
AE0B36APO Computer Architectures

Czech Technical University in Prague, Faculty of Electrical Engineering

Computer Architectures

Ver.3.50

Virtual Memory
Richard Šusta, Pavel Píša

 2019 1

*

AE0B36APO Computer Architectures 2

Direct Mapped Cache

3

Number of sets – S

Number of blocks – B

 in row, each block has size b.

In QtMips, b is always=4 bytes.

Degree of associativity – N

 (rows in set)

 for direct mapped cache N=1

One block only in each set

4 AE0

B36A

PO

Com

Direct mapped cache implementation

32 bit processor,

its 1 word = 4 bytes

4-way cache

B35APO Architektura počítačů 5

4-way cache

32 bit processor 1 word = 4 bytes

Memory Hierarchy

AE0B36APO Computer Architectures 6

Disk CPU L1 L2 A

R

M

Increasing

access time

and space

L3

Q: Which sorting program is better?

AE0B36APO Computer Architectures 7

Cache Sort 1 Sort 2

S B N Hit Miss Improved Hit Miss Improved

4

1

2

1

1

1

1

4

2

250 200 180 % 50 150 ~115 %

16 1 1 435 15 690 % 185 15 ~540 %

Suppose we got the following results in QtMips, for some unnamed sorting

programs, and access times (chosen to count on us):

miss = 1 clock cycle - cache + 9 clock cycles - memory

 hit = 1 clock cycle cache

S - number of sets, B - number of blocks, N - Degree of associativity

*

AE0B36APO Computer Architectures 8

Physical address to memory?

AE0B36APO Computer Architectures 9

CPU memory

A0-A31 A0-A31

D0-D31 D0-D31

Data

Physical address

Virtual Memory Motivation ..

AE0B36APO Computer Architectures 10

• Normally we have several tens / hundreds of processes running on your

computer…

• Can you imagine a situation where we would divide physics memory (for example,

1 GB) between these processes? How big a piece of memory would belong to one

process? How would we deal with collisions - when would a program intentionally

(for example, a virus) or inadvertently (by a programmer's error - working with

pointers) want to write to a piece of memory that we reserved for another process?

• The solution is just virtual memory…

• We create an illusion to every process that the entire memory is just its and can

move freely within it.

• We will even create the illusion of having, for example, 4GB of memory even

though the physical memory is much smaller. The process does not distinguish

between physical memory and disk (the disk appears to be memory).

• The basic idea: The process addresses the virtual memory using virtual

addresses. We then have to translate them somehow into physical addresses.

Virtual/physical address and data

AE0B36APO Computer Architectures 11

A0-A31 A0-A31

D0-D31 D0-D31

Virtual Physical

Virtual address Physical address

Data

CPU
Address

translation
MMU

Memory

• Imagine that we have 8B (Bytes) virtual space and 8B physical memory…

• How do we provide address translation? Assume addressing by bytes.

• Here is one solution: We want to translate any virtual address to any

physical address. We have a 3-bit virtual address, and we want to translate

it to a 3-bit physical address. To do this, you need a table of 8 records

where one record will have 3 bits, together 8x3 = 24bit / process.

Virtual Memory Motivation

AE0B36APO Computer Architectures 12

7

6

5

4

3

2

1

0

6

3

7

4

1

5

0

2

7

6

5

4

3

2

1

0

3-bit address for 8 items

Look-up

table

Virtual space
Physical

space
mapping

We use

Look-up

tabulku

• Problem! If we have 4 GB of virtual space, our Look-up table will occupy

232x32 bits = 16GB / process !!! That's a little bit…

• Mapping from any virtual address to any physical address is a

virtually unrealistic requirement!

• Solution: Divide the virtual space into equal parts - virtual pages, and

physical memory on physical pages. Make the virtual and physical size the

same. In our example, we have a 2B page.

Motivation to virtual memory - Lesson from previous slide :

AE0B36APO Computer Architectures 13

7

6

5

4

3

2

1

0

1

0

2

3

1

0

3

2

7

6

5

4

3-bit address for 4 items

Look-up

table

Virtual

space

Physical

space
mapování

Our solution - we will not use one

bit of address for translation. The

look-up table will then have half the

size in this case.

3

2

1

0

No. of

page

3

2

1

0

No. of

page

• So our solution translates virtual addresses in groups… We move inside

the page using the bit we ignored during the translation. We are able to

use the entire address space.

Memory addressing virtualization

• Memory addressing virtualization is a method of

managing memory that allows a running memory space

access process to be organized differently, or even

greater than the physically attached memory.

