   cycle b+2   cycle b+3 cycle b+4 

Branch to Z 

A 

B 

C 

D 

Z 
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Branch Hazard 

• Consider heuristic – branch Not taken. 

• Continue fetching instructions in sequence 
following the branch instructions. 

• If branch is taken (indicated by zero output of 
ALU): 

• Control generates branch signal in ID cycle. 

• branch activates PCSource signal in the MEM 
cycle to load PC with new branch address. 

• Instructions in the pipeline must be flushed  
if branch is taken – can this penalty be reduced? 
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Branch Taken 

Branch fetched Branch decoded Branch decision PC gets Z 

      (br. taken) 

  A fetched A decoded A executed Nop 

 

    B fetched B decoded Nop 

 

      C fetched Nop 

 

        Z fetched 

        cycle b    cycle b+1   cycle b+2   cycle b+3 cycle b+4 

Branch to Z 

A 

B 

C 

D 

Z 

Three instructions are 

 flushed if branch is taken 
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Pipeline Flush 

• If branch is taken (as indicated by zero), then 
control does the following: 
• Change all control signals to 0, similar to the case of stall 

for data hazard, i.e., insert bubble in the pipeline. 

• Generate a signal IF.Flush that changes the instruction in 
the pipeline register IF/ID to 0 (nop). 

• Penalty of branch hazard is reduced by 
• Adding branch detection and address generation 

hardware in the decode cycle – one bubble needed – a  
next address generation logic in the decode stage writes 
PC+4, branch address, or jump address into PC. 

• Using branch prediction. 
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Control Hazards 
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• The result of the comparison is only known in the 4th cycle. Why? 



Control Hazard – rather know the result earlier...  

AE0B36APO   Computer Architectures 8 

 

 

 

 

 

 

 
• If we can determine the result of the comparison already in the 2nd cycle, we 

can reduce misprediction penalty. 

• Moving forward can introduce new RAW hazards !!! 



Solution of Hazards by Flush 
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1-Cycle Jump Delay 

• If the control logic detects a Jump instruction in the 2nd 

Stage, then Next instruction is fetched anyway. 

• We flush only with one instruction. 

 

J L1 IF 

cc1 

Next instruction 

. . . 

L1: Target instruction 

cc2 

ID 

IF 

Jump 

Target 

Addr 

cc4 cc5 cc6 cc7 cc3 

Bubble Bubble Bubble Bubble 

IF Reg DM ALU Reg 
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Solution of RAW hazards by forwarding 
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Pipeline version 

AE0B36APO   Computer Architectures 12 

0 
1  

Instruction 

Memory 

A RD 

+ 

0 
1 

1 
0 

 
Data 

Memory 

A RD 

W

D 

WE 

<<2 

= 

 

Sign 
Ext 

+ 

ALU 0 
1 

00 

10 
01 

00 
01 
10 

0 
1 

0 
1 

Contr

ol unit 

Hazard unit 

RegWriteD 
MemToRegD 
MemWriteD 
ALUControlD 
ALUSrcD 
RegDstD 
BranchD 

RegWriteE 
MemToRegE 
MemWriteE 
ALUControlE 
ALUSrcE 
RegDstE 

RegWriteM 
MemToRegM 
MemWriteM 

RegWriteW 

MemTo 

RegW 

EquaD PCSrcD 

31:26 

5:0 

25:21 

20:16 

25:21 
20:16 
15:11 

15:0 SignImmD 

SignImmE 

RsD 
RtD 
RdD 

RsE 
RtE 
RdE 

SrcAE 

SrcBE 

WriteDataE 

WriteRegE 4:0 

WriteDataM 

ALUOutM 

WriteRegM 4:0 WriteRegW 4:0 

ALUOutW 

ReadDataW 

ResultW 

PCPlus4D 

PCBranchD 

PCPlus4F 

4 

InstrD PC´ PC 

 

EN 
CLR 

EN 

Op 

Funct 

Stall F Stall D BranchD 
Forward 
BD 

F
or

w
ar

dA
D

 

F
lu

sh
E

 

Forward 
AE 

Forward 
BE 

M
em

T
oR

eg
E

 

R
eg

W
rit

eE
 

RegWrite

M 

RegWrit

e 

W 

 

 

 

Reg. 

