
AE0B36APO Computer Architectures

Czech Technical University in Prague, Faculty of Electrical Engineering

Computer Architectures

Ver.3.50

Branch Prediction + Hyper-Threading
Richard Šusta, Pavel Píša

 2019 1

Control Hazards

• Jump and Branch are great performance losses.

• Jump instruction needs only the jump target

address

• Branch instruction requires 2 operations:

• Branch Result Taken or Not Taken

• Branch Target Address

• PC + 4 If Branch is NOT Taken

• PC + 4 + 4 × immediate If Branch is Taken

AE0B36APO Computer Architectures 2

Branch Not Taken

Branch fetched Branch decoded Branch decision PC keeps D

 (br. not taken)

 A fetched A decoded A executed A continues

 B fetched B decoded B executed

 C fetched C decoded

 D fetched

 cycle b cycle b+1 cycle b+2 cycle b+3 cycle b+4

Branch to Z

A

B

C

D

Z

AE0B36APO Computer Architectures 3

Branch Hazard

• Consider heuristic – branch Not taken.

• Continue fetching instructions in sequence
following the branch instructions.

• If branch is taken (indicated by zero output of
ALU):

• Control generates branch signal in ID cycle.

• branch activates PCSource signal in the MEM
cycle to load PC with new branch address.

• Instructions in the pipeline must be flushed
if branch is taken – can this penalty be reduced?

AE0B36APO Computer Architectures 4

Branch Taken

Branch fetched Branch decoded Branch decision PC gets Z

 (br. taken)

 A fetched A decoded A executed Nop

 B fetched B decoded Nop

 C fetched Nop

 Z fetched

 cycle b cycle b+1 cycle b+2 cycle b+3 cycle b+4

Branch to Z

A

B

C

D

Z

Three instructions are

 flushed if branch is taken
AE0B36APO Computer Architectures 5

Pipeline Flush

• If branch is taken (as indicated by zero), then
control does the following:
• Change all control signals to 0, similar to the case of stall

for data hazard, i.e., insert bubble in the pipeline.

• Generate a signal IF.Flush that changes the instruction in
the pipeline register IF/ID to 0 (nop).

• Penalty of branch hazard is reduced by
• Adding branch detection and address generation

hardware in the decode cycle – one bubble needed – a
next address generation logic in the decode stage writes
PC+4, branch address, or jump address into PC.

• Using branch prediction.

AE0B36APO Computer Architectures 6

Control Hazards

AE0B36APO Computer Architectures 7

• The result of the comparison is only known in the 4th cycle. Why?

Control Hazard – rather know the result earlier...

AE0B36APO Computer Architectures 8

• If we can determine the result of the comparison already in the 2nd cycle, we

can reduce misprediction penalty.

• Moving forward can introduce new RAW hazards !!!

Solution of Hazards by Flush

AE0B36APO Computer Architectures 9

0
1

Instruction

Memory

A RD

+

0
1

1
0

Data

Memory

A RD

WD

WE

<<2

=

Sign
Ext

+

ALU 0
1

00

10
01

00
01
10

Control

unit

Hazard unit

RegWriteD

MemToRegD
MemWriteD
ALUControlD
ALUSrcD
RegDstD
BranchD

RegWriteE

MemToRegE
MemWriteE
ALUControlE
ALUSrcE
RegDstE

RegWriteM

MemToRegM
MemWriteM

RegWriteW

MemTo

RegW

EquaD PCSrcD

31:26

5:0

25:21

20:16

25:21
20:16
15:11

15:0 SignImmD

SignImmE

RsD
RtD
RdD

RsE
RtE
RdE

SrcAE

SrcBE

WriteDataE

WriteRegE 4:0

WriteDataM

ALUOutM

WriteRegM 4:0 WriteRegW 4:0

ALUOutW

ReadDataW

ResultW

PCPlus4D

PCBranchD

PCPlus4F

4

InstrD PC´ PC

EN
CLR

EN

Op

Funct

Stall F Stall D

F
lu

sh
E

Forward
AE

Forward
BE

M
em

T
o

R
eg

E

RegWriteM
RegWrite

W

Reg.