• The conversion between the virtual address and the

physical address can be supported by the processor (HW

TLB mapping, see below).

• In current operating systems, virtual memory is

implemented by memory paging along with disk paging,

which extends the memory to disk space.

AE0B36APO Computer Architectures 14

Example 1

AE0B36APO Computer Architectures 15

What does that mean?

• The data is stored

consecutively in the

field.

Questions that are

offered ..

• But what is that

address?

Where to cache this

data?

#include <stdio.h>

#include <stdlib.h>

int main()

{

 int a, b[4], *c, d;

 c = (int*)malloc(4*sizeof(int));

 printf("%p %p %p %p\n",&a,&b,&c,&d);

 printf("%p %p %p\n",&b[0],&b[1],&b[2]);

 printf("%p %p %p\n",&c[0],&c[1],&c[2]);

 free(c);

 return 0;

} 0028FF1C 0028FF0C 0028FF08 0028FF04

0028FF0C 0028FF10 0028FF14

00801850 00801854 00801858
Output:

Virtual memory - Paging

B35APO Architektura počítačů 16

Note: Some systems allowed page with different sizes, e.g. Silicon Graphics IRIX.

● Process virtual memory content is divided into aligned pages

of same size (power of 2, usually 4 or 8 kB)

● Physical memory consists of page frames of the same size

Page size = frame size

Virtual address
space process-A

Virtual address
space process-B

Physical memory

Page
frame

Disk

• Assume a 32-bit virtual address, 1GB of physical memory,

and a 4-KB page size

Virtual and physical addressing - in more detail

AE0B36APO Computer Architectures 17

12 bitů => 212 = 4 KB

is the size of 1 page

31… 12 11… 0

29… 12 11… 0

offset Virtual page number

Physical page number offset

Address translation

(page number

translation)
What about the

other bits? We'll

explain later ...

The arrangement of the translation, where the lowest bits of the address

remain, has a very important practical consequence, see below.

Let's return to example 1

AE0B36APO Computer Architectures 18

#include <stdio.h>

#include <stdlib.h>

int main()

{

 int a, b[4], *c, d;

 c = (int*)malloc(4*sizeof(int));

 printf("%p %p %p %p\n",&a,&b,&c,&d);

 printf("%p %p %p\n",&b[0],&b[1],&b[2]);

 printf("%p %p %p\n",&c[0],&c[1],&c[2]);

 free(c);

 return 0;

} 0028FF1C 0028FF0C 0028FF08 0028FF04

0028FF0C 0028FF10 0028FF14

00801850 00801854 00801858
Output:

Let's return to example 1

AE0B36APO Computer Architectures 19

• Have you noticed the

addresses on which the

variables a, c, d, and b

are located?

• What if we want to

extend our program with

commands like:
a = 1;

b[0] = a+1;

b[1] = b[0]+1;

d = b[2];
//b[2] uninitialized...

0x28FF1C

0x28FF04
0x28FF08
0x28FF0C
0x28FF10

a

b[]

c
d

c[]

0x801850 c[0]

4 Bytes

heap

stack

…

0x801850

…

…

Virtual address space:

Let's return to example 1

AE0B36APO Computer Architectures 20

• Assume an L1 data cache of 32kB with associativity of 8,

and block size of 64B. The cache is initially empty.

• What happens when we execute the first line of the

program?

a = 1;

b[0] = a+1;

b[1] = b[0]+1;

d = b[2];

Let's return to example 1

AE0B36APO Computer Architectures 21

• Assume an L1 data cache of 32kB with associativity of 8, and block

size of 64B. The cache is initially empty.

• What happens when we execute the first line of the program?
a = 1;

 V Tag Data Data

63 …

62 …

61 …

60 …

… … …

1 …

0 …

64 sets

16 words (16x Data) = 64B = size of block

8 ways

…

way 0 way 1 way 7

Let's return to example 1

AE0B36APO Computer Architectures 22

• Assume an L1 data cache of 32kB with degree of associativity = 8,

and block size of 64B. The cache is initially empty.

• What happens when we execute the first line of the program?
a = 1; -> cache miss

 1111 0011 0010 0001 0000

V Tag Data Data Data Data Data Data Data Data Data

63 …

62 …

61 …

60 1 0x0028F ??? … a b[3] b[2] b[1] b[0] c d ???

… … …

1 …

0 …

64 setů

16 words (16x Data) = 64B

way0

ATTENTION:

This is a Tag

from a

physical

address !!!

