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Direct Mapped Cache 

3 

Number of sets – S 

Number of blocks – B 

      in row, each block has size b.  

In QtMips, b is always=4 bytes. 

Degree of associativity – N 

     (rows in set) 

     for direct mapped cache N=1 

 

One block only in each set 
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Direct mapped cache implementation 

32 bit processor,  

its 1 word = 4 bytes 



4-way cache 
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4-way cache 

32 bit processor 1 word = 4 bytes 



Memory Hierarchy 

AE0B36APO Computer Architectures 6 

Disk CPU L1 L2 A 

R 

M 

Increasing 

access time 

and space 

L3 



Q: Which sorting program is better? 
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Cache Sort 1 Sort 2 

S B N Hit Miss Improved Hit Miss Improved 

4 

1 

2 

1 

1 

1 

1 

4 

2 

250 200 180 % 50 150 ~115 % 

16 1 1    435 15 690 % 185 15 ~540 % 

Suppose we got the following results in QtMips, for some unnamed sorting  

programs, and access times (chosen to count on us): 

miss = 1 clock cycle - cache + 9 clock cycles - memory 

    hit = 1 clock cycle cache 

S - number of sets, B - number of blocks, N - Degree of associativity 
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Physical address to memory? 
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CPU memory 

A0-A31 A0-A31 

D0-D31 D0-D31 

Data 

Physical address 



Virtual Memory Motivation .. 
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• Normally we have several tens / hundreds of processes running on your 

computer… 

• Can you imagine a situation where we would divide physics memory (for example, 

1 GB) between these processes? How big a piece of memory would belong to one 

process? How would we deal with collisions - when would a program intentionally 

(for example, a virus) or inadvertently (by a programmer's error - working with 

pointers) want to write to a piece of memory that we reserved for another process? 

• The solution is just virtual memory… 

• We create an illusion to every process that the entire memory is just its and can 

move freely within it. 

• We will even create the illusion of having, for example, 4GB of memory even 

though the physical memory is much smaller. The process does not distinguish 

between physical memory and disk (the disk appears to be memory). 

• The basic idea: The process addresses the virtual memory using virtual 

addresses. We then have to translate them somehow into physical addresses. 



Virtual/physical address and data 
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A0-A31 A0-A31 

D0-D31 D0-D31 

Virtual Physical 

Virtual address Physical address 

Data 

CPU 
Address 

translation 
MMU 

Memory 



• Imagine that we have 8B (Bytes) virtual space and 8B physical memory…  

• How do we provide address translation? Assume addressing by bytes. 

• Here is one solution: We want to translate any virtual address to any 

physical address. We have a 3-bit virtual address, and we want to translate 

it to a 3-bit physical address. To do this, you need a table of 8 records 

where one record will have 3 bits, together 8x3 = 24bit / process. 

 

 

 

 

 

 

 

Virtual Memory Motivation 
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3-bit address for 8 items 

Look-up 

table 

Virtual space 
Physical 

space 
mapping 

We use 

Look-up 

tabulku 

• Problem! If we have 4 GB of virtual space, our Look-up table will occupy 

232x32 bits = 16GB / process !!! That's a little bit… 



• Mapping from any virtual address to any physical address is a 

virtually unrealistic requirement! 

• Solution: Divide the virtual space into equal parts - virtual pages, and 

physical memory on physical pages. Make the virtual and physical size the 

same. In our example, we have a 2B page. 

 

 

 

 

 

 
 

Motivation to virtual memory - Lesson from previous slide : 
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Our solution - we will not use one 

bit of address for translation. The 

look-up table will then have half the 

size in this case. 
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• So our solution translates virtual addresses in groups… We move inside 

the page using the bit we ignored during the translation. We are able to 

use the entire address space. 



Memory addressing virtualization 

• Memory addressing virtualization is a method of 

managing memory that allows a running memory space 

access process to be organized differently, or even 

greater than the physically attached memory. 

• The conversion between the virtual address and the 

physical address can be supported by the processor (HW 

TLB mapping, see below). 

• In current operating systems, virtual memory is 

implemented by memory paging along with disk paging, 

which extends the memory to disk space. 
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Example 1 
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What does that mean? 

• The data is stored 

consecutively in the 

field. 

Questions that are 

offered .. 

• But what is that 

address? 

Where to cache this 

data? 