 File 

A1 RD1 

A2 RD2 
A3 
WD3 

WE3 



Single cycle version 
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Done - designed pipeline processor 
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• What is the maximal possible frequency of the CPU? 

• It is given by latency on the critical path – it is lw instruction in our case:  

Tc = tPC + tMem + tRFread + tALU + tMem + tMux + tRFsetup 

Single cycle CPU – Throughput: IPS = IC / T = IPC
str

.f
CLK 
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Single cycle CPU – Throughput: IPS = IC / T = IPC
str

.f
CLK 

  

• Tc = Tcinstr + Tcproc  

  = (tPC + tMem) + (tRFread + tALU + tMem + tMux + tRFsetup) 

• Consider following parameters: 

 tPC   = 30 ns tMem  = 300 ns 

 tRFread  = 50 ns tALU  = 200 ns 

 tMux  = 20 ns tRFsetup = 20 ns 
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If Tcinstr  is executed paralel with Tcproc,   

then Tci  < Tcp, and Tcp = 50+200+300+20+20  

= 590 ns = 1.69 MHz   ->   

IPS = 1 690 000 [instructions per second] 

 



If pipeline processor has 

    Tc clock cycle 

     P number of pipeline steps 

     N number of instructions in a program 

 

   Tprogram = ( P + (N-1) ) * Tc 

     

because the 1st instruction needs P cycles to fill the pipeline 

but each additional instruction only adds one extra clock. 

Pipeline Processor Performance 
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The cycle time is determined by the slowest step 

In our case memory is weak step:  

Tmen = 300 ns  -->  Tcmin = 300 ns -->  3 333 kHz 

• If we don't consider stall and flush pipelines, then we can 

say that a program with many N instructions will execute one 

instruction per cycle. 

IPS = 1/Tcmin = 3333333 instructions per second 

• By introducing a 5-step pipeline, we have improved 

throughput:  3 333333/ 1 690 000 = 1,97 = ~2 times!  

 

Why so little? Our simple five-point pipeline depends too much 

on memory access time. 

Pipeline Processor Performance : IPS = IC / T 
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Benchtests of Branch Statistics 
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• Branches occur every 4-7 instructions on average in integer 

programs, commercial and desktop applications;  

somewhat less frequently in scientific ones :-) 

• Unconditional branches : approx. 20% (of branches) 

• Conditional branches approx. 80% (of branches) 

• 66% is forward. Most of them (~60%) are often Not Taken. 

• 33% is backward. Almost all of them are Taken. 

 

• We can estimate the probability that a branch is taken 

ptaken = 0.2 + 0.8* (0.66 * 0.4 + 0.33) = 0.67  

 

In fact, many simulations show that ptaken is from 60 to 70%. 

See: Lizy Kurian John, Lieven Eeckhout:  

Performance Evaluation and Benchmarking, CRC Press 2018 



One-bit Branch Prediction 

• A one-bit prediction scheme:  
a one “history bit” tells what happened on the last branch 
instruction execution: 

• History bit = 1, branch was previously Taken 

• History bit = 0, branch was previously Not taken 

Predict 

 branch 

 not taken 

0 

Predict 

 branch 

taken 

1 

taken 

taken 

Not taken 

Not taken 
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Branch Prediction for a Loop 

I = 0 

I = I + 1 

I – 10 = 0? 

Store X in memory 

 X = X + R(I) 

Y 

N 

1 
 
 
2 
 
 
3 
 
 
 
4 
 
 
5 

Execu

-tion 

seq. 

Old 

hist. 

bit 

Next instr. New 

hist. 

bit 

Predi

ction 
Pred. I Act. 