 File

A1 RD1

A2 RD2

A3

WD3

WE3

CLR

1-Cycle Jump Delay

• If the control logic detects a Jump instruction in the 2nd

Stage, then Next instruction is fetched anyway.

• We flush only with one instruction.

J L1 IF

cc1

Next instruction

. . .

L1: Target instruction

cc2

ID

IF

Jump

Target

Addr

cc4 cc5 cc6 cc7 cc3

Bubble Bubble Bubble Bubble

IF Reg DM ALU Reg

AE0B36APO Computer Architectures 10

Solution of RAW hazards by forwarding

AE0B36APO Computer Architectures 11

0
1

Instruction

Memory

A RD

+

0
1

1
0

Data

Memory

A RD

WD

WE

<<2

=

Sign
Ext

+

ALU 0
1

00

10
01

00
01
10

0
1

0
1

Control

unit

Hazard unit

RegWriteD

MemToRegD
MemWriteD
ALUControlD
ALUSrcD
RegDstD
BranchD

RegWriteE

MemToRegE
MemWriteE
ALUControlE
ALUSrcE
RegDstE

RegWriteM

MemToRegM
MemWriteM

RegWriteW

MemTo

RegW

EquaD PCSrcD

31:26

5:0

25:21

20:16

25:21
20:16
15:11

15:0 SignImmD

SignImmE

RsD
RtD
RdD

RsE
RtE
RdE

SrcAE

SrcBE

WriteDataE

WriteRegE 4:0

WriteDataM

ALUOutM

WriteRegM 4:0 WriteRegW 4:0

ALUOutW

ReadDataW

ResultW

PCPlus4D

PCBranchD

PCPlus4F

4

InstrD PC´ PC

EN
CLR

EN

Op

Funct

Stall F Stall D BranchD
Forward
BD

F
o

rw
ar

d
A

D

F
lu

sh
E

Forward
AE

Forward
BE

M
em

T
o

R
eg

E

R
eg

W
ri

te
E

RegWriteM
RegWrite

W

Reg.

 File

A1 RD1

A2 RD2

A3

WD3

WE3

CLR

Netřeba
Přeposlat /

Pozastavit
Pozastavit

Pipeline version

AE0B36APO Computer Architectures 12

0
1

Instruction

Memory

A RD

+

0
1

1
0

Data

Memory

A RD

W

D

WE

<<2

=

Sign
Ext

+

ALU 0
1

00

10
01

00
01
10

0
1

0
1

Contr

ol unit

Hazard unit

RegWriteD
MemToRegD
MemWriteD
ALUControlD
ALUSrcD
RegDstD
BranchD

RegWriteE
MemToRegE
MemWriteE
ALUControlE
ALUSrcE
RegDstE

RegWriteM
MemToRegM
MemWriteM

RegWriteW

MemTo

RegW

EquaD PCSrcD

31:26

5:0

25:21

20:16

25:21
20:16
15:11

15:0 SignImmD

SignImmE

RsD
RtD
RdD

RsE
RtE
RdE

SrcAE

SrcBE

WriteDataE

WriteRegE 4:0

WriteDataM

ALUOutM

WriteRegM 4:0 WriteRegW 4:0

ALUOutW

ReadDataW

ResultW

PCPlus4D

PCBranchD

PCPlus4F

4

InstrD PC´ PC

EN
CLR

EN

Op

Funct

Stall F Stall D BranchD
Forward
BD

F
or

w
ar

dA
D

F
lu

sh
E

Forward
AE

Forward
BE

M
em

T
oR

eg
E

R
eg

W
rit

eE

RegWrite

M

RegWrit

e

W

Reg.