#include <stdio.h> 

#include <stdlib.h> 

int main() 

{ 

    int a, b[4], *c, d; 

    c = (int*)malloc(4*sizeof(int)); 

    printf("%p %p %p %p\n",&a,&b,&c,&d); 

    printf("%p %p %p\n",&b[0],&b[1],&b[2]); 

    printf("%p %p %p\n",&c[0],&c[1],&c[2]); 

    free(c); 

    return 0; 

} 0028FF1C 0028FF0C 0028FF08 0028FF04 

0028FF0C 0028FF10 0028FF14 

00801850 00801854 00801858 
Output: 



Virtual memory - Paging 
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Note: Some systems allowed page with different sizes, e.g. Silicon Graphics  IRIX. 

● Process virtual memory content is divided into aligned pages 

of same size (power of 2, usually 4 or 8 kB) 

● Physical memory consists of page frames of the same size 

Page size = frame size 

Virtual address  
space process-A 

Virtual address  
space process-B 

Physical memory 

Page 
frame 

Disk 



• Assume a 32-bit virtual address, 1GB of physical memory, 

and a 4-KB page size 

 

 

 

 

 

 

 

Virtual and physical addressing - in more detail 
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12 bitů  => 212 = 4 KB 

is the size of 1 page 

31…                        12 11…      0 

29…                     12 11…      0 

offset Virtual page number 

Physical page number offset 

Address translation 

(page number 

translation) 
What about the 

other bits? We'll 

explain later ... 

The arrangement of the translation, where the lowest bits of the address 

remain, has a very important practical consequence, see below. 



Let's return to example 1 
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#include <stdio.h> 

#include <stdlib.h> 

int main() 

{ 

    int a, b[4], *c, d; 

    c = (int*)malloc(4*sizeof(int)); 

    printf("%p %p %p %p\n",&a,&b,&c,&d); 

    printf("%p %p %p\n",&b[0],&b[1],&b[2]); 

    printf("%p %p %p\n",&c[0],&c[1],&c[2]); 

    free(c); 

    return 0; 

} 0028FF1C 0028FF0C 0028FF08 0028FF04 

0028FF0C 0028FF10 0028FF14 

00801850 00801854 00801858 
Output: 



Let's return to example 1 
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• Have you noticed the 

addresses on which the 

variables a, c, d, and b 

are located? 

• What if we want to 

extend our program with 

commands like:  
a = 1; 

b[0] = a+1; 

b[1] = b[0]+1; 

d = b[2];  
//b[2] uninitialized... 

0x28FF1C 

0x28FF04 
0x28FF08 
0x28FF0C 
0x28FF10 

a 

b[] 

c 
d 

c[] 

0x801850 c[0] 

4 Bytes 

heap 

stack 

… 

0x801850 

… 

… 

Virtual address space: 



Let's return to example 1 
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• Assume an L1 data cache of 32kB with associativity of 8, 

and block size of 64B. The cache is initially empty. 

• What happens when we execute the first line of the 

program? 

 
a = 1; 

b[0] = a+1; 

b[1] = b[0]+1; 

d = b[2];  

 



Let's return to example 1 

AE0B36APO Computer Architectures 21 

• Assume an L1 data cache of 32kB with associativity of 8, and block 

size of 64B. The cache is initially empty. 

• What happens when we execute the first line of the program?  
a = 1; 

 V Tag Data Data 

63 … 

62 … 

61 … 

60 … 

… … … 

1 … 

0 … 

64 sets 

16 words (16x Data) = 64B = size of block 

8 ways 

… 

way 0 way 1 way 7 



Let's return to example 1 
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• Assume an L1 data cache of 32kB with degree of associativity = 8, 

and block size of 64B. The cache is initially empty. 

• What happens when we execute the first line of the program?  
a = 1; -> cache miss 

 1111 0011 0010 0001 0000 

V Tag Data Data Data Data Data Data Data Data Data 

63 … 

62 … 

61 … 

60 1 0x0028F ??? … a b[3] b[2] b[1] b[0] c d ??? 

… … … 

1 … 

0 … 

64 setů 

16 words  (16x Data) = 64B 

way0 

ATTENTION: 

This is a Tag 

from a 

physical 

address !!! 



Let's return to example 1 
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• Paging (realization of virtual memory) does not interfere with the 

principle of spatial location => important for cache. 

• Data on adjacent virtual addresses will be stored in physical 

memory side by side (of course if they do not cross the page 

boundary). 