1 0 5 1 2 1 Bad 

2 1 2 2 2 1 Good 

3 1 2 3 2 1 Good 

4 1 2 4 2 1 Good 

5 1 2 5 2 1 Good 

6 1 2 6 2 1 Good 

7 1 2 7 2 1 Good 

8 1 2 8 2 1 Good 

9 1 2 9 2 1 Good 

10 1 2 10 5 0 Bad 

Execution of Instruction 4 

bit = 0 branch not taken, bit = 1 branch taken. 
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Typical Organization of Branch Prediction Table 

Hash 
PC (32 bits) 2N entries 

Prediction 

N bits 

FSM 

Update 

Logic 

table update 

Actual outcome 

…
…

…
 

Note: FSM - Finite State Machine (cz: konečný automat) 
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Branch Prediction 

= 
Prediction 

Logic 

0 

1 

PC+4 Next PC 

PC hash 

Low-order 

 bits used 

 as index 

Address of  Target            History 

recent branch  addresses       bit(s) 

instructions 
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for (i=0; i<100; i++)  
  {  if (arr[i] == 0) {  … }       
       … 
   } 
 

Simplest Dynamic Branch Predictor 

T 

NT 

T 

T 

NT 

NT 

. 

. 

. 

 0x400100F8 la $18, arr 
 0x400100FC       addi  $10, $0, 100 
 0x40010100 or  $1,  $0,  $0 
Loop1: 
 0x40010104 sll      $3, $1, 2 
 0x40010108 add    $19, $18, $3 
 0x4001010c       lw      $2, ($19) 
 0x40010210 beq    $2, $0, Loop2 
 … … 
 
 0x40010214 beq    $0, $0, Loop3 
Loop2: 
      … … … 
Loop3: 
 0x40010B08 addi   $1, $1,   1 
 0x40010B0c bne    $1, $10, Loop1 

NT 

T 

1-bit 
Branch 
History  
Table 

T 

NT 
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Two-Bit Prediction Buffer Type I 

• It is called 2-bit saturating counter. This one has no 

hysteresis.  

Predict 

 branch 

 not taken 

00 

Predict 

 branch 

 taken 

10 

Predict 

 branch 

 taken 

11 

Predict 

 branch 

 not taken 

01 

taken 

taken 

taken 

taken 

Not taken 

Not taken 

Not taken 

Not taken 

Weakly Not Taken 

Strongly Taken Weakly Taken 

Strongly Not Taken 
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Branch Prediction for a Loop 

I = 0 

I = I + 1 

I – 10 = 0? 

Store X in memory 

 X = X + R(I) 

Y 

N 

1 
 
 
2 
 
 
3 
 
 
 
4 
 
 
5 

Execu

-tion 

seq. 

Old 

Pred.

Buf 

Next instr. New 

pred.

Buf 

Predi

ction 
Pred. I Act. 

1 10 2 1 2 11 Good 

2 11 2 2 2 11 Good 

3 11 2 3 2 11 Good 

4 11 2 4 2 11 Good 

5 11 2 5 2 11 Good 

6 11 2 6 2 11 Good 

7 11 2 7 2 11 Good 

8 11 2 8 2 11 Good 

9 11 2 9 2 11 Good 

10 11 2 10 5 10 Bad 

Execution of Instruction 4 
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Two-Bit Prediction Buffer Type II. 

This 2-bit saturating counter was modified by adding hysteresis. 

Prediction must miss twice before it is changed.  

Weakly Not Taken 

Predict 

 branch 

 not taken 

01 

Predict 

 branch 

 taken 

10 

Predict 

 branch 

 taken 

11 

Predict 

 branch 

 not taken 

00 

taken 

taken 

taken 

taken 

Not taken 

Not taken 

Not taken 

Not taken 

Strongly Taken Weakly Taken 

Strongly Not Taken 

AE0B36APO   Computer Architectures 30 



Some result of benchtest 
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Source: https://ieeexplore.ieee.org/document/6918861 

H. Arora, S. Kotecha and R. Samyal, "Dynamic Branch Prediction Modeller for 

RISC Architecture," 2013 International Conference on Machine Intelligence and 

Research Advancement, Katra, 2013, pp. 397-401. 