 File

A1 RD1

A2 RD2
A3
WD3

WE3

Single cycle version

AE0B36APO Computer Architectures 13

MemWrite
MemToReg

Branch
ALUControl 2:0
ALUScr
RegDest

RegWrite

31:26

5:0

Control

Unit
Opcode

Funct

4

PC’ PC Instr
25:21

20:16

20:16

15:11

15:0

SrcA

SrcB

Zero

AluOutM

WriteData
WriteReg

SignImm
PCPlus4D

PCBranch
PCPlus4E

AluOutW

ReadData

Result

PCPlus4F

Rt

Rd

Instr.

Memory

A RD
Data

Memory

A RD

WD

WE

Reg.

 File

A1 RD1

A2 RD2

A3

WD3

WE3

+

+

0
1

0
1

0
1

0
1

Sign Ext
<<2

ALU

Return back to single cycle processor

Data

Memory

What we have designed?

AE0B36APO Computer Architectures 14

MemWrite
MemToReg

Branch
ALUControl 2:0
ALUScr
RegDest

RegWrite

31:26

5:0

Control

Unit
Opcode

Funct

4

PC’ PC Instr
25:21

20:16

20:16

15:11

15:0

SrcA

SrcB

Zero

AluOutM

WriteData
WriteReg

SignImm
PCPlus4D

PCBranch
PCPlus4E

Result

PCPlus4F

Rt

Rd

A RD
A RD

WD

WE

Reg.

 File

A1 RD1

A2 RD2

A3

WD3

WE3

+

+

0
1

0
1

0
1

0
1

Sign Ext
<<2

ALU

ReadData

AluOutW

Řídicí část

(control path)

Datová část

(data path)

Instr.

Memory

A RD

A RD

WD

WE

Return back to single cycle processor

Paměti

Data

Memory

What we have designed?

AE0B36APO Computer Architectures 15

Instr.

Memory

A RD

A RD

WD

WE
Datapath

Instruction PC PC
RD A

RD A

WD

Read data

Address of

RD/WR

Written data

Enable write

Address

Results

Processor

Control unit

Done - designed pipeline processor

AE0B36APO Computer Architectures 16

0
1

Instruction

Memory

A RD

+

0
1

1
0

Data

Memory

A RD

WD

WE

<<2

=

Sign
Ext

+

ALU 0
1

00

10
01

00
01
10

0
1

0
1

Control

unit

Hazard unit

RegWriteD

MemToRegD
MemWriteD
ALUControlD
ALUSrcD
RegDstD
BranchD

RegWriteE

MemToRegE
MemWriteE
ALUControlE
ALUSrcE
RegDstE

RegWriteM

MemToRegM
MemWriteM

RegWriteW

MemTo

RegW

EquaD PCSrcD

31:26

5:0

25:21

20:16

25:21
20:16
15:11

15:0 SignImmD

SignImmE

RsD
RtD
RdD

RsE
RtE
RdE

SrcAE

SrcBE

WriteDataE

WriteRegE 4:0

WriteDataM

ALUOutM

WriteRegM 4:0 WriteRegW 4:0

ALUOutW

ReadDataW

ResultW

PCPlus4D

PCBranchD

PCPlus4F

4

InstrD PC´ PC

EN
CLR

EN

Op

Funct

Stall F Stall D BranchD
Forward
BD

F
or

w
ar

dA
D

F
lu

sh
E

Forward
AE

Forward
BE

M
em

T
oR

eg
E

R
eg

W
rit

eE

RegWriteM
RegWrite

W

Reg.

 File

A1 RD1

A2 RD2

A3

WD3

WE3

CLR

• What is the maximal possible frequency of the CPU?