• If page fault occurs, i.e. the page is not in physical memory, then: 

1. An exception is handled by the OS. 

2. The page to be replaced is selected in the memory and stored 

on disk if needed. 

3. Then the new content of the requested page (from the disk) is 

read, or the zeroed page is mapped (in case of new memory). 

4. The cache row is also cached. 

• Another cache miss inside the page no longer invokes the page 

fault until the page is replaced by another page. 



Address translation  

• Page Table 

• Root pointer/page directory base register (x86 

CR3=PDBR) 

• Page table directory PTD 

• Page table entries PTE 

• Basic mapping unit is a page (page frame) 

• Page is basic unit of data transfers between main memory 

and secondary storage 

• Mapping is implemented as look-up table in most cases 

• Address translation is realized by Memory Management 

Unit (MMU) 

• Example follows on the next slide: 
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Address Translation 
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Virtual Page Number Page offset 

Physical Page Number Page offset 

Translation 

Virtual Address 

Physical Address 

20 bits 12 bits 



Single-level page table (MMU)?  

• Page directory is represented as data structure stored in main memory. OS task 

is to allocate physically continuous block of memory (for each process/memory 

context) and assign its start address to special CPU/MMU register. 

• PDBR - page directory base register – for x86 register CR3 – holds physical 

address of page directory start, alternate names PTBR - page table base register 

– the same thing, page table root pointer URP, SRP on m68k 
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PDBR 

31…                        12 11…      0 

29…                     12 11…      0 

offset Virtual page number 

Physical page number offset 

Překlad adresy 

(překlad čísla stránky) 



But consider memory consumed by page table 

• Typical page size is 4 kB = 2^12 

• 12 bits (offset) are enough to address data in page 

(frame). There are 20 bits left for address translation on 

32-bit address/architecture. 

• The fastest map/table look-up is indexing ⇒ use array 

structure 

• The page directory is an array of 2^20 entries (PTE). That 

is big overhead for processes that do not use whole 

virtual address range. There are another problems as well  

(physical space allocation fragmentation when large 

compact table is used for each process, etc.) 

• Solution: multi-level page table – lower levels populated 

only for used address ranges. 
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Multi-level paging - 2 levels 
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12 bits 

4kB  

= 212B 

Paměť je rozdělena 

na fyzické stránky 

pg.0 

20 bits to determine page + other bits 

(valid, rights, etc.) = 4B (8B) 

pg.1 

pg.2 

pg.N-1 
N=232/212=220 

4GB  

 220 
physical 

pages 

10 bits 

 

210 items 

  210.4B =  4KB 

10 bits 

 

210 Page tables 

  210.4KB =  

4MB 
(if all memory is 

paged) 

 

210 items 

PDBR 
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Principle of mapping 1/4  

- drawn using tree structure 
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Page-Table Entry 

Page Table 3 

Page-Table Entry 

Page Table 2 

Directory Table Offset 

Directory Entry 

CR3 

Page Directory 

Page-Table Entry 

Page Table 1 

Physical Address 

Page Frame 

Linear Address 
10 10 12 

Principle of mapping 2/4  

- decomposition of linear address into indexes  

O
ffs

e
t 
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• The principle of converting a linear address to a physical address 

Note: Windows and Linux OS allocate memory always by page (usually 4 KB),  

compare with "cluster" = disk allocation constant! 

C
P
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 –
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e
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 s
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page offset address offset 

logic address 

m
em

o
ry

 

Hard  

drive 

no page 

jagged 

array 

Mapping Principle 3/4 

- Indexes to Mapping Matrix 
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31 22 

  index of row index of column 12 bit offset 

21 12 11 0 

32-bit linear address 

... 

... 
X 

X 

X 

... 

... 

Matrix rows of 32-bit descriptors  

of 4K pages of physical memory 

Matrix row table address  

(1024 items) 32 bit physical address 

20 
bits 

12 

bits 

32 
bits 

10 bitů 10 
bits 

page directory page table entry offset 

p
a
g

e
 d

ir
e
c
to

ry
 

page table entry 0 

page table entry 1 

page table entry 2 

Mapping Principle 4/4 - Processor Operation 



What is in page table entries? 
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Look-up Table 
Page # Offset 

V Access rights Frame# 

+ 
Index into 
pagetable 

Page table 

PA – physical address 

Page table placed in physical memory 

VA – virtual 
 address 

Page Table 
Base Register 

PTBR 

Page valid bit – if = 0, 
page not in the memory 

results in page fault 



Page Table - How Do Items Look? Meaning of items… 
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• P  -bit 0: Present bit – determines whether the page is in memory (1) or on disk (0) 

Sometimes this bit is called V - valid. 