 

Note: This study has used saturating counter with hysteresis (type II). 

Here, a higher number 

means the better 

prediction 

https://ieeexplore.ieee.org/document/6918861


Correlating Predictors 
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We can look at other branches for clues 

 

if (x==2)    // branch b1   

   … 

if (y==2)    // branch b2   

   … 

if(x!=y)  { … }   // branch b3 depends on the 

results of b1 and b2 



(2,1) Correlated predictor 
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P00 

This predictor is 

used if the 

previous 2 

branches in the 

program 

have both status 

Not taken. 

P01 

This predictor is 

used if the 

previous 2 

branches have 

history: 2nd last 

branch Not taken, 

and the last 

branch Taken  

P10 

This predictor is 

used if the 

previous 2 

branches have 

history: 2nd last 

branch Taken, 

and the last 

branch Not taken.  

P11 

This predictor is 

used if the 

previous 2 

branches in the 

program 

have both status 

Taken. 

 

P00 | P01 | P10 | P11 

A (2,1) correlated branch predictor 

• (2,1) means 22 =4 predictors buffers each contains 1 bit 

• and uses the behavior of the last 2 branches to choose  

from 22 predictors. 

We use 4 predictors: 



Correlating Predictors 
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Example (2,1) predictor 

Hash of branch address 

 1-bits per branch predictor 

Prediction 

2-bit global branch history 

• 2 bits of global history 

means that we look at 

T/NT behavior of last 2 

branches to determine the 

behavior of THIS branch. 

• The buffer can be 

implemented as an one 

dimensional array. 

• (m,n) predictor uses 

behavior of last m 

branches to choose from 

2m predictor each of them 

is n-bit predictor.  



Correlating Predictors in SPEC89 
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Note: SPEC89 is older SPEC CPU 

benchmark suite that is nowadays 

replaced by newer sets. It contained: 
• gcc INT1 GNU C compiler 

• espresso INT PLA optimizing tool 

• spice2g6 FP2 Circuit simulation and 

analysis 

• doduc FP Monte Carlo simulation 

• nasa7 FP Seven floating-point kernels 

• li INT LISP interpreter 

• eqntott INT Conversions of equations 

to truth table 

• matrix300 FP Matrix solutions 

• fpppp FP Quantum chemistry 

application 

• tomcatv FP Mesh generation 

application 

Source of picture: J. L. Hennessy and D. A. Patterson,  

Computer Architecture: A Quantitative Approach. 



Tournament Predictors 

• Motivation for correlating branch predictors is  

2-bit predictor failed on important branches; by adding 

global information, performance was improved. 

• Tournament predictors: use 2 predictors, 1 based on 

global information and 1 based on local information  

(local branch was taken, not taken), and combine them 

with a selector. 

• They use n-bit saturating counter to choose between 

predictors. 

• Hopes to select right predictor for right branch. 
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Benchtest of Accurancy 
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Total predictor size KBytes 

2-bit predictor 
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Balancing pipeline steps 

Linear pipeline: 

 

 

 

 

(also: used also in tree summator, multiplier, iterative divider ...) 

 

• Balancing: The goal is to divide the individual blocks into N 

degrees so that the delays at all levels are as equal as 

possible … 

• The number of degrees depends on preference: throughput 

vs. latency 
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Superzřetězení 

• unbalanced 5-step pipeline: 
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DM RF IM RF 

DM RF IM RF 

IF  First half of instruction fetch; PC selection actually happens here, together with initiation of instruction 

cache access.  

IS Second half of instruction fetch, complete instruction cache access.  

RF Instruction decode and register fetch, hazard checking, and instruction cache hit detection. 

DF  Data fetch, first half of data cache access.  

DS Second half of data fetch, completion of data cache access.  

TC Tag check, to determine whether the data cache access hit. 