• It is given by latency on the critical path – it is lw instruction in our case:

Tc = tPC + tMem + tRFread + tALU + tMem + tMux + tRFsetup

Single cycle CPU – Throughput: IPS = IC / T = IPC
str

.f
CLK

B35APO Computer Architectures 17

PC’ Result

SrcB

15:0

25:21 PC

4

Instr

20:16

20:16

15:11

SrcA Zero

AluOut

WriteData
WriteReg

SignImm PCBranch

ReadData

PCPlus4

Rt

Rd

Instr.

Memory

A RD

Data

Memory

A RD

WD

WE

Reg.

 File

A1 RD1

A2 RD2

A3

WD3

WE3

+

+

0
1

0
1

0
1

0
1

Sign Ext <<2

ALU

Single cycle CPU – Throughput: IPS = IC / T = IPC
str

.f
CLK

• Tc = Tcinstr + Tcproc

 = (tPC + tMem) + (tRFread + tALU + tMem + tMux + tRFsetup)

• Consider following parameters:

 tPC = 30 ns tMem = 300 ns

 tRFread = 50 ns tALU = 200 ns

 tMux = 20 ns tRFsetup = 20 ns

B35APO Computer Architectures 18

If Tcinstr is executed paralel with Tcproc,

then Tci < Tcp, and Tcp = 50+200+300+20+20

= 590 ns = 1.69 MHz ->

IPS = 1 690 000 [instructions per second]

If pipeline processor has

 Tc clock cycle

 P number of pipeline steps

 N number of instructions in a program

 Tprogram = (P + (N-1)) * Tc

because the 1st instruction needs P cycles to fill the pipeline

but each additional instruction only adds one extra clock.

Pipeline Processor Performance

AE0B36APO Computer Architectures 19

The cycle time is determined by the slowest step

In our case memory is weak step:

Tmen = 300 ns --> Tcmin = 300 ns --> 3 333 kHz

• If we don't consider stall and flush pipelines, then we can

say that a program with many N instructions will execute one

instruction per cycle.

IPS = 1/Tcmin = 3333333 instructions per second

• By introducing a 5-step pipeline, we have improved

throughput: 3 333333/ 1 690 000 = 1,97 = ~2 times!

Why so little? Our simple five-point pipeline depends too much

on memory access time.

Pipeline Processor Performance : IPS = IC / T

AE0B36APO Computer Architectures 20

AE0B36APO Computer Architectures 21

*

Benchtests of Branch Statistics

AE0B36APO Computer Architectures 22

• Branches occur every 4-7 instructions on average in integer

programs, commercial and desktop applications;

somewhat less frequently in scientific ones :-)

• Unconditional branches : approx. 20% (of branches)

• Conditional branches approx. 80% (of branches)

• 66% is forward. Most of them (~60%) are often Not Taken.

• 33% is backward. Almost all of them are Taken.

• We can estimate the probability that a branch is taken

ptaken = 0.2 + 0.8* (0.66 * 0.4 + 0.33) = 0.67

In fact, many simulations show that ptaken is from 60 to 70%.

See: Lizy Kurian John, Lieven Eeckhout:

Performance Evaluation and Benchmarking, CRC Press 2018

One-bit Branch Prediction

• A one-bit prediction scheme:
a one “history bit” tells what happened on the last branch
instruction execution:

• History bit = 1, branch was previously Taken

• History bit = 0, branch was previously Not taken

Predict

 branch

 not taken

0

Predict

 branch

taken

1

taken

taken

Not taken

Not taken

AE0B36APO Computer Architectures 23

Branch Prediction for a Loop

I = 0

I = I + 1

I – 10 = 0?

Store X in memory

 X = X + R(I)

Y

N

1

2

3

4

5

Execu

-tion

seq.

Old

hist.

bit

Next instr. New

hist.

bit

Predi

ction
Pred. I Act.