• R/W -bit 1: Read/Write: if 1 then R/W; otherwise only read 

• U/S -bit 2: User/Supervisor: 1 – user access; 0 – only OS 

• PWT -bit 3: Write-through/Write-back – writing strategy for the page 

• PCD -bit 4: Cache disabled/enabled – some peripherals are mapped directly into 

memory (memory mapped I/O), allowing write / read to / from the periphery. These 

memory addresses are then I/O ports and they are not written into cache. 

Let's look at the item Page Directory (Page Table similar)  

31…           1 0 

Only OS P=0 

31…              12 6 5 4 3 2 1 0 

Base Address of Page table … A PCD PWT U/S R/W P=1 



Page Table - How Do Items Look? Meaning of items… 
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• A -bit 5: Accessed –Whether we have read / written - helps decide which 

pages to remove when we need to free up memory space 

• D bit 6: Dirty bit – it is set if we wrote into page. 

• 11..7 bit - special use, as memory type, or when to update cache, etc. 

• 31-12 bit - Physical Page Address 

Let's look at the item Page Table (Page Table on 2nd level)  
31…           1 0 

Only OS P=0 

31…              12 7 6 5 4 3 2 1 0 

Bázová adresa Page … D A PCD PWT U/S R/W P=1 



Notes 

• Each process has a Page Table, that is, its PTBR 

(base register) value. 

• This, by the way, ensures the memory security of 

processes. 

• What do we want you to remember from the 

Page Table Item Format? 
• V – Validity Bit. V=0 Page is not valid (stored of HD). 

• AR – Access Rights. (Read Only, Read/Write, Executable, etc.), 

• Frame# - frame number (base address into lower level), 

• Other as modified/Dirty, and so on. 
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V    AR   Frame# 



Virtual memory – Hardware and software interaction 
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Processor 

Address 
translation 

Page fault 
procession by OS 

Main 
memory 

Secondary 
store 

a 

Z 

a' 

Virtual address 
Physical address 

OS process data transfer 

missing page, i.e. PTE.V = 0 



What to do on Page Fault? 

If memory is low 
• Using LRU, we find the pages that can be released. 

• If they have set dirty bits, we write them "somehow" (usually by DMA, 

Direct Memory Access, direct memory access) to disk. 

• The Process Page Table is updated to allow free memory. 

Physical memory is free,  
but our data are in a secondary memory (on the disk).. 

• The requested page is loaded (by DMA) into an empty frame. 

• If the page is not on the disk, i.e. empty memory allocation, and it is 

not requested by the kernel, then it must be completely cleared (for 

security reasons). 

• When DMA transmission is complete, an interrupt is invoked, the 

Process Page Table is updated. 

During the paging process, you can switch to another pending process that 

can continue until the operation is finished. 

.   
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TLB-idealized address translation - reading 
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CPU (ALU) 

TLB 
Main 

memory 

Cache 

hit 

hit 

miss 

miss virtual address 

page 

tag  

of 

physical 

address 
transfer 

Page table 

into TLB 

• Note that there may be 2x miss 

• If a TLB miss occurs, we must execute a page walk. 

virtual address 

offset 



Fast MMU/address translation using TLB 
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● Translation-Lookaside Buffer, or may it be, more descriptive name – 

Translation-Cache 

● Cache of frame numbers where key is page virtual addresses 



*
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On 64 bit systems 

1. It is possible to increase the page length from 4kB to 

1GB, but impractical. 

2. You can use multi-level paging tables, add 

 Page-Directory Pointer Table  (Win64: from 4 to 512 address) 

 Page-Map Level  (Win64: up to512 adres) 

Also, the descriptor length in all tables is increased from 

32 bits to 64 bits 
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Multi-level tables for 64-bit processors 

Base 

D4 D2 D1 offset 

Page 

Directory 

Page 

Table 

Page-Directory  

Pointer 

Of course, some tables, especially read-only "Page Table" 

such as libraries, can be shared by processes 

D3 

Page-Map 

 Level 



Multi-level paging 

Notes on the previous slide : 

• Not every process uses its entire address space => is not necessary to 

allocate in the second level 210 Page tables 

• Page tables can also be paged  
 

General notes : 

• Intel IA32 implements 2-level paging 

• Page Table on level 1 is Page Directory (10 bits of address) 

• Page Table on level 2 is Page Table (next 10 bits of address) 

• In the case of a 64-bit virtual address, it is customary to use fewer bits for 

a physical address - for example, 48, or 40. 