          IF                           ID         EX   MEM                     WB 

• deeper pipelining resulting from further decomposition brings the possibility of further 

increasing the operating frequency, but also a number of other problems such as 

further forwarding, increase in pipeline suspensions, hazards and an increase in the 

cost of erroneous branch prediction. 

 IF          IS                 RF            EX                 DF           DS             TC              WB                   



A small example how to Avoid Branches  

On web, you can found out many tricks suitable for time critical loops. This example 

present how to calculate absolute value of 32 bit signed integer x without branches. 
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Fast C code MIPS if x in $2 Comment 

int tmp = x>>31; sra $1, $2, 31 //  tmp = x<0 ? -1 : 0 

x ^= tmp; xor $2, $2, $1 //  1st compliment of x, if tmp=-1 

x -= tmp; sub $2, $2, $1 //  add 1 if tmp = 1 

Code with unpredictable branch dependable on data 

C code MIPS if x in $2 Comment 

if(x<0) x=-x; slt  $1, $2, $0 //  tmp = x<0 ? 1 : 0 

beq $1, $0, Skip1 //  if(tmp==0) goto Skip 

nop // delay slot 

sub $2, $0, $2 //  x = - x; 

Skip1: … 

Note: On MIPS with static prediction, we save just 1 instruction. If we compile the C code for 

an Intel processor with longer pipeline, then a branch miss-prediction is more expensive.    



What are pipeline lengths? … 

• The Optimum Pipeline Depth for a Microprocessor: 
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.93.4333&rep=rep1&type=pdf 
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P5 (Pentium) :           5 

P6 (Pentium 3):          10 

P6 (Pentium Pro):        14 

NetBurst (Willamette, 180 nm) - Celeron, Pentium 4:   20 

NetBurst (Northwood, 130 nm) - Celeron, Pentium 4, Pentium 4 HT:  20 

NetBurst (Prescott, 90 nm) - Celeron D, Pentium 4, Pentium 4 HT, Pentium 4 ExEd: 31 

NetBurst (Cedar Mill, 65 nm):  31 

NetBurst (Presler 65 nm) - Pentium D: 31 

Core :                14 

Bonnell:            16 

 

K7 Architecture - Athlon : 10-15 

K8 - Athlon 64, Sempron, Opteron, Turion 64: 12-17 

 

ARM 8-9: 5  

ARM 11: 8 

Cortex A7: 8-10 

Cortex A8: 13 

Cortex A15: 15-25 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.93.4333&rep=rep1&type=pdf
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Definition 

Wiki: 

• In contrast to a scalar processor that can 

execute at most one single instruction per 

clock cycle, a superscalar processor can 

execute more than one instruction during a 

clock cycle by simultaneously dispatching 

multiple instructions to different execution units 

on the processor.  

Q: What does it actually mean "more than one"? 
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A pipeline that supports multiple outstanding FP operations 
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Source of picture: J. L. Hennessy and D. A. Patterson,  

Computer Architecture: A Quantitative Approach. 



Pentium 4 - Out-of-order Execution pipeline 
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[ Source: Intel ] 



Hyper-Threading 
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Processor Execution  

Resources 

Processor Execution  

Resources 

Arch State Arch State Arch State 

Processor with out Hyper-

Threading Technology 
Processor with Hyper-

Threading Technology 

Ref: Intel Technology Journal, Volume 06 Issue 01, February 14, 2002 



Pentium 4: Netburst Microarchitecture’s execution pipeline 
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Picture is simplified because the pipeline has actually 20 steps.  

The branch miss prediction penalty is here extremely high. 



Sample from: Hyper-Threading Benchtest 
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No influence on integer arithmetic  

performance or memory bandwidth!  

Why? 



AMD Bulldozer 15h (FX, Opteron) - 2011 

• http://en.wikipedia.org/wiki/File:AMD_Bulldozer_block_diagram_(CPU_core_bloack).PNG 
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Intel Nehalem (Core i7) - 2008 

• http://en.wikipedia.org/wiki/File:Intel_Nehalem_arch.svg 
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