1 0 5 1 2 1 Bad

2 1 2 2 2 1 Good

3 1 2 3 2 1 Good

4 1 2 4 2 1 Good

5 1 2 5 2 1 Good

6 1 2 6 2 1 Good

7 1 2 7 2 1 Good

8 1 2 8 2 1 Good

9 1 2 9 2 1 Good

10 1 2 10 5 0 Bad

Execution of Instruction 4

bit = 0 branch not taken, bit = 1 branch taken.
AE0B36APO Computer Architectures 24

Typical Organization of Branch Prediction Table

Hash
PC (32 bits) 2N entries

Prediction

N bits

FSM

Update

Logic

table update

Actual outcome

…
…

…

Note: FSM - Finite State Machine (cz: konečný automat)
AE0B36APO Computer Architectures 25

Branch Prediction

=
Prediction

Logic

0

1

PC+4 Next PC

PC hash

Low-order

 bits used

 as index

Address of Target History

recent branch addresses bit(s)

instructions

AE0B36APO Computer Architectures 26

for (i=0; i<100; i++)
 { if (arr[i] == 0) { … }
 …
 }

Simplest Dynamic Branch Predictor

T

NT

T

T

NT

NT

.

.

.

 0x400100F8 la $18, arr
 0x400100FC addi $10, $0, 100
 0x40010100 or $1, $0, $0
Loop1:
 0x40010104 sll $3, $1, 2
 0x40010108 add $19, $18, $3
 0x4001010c lw $2, ($19)
 0x40010210 beq $2, $0, Loop2
 … …

 0x40010214 beq $0, $0, Loop3
Loop2:
 … … …
Loop3:
 0x40010B08 addi $1, $1, 1
 0x40010B0c bne $1, $10, Loop1

NT

T

1-bit
Branch
History
Table

T

NT

AE0B36APO Computer Architectures 27

Two-Bit Prediction Buffer Type I

• It is called 2-bit saturating counter. This one has no

hysteresis.

Predict

 branch

 not taken

00

Predict

 branch

 taken

10

Predict

 branch

 taken

11

Predict

 branch

 not taken

01

taken

taken

taken

taken

Not taken

Not taken

Not taken

Not taken

Weakly Not Taken

Strongly Taken Weakly Taken

Strongly Not Taken

AE0B36APO Computer Architectures 28

Branch Prediction for a Loop

I = 0

I = I + 1

I – 10 = 0?

Store X in memory

 X = X + R(I)

Y

N

1

2

3

4

5

Execu

-tion

seq.

Old

Pred.

Buf

Next instr. New

pred.

Buf

Predi

ction
Pred. I Act.

1 10 2 1 2 11 Good

2 11 2 2 2 11 Good

3 11 2 3 2 11 Good

4 11 2 4 2 11 Good

5 11 2 5 2 11 Good

6 11 2 6 2 11 Good

7 11 2 7 2 11 Good

8 11 2 8 2 11 Good

9 11 2 9 2 11 Good

10 11 2 10 5 10 Bad

Execution of Instruction 4

AE0B36APO Computer Architectures 29

Two-Bit Prediction Buffer Type II.

This 2-bit saturating counter was modified by adding hysteresis.

Prediction must miss twice before it is changed.

Weakly Not Taken

Predict

 branch

 not taken

01

Predict

 branch

 taken

10

Predict

 branch

 taken

11

Predict

 branch

 not taken

00

taken

taken

taken

taken

Not taken

Not taken

Not taken

Not taken

Strongly Taken Weakly Taken

Strongly Not Taken

AE0B36APO Computer Architectures 30

Some result of benchtest

AE0B36APO Computer Architectures 31

Source: https://ieeexplore.ieee.org/document/6918861

H. Arora, S. Kotecha and R. Samyal, "Dynamic Branch Prediction Modeller for

RISC Architecture," 2013 International Conference on Machine Intelligence and

Research Advancement, Katra, 2013, pp. 397-401.

Note: This study has used saturating counter with hysteresis (type II).