• Intel Core i7 uses 4-level paging and 48 bit address space 

• Page Table level 1: Page global directory (9 bits) 

• Page Table level 2: Page upper directory (9 bits) 

• Page Table level 3: Page middle directory (9 bits) 

• Page Table level 4: Page table (9 bits) 
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Multi-level page table – translation overhead 
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• Translation would take long time, even if entries for all levels were 

present in cache. (One access per level, they cannot be done in 

parallel.) 

• The solution is to cache found/computed physical addresses 

• Such cache is labeled as Translation Look-Aside Buffer 

• Even multi-level translation caching are in use today 

 



Paging – Intel Nehalem (Core i7) 
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http://cs.nyu.edu/courses/spring13/CSCI-UA.0201-003/lecture18.pdf 



Memory management - Intel Nehalem (Core i7) 
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Memory management - Intel Nehalem – notes 
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• Block Size: 64B 

• Processor always reads line cache  

from system memory aligned to 64B  

(6 LSB od addresses are zeros)  

and does not support partially filled lines 

• L1 - Harvard. In SMT shared by  

both threads, Instruction - 4-way,  

Data 8-way. 

• L2 - unified, 8-way, non-inclusive, WB 

• L3 - unified, 16-way, inclusive (L1 or L2 included in L3), WriteBack 

• Store Buffers - temporarily store data for each listing. Needless to wait 

for writing to cache or memory. They ensure that writes are in the 

correct order and also when needed: - exception, interrupt, serialization 

instruction, lock, .. 

• You may also notice separate TLBs (Translation Lookaside Buffer) 



Typical values 
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L1 Paged memories TLB 

Size in blocks 256-4k 16 000-250 000 000 40-1024 

Size in bytes 16-64 kB  500 - 1 TB 0,25-16 KB 

Size of block 

in bytes 
16-64  4k-64k 4-32 

Miss penalty  

(clock cycles) 
10-25 10M-100M 100-1000 

Miss rates 2 % - 5 % 0,00001-0,0001% 0,01-2 % 
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Paging and memory 

fragmentation 

One death is a 

tragedy. A million 

deaths is just a 

statistic. 

 [Joseph Stalin] 

 
[Royo] 
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Memory fragmentation 

 Reasins of fragmentations 

a) variable program behavior 

b) the program requests large blocks of data but 
releases only small ones 

c) single death  

 Data that are not adjacent to each other are 
dropped, so their memory areas cannot be 
recombined and used for large objects. 
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Example of Fragmentation in C++ 

Alloccated data 

Free RAM 

Used RAM in % 

Free swap file 

Free address space 

0 

50%, 500 MB 

100%, 1000 MB 

1500 MB 

2000 MB 

2500 MB 

Fragmentation after 

deleting list2 

page n1 page n2 page n3 Page n4 

1 

list1start 

list2 
 

 

list2start 

2 1 2 1 2 1 2 

list1 
 

 

If we 

delete 

list2...! 

Memory is released 

after deleting list1 



More efficient use of memory - a way to accelerate programs 
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Your program may consider page size and use memory more 

efficiently - by aligning allocations to multiple page sizes and 

then reducing internal and external page fragmentation .. 

(allocation order, etc. See also memory pool) 

 
#include <stdio.h> 

#include <unistd.h> 

int main(void) { 

 printf(„Velikost stranky je: %ld B.\n", 

        sysconf(_SC_PAGESIZE));  

 return 0; 

} 

 

Allocation of block aligned in memory: 
void * memalign(size_t size, int boundary) 

void * valloc(size_t size) 



windows 
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#include <stdio.h> 

#include <windows.h> 

 

int main(void) { 

    SYSTEM_INFO s; 

    GetSystemInfo(&s); 

    printf("Size of page is: %ld B.\n",   

       ns.dwPageSize); 

    printf("Address space for application:  

       0x%lx – 0x%lx\n", 

       s.lpMinimumApplicationAddress, 

       s.lpMaximumApplicationAddress); 

    return 0; 

} 