Here, a higher number

means the better

prediction

https://ieeexplore.ieee.org/document/6918861

Correlating Predictors

AE0B36APO Computer Architectures 32

We can look at other branches for clues

if (x==2) // branch b1

 …

if (y==2) // branch b2

 …

if(x!=y) { … } // branch b3 depends on the

results of b1 and b2

(2,1) Correlated predictor

AE0B36APO Computer Architectures 33

P00

This predictor is

used if the

previous 2

branches in the

program

have both status

Not taken.

P01

This predictor is

used if the

previous 2

branches have

history: 2nd last

branch Not taken,

and the last

branch Taken

P10

This predictor is

used if the

previous 2

branches have

history: 2nd last

branch Taken,

and the last

branch Not taken.

P11

This predictor is

used if the

previous 2

branches in the

program

have both status

Taken.

P00 | P01 | P10 | P11

A (2,1) correlated branch predictor

• (2,1) means 22 =4 predictors buffers each contains 1 bit

• and uses the behavior of the last 2 branches to choose

from 22 predictors.

We use 4 predictors:

Correlating Predictors

AE0B36APO Computer Architectures 34

Example (2,1) predictor

Hash of branch address

 1-bits per branch predictor

Prediction

2-bit global branch history

• 2 bits of global history

means that we look at

T/NT behavior of last 2

branches to determine the

behavior of THIS branch.

• The buffer can be

implemented as an one

dimensional array.

• (m,n) predictor uses

behavior of last m

branches to choose from

2m predictor each of them

is n-bit predictor.

Correlating Predictors in SPEC89

AE0B36APO Computer Architectures 35

Note: SPEC89 is older SPEC CPU

benchmark suite that is nowadays

replaced by newer sets. It contained:
• gcc INT1 GNU C compiler

• espresso INT PLA optimizing tool

• spice2g6 FP2 Circuit simulation and

analysis

• doduc FP Monte Carlo simulation

• nasa7 FP Seven floating-point kernels

• li INT LISP interpreter

• eqntott INT Conversions of equations

to truth table

• matrix300 FP Matrix solutions

• fpppp FP Quantum chemistry

application

• tomcatv FP Mesh generation

application

Source of picture: J. L. Hennessy and D. A. Patterson,

Computer Architecture: A Quantitative Approach.

Tournament Predictors

• Motivation for correlating branch predictors is

2-bit predictor failed on important branches; by adding

global information, performance was improved.

• Tournament predictors: use 2 predictors, 1 based on

global information and 1 based on local information

(local branch was taken, not taken), and combine them

with a selector.

• They use n-bit saturating counter to choose between

predictors.

• Hopes to select right predictor for right branch.

AE0B36APO Computer Architectures 36

Benchtest of Accurancy

AE0B36APO Computer Architectures 37

Total predictor size KBytes

2-bit predictor

AE0B36APO Computer Architectures 38

*

Balancing pipeline steps

Linear pipeline:

(also: used also in tree summator, multiplier, iterative divider ...)

• Balancing: The goal is to divide the individual blocks into N

degrees so that the delays at all levels are as equal as

possible …

• The number of degrees depends on preference: throughput

vs. latency

AE0B36APO Computer Architectures 39

Superzřetězení

• unbalanced 5-step pipeline:

AE0B36APO Computer Architectures 40

DM RF IM RF

DM RF IM RF

IF First half of instruction fetch; PC selection actually happens here, together with initiation of instruction

cache access.

IS Second half of instruction fetch, complete instruction cache access.

RF Instruction decode and register fetch, hazard checking, and instruction cache hit detection.

DF Data fetch, first half of data cache access.

DS Second half of data fetch, completion of data cache access.

TC Tag check, to determine whether the data cache access hit.

 IF ID EX MEM WB

• deeper pipelining resulting from further decomposition brings the possibility of further

increasing the operating frequency, but also a number of other problems such as

further forwarding, increase in pipeline suspensions, hazards and an increase in the

cost of erroneous branch prediction.

 IF IS RF EX DF DS TC WB

A small example how to Avoid Branches

On web, you can found out many tricks suitable for time critical loops. This example

present how to calculate absolute value of 32 bit signed integer x without branches.

AE0B36APO Computer Architectures 41

Fast C code MIPS if x in $2 Comment

int tmp = x>>31; sra $1, $2, 31 // tmp = x<0 ? -1 : 0

x ^= tmp; xor $2, $2, $1 // 1st compliment of x, if tmp=-1

x -= tmp; sub $2, $2, $1 // add 1 if tmp = 1

Code with unpredictable branch dependable on data

C code MIPS if x in $2 Comment

if(x<0) x=-x; slt $1, $2, $0 // tmp = x<0 ? 1 : 0

beq $1, $0, Skip1 // if(tmp==0) goto Skip

nop // delay slot

sub $2, $0, $2 // x = - x;

Skip1: …

Note: On MIPS with static prediction, we save just 1 instruction. If we compile the C code for

an Intel processor with longer pipeline, then a branch miss-prediction is more expensive.

What are pipeline lengths? …

• The Optimum Pipeline Depth for a Microprocessor:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.93.4333&rep=rep1&type=pdf

AE0B36APO Computer Architectures 42

P5 (Pentium) : 5

P6 (Pentium 3): 10

P6 (Pentium Pro): 14

NetBurst (Willamette, 180 nm) - Celeron, Pentium 4: 20

NetBurst (Northwood, 130 nm) - Celeron, Pentium 4, Pentium 4 HT: 20

NetBurst (Prescott, 90 nm) - Celeron D, Pentium 4, Pentium 4 HT, Pentium 4 ExEd: 31

NetBurst (Cedar Mill, 65 nm): 31

NetBurst (Presler 65 nm) - Pentium D: 31

Core : 14

Bonnell: 16

K7 Architecture - Athlon : 10-15

K8 - Athlon 64, Sempron, Opteron, Turion 64: 12-17

ARM 8-9: 5

ARM 11: 8

Cortex A7: 8-10

Cortex A8: 13

Cortex A15: 15-25

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.93.4333&rep=rep1&type=pdf

AE0B36APO Computer Architectures 43

Definition

Wiki:

• In contrast to a scalar processor that can

execute at most one single instruction per

clock cycle, a superscalar processor can

execute more than one instruction during a

clock cycle by simultaneously dispatching

multiple instructions to different execution units

on the processor.

Q: What does it actually mean "more than one"?

AE0B36APO Computer Architectures 44

A pipeline that supports multiple outstanding FP operations

AE0B36APO Computer Architectures 45

Source of picture: J. L. Hennessy and D. A. Patterson,

Computer Architecture: A Quantitative Approach.

Pentium 4 - Out-of-order Execution pipeline

AE0B36APO Computer Architectures 46

[Source: Intel]

Hyper-Threading

AE0B36APO Computer Architectures 47

Processor Execution

Resources

Processor Execution

Resources

Arch State Arch State Arch State

Processor with out Hyper-

Threading Technology
Processor with Hyper-

Threading Technology

Ref: Intel Technology Journal, Volume 06 Issue 01, February 14, 2002

Pentium 4: Netburst Microarchitecture’s execution pipeline

AE0B36APO Computer Architectures 48

Picture is simplified because the pipeline has actually 20 steps.

The branch miss prediction penalty is here extremely high.

Sample from: Hyper-Threading Benchtest

AE0B36APO Computer Architectures 49

No influence on integer arithmetic

performance or memory bandwidth!

Why?

AMD Bulldozer 15h (FX, Opteron) - 2011

• http://en.wikipedia.org/wiki/File:AMD_Bulldozer_block_diagram_(CPU_core_bloack).PNG

AE0B36APO Computer Architectures 50

Intel Nehalem (Core i7) - 2008

• http://en.wikipedia.org/wiki/File:Intel_Nehalem_arch.svg

AE0B36APO Computer Architectures 51