Let's return to example 1

AE0B36APO Computer Architectures 23

• Paging (realization of virtual memory) does not interfere with the

principle of spatial location => important for cache.

• Data on adjacent virtual addresses will be stored in physical

memory side by side (of course if they do not cross the page

boundary).

• If page fault occurs, i.e. the page is not in physical memory, then:

1. An exception is handled by the OS.

2. The page to be replaced is selected in the memory and stored

on disk if needed.

3. Then the new content of the requested page (from the disk) is

read, or the zeroed page is mapped (in case of new memory).

4. The cache row is also cached.

• Another cache miss inside the page no longer invokes the page

fault until the page is replaced by another page.

Address translation

• Page Table

• Root pointer/page directory base register (x86

CR3=PDBR)

• Page table directory PTD

• Page table entries PTE

• Basic mapping unit is a page (page frame)

• Page is basic unit of data transfers between main memory

and secondary storage

• Mapping is implemented as look-up table in most cases

• Address translation is realized by Memory Management

Unit (MMU)

• Example follows on the next slide:

AE0B36APO Computer Architectures 24

Address Translation

AE0B36APO Computer Architectures 25

Virtual Page Number Page offset

Physical Page Number Page offset

Translation

Virtual Address

Physical Address

20 bits 12 bits

Single-level page table (MMU)?

• Page directory is represented as data structure stored in main memory. OS task

is to allocate physically continuous block of memory (for each process/memory

context) and assign its start address to special CPU/MMU register.

• PDBR - page directory base register – for x86 register CR3 – holds physical

address of page directory start, alternate names PTBR - page table base register

– the same thing, page table root pointer URP, SRP on m68k

B35APO Architektura počítačů 26

PDBR

31… 12 11… 0

29… 12 11… 0

offset Virtual page number

Physical page number offset

Překlad adresy

(překlad čísla stránky)

But consider memory consumed by page table

• Typical page size is 4 kB = 2^12

• 12 bits (offset) are enough to address data in page

(frame). There are 20 bits left for address translation on

32-bit address/architecture.

• The fastest map/table look-up is indexing ⇒ use array

structure

• The page directory is an array of 2^20 entries (PTE). That

is big overhead for processes that do not use whole

virtual address range. There are another problems as well

(physical space allocation fragmentation when large

compact table is used for each process, etc.)

• Solution: multi-level page table – lower levels populated

only for used address ranges.
AE0B36APO Computer Architectures 27

Multi-level paging - 2 levels

AE0B36APO Computer Architectures 28

12 bits

4kB

= 212B

Paměť je rozdělena

na fyzické stránky

pg.0

20 bits to determine page + other bits

(valid, rights, etc.) = 4B (8B)

pg.1

pg.2

pg.N-1
N=232/212=220

4GB

 220
physical

pages

10 bits

210 items

  210.4B = 4KB

10 bits

210 Page tables

  210.4KB =

4MB
(if all memory is

paged)

210 items

PDBR

K 13135, ČVUT FEL Praha 29

Principle of mapping 1/4

- drawn using tree structure

K 13135, ČVUT FEL Praha 30

Page-Table Entry

Page Table 3

Page-Table Entry

Page Table 2

Directory Table Offset

Directory Entry

CR3

Page Directory

Page-Table Entry

Page Table 1

Physical Address

Page Frame

Linear Address
10 10 12

Principle of mapping 2/4

- decomposition of linear address into indexes

O
ffs

e
t

K 13135, ČVUT FEL Praha 31

• The principle of converting a linear address to a physical address

Note: Windows and Linux OS allocate memory always by page (usually 4 KB),

compare with "cluster" = disk allocation constant!

C
P

U
 –

li
n

e
a

r

a
d

d
re

s
s

 s
p

a
c

e
 o

f
th

e
 p

ro
c

e
s

s

page offset address offset

logic address

m
em

o
ry

Hard

drive

no page

jagged

array

Mapping Principle 3/4

- Indexes to Mapping Matrix

K 13135, ČVUT FEL Praha 32

31 22

 index of row index of column 12 bit offset

21 12 11 0

32-bit linear address

...

...
X

X

X

...

...

Matrix rows of 32-bit descriptors

of 4K pages of physical memory

Matrix row table address

(1024 items) 32 bit physical address

20
bits

12

bits

32
bits

10 bitů 10
bits

page directory page table entry offset

p
a
g

e
 d

ir
e
c
to

ry

page table entry 0

page table entry 1

page table entry 2

Mapping Principle 4/4 - Processor Operation

What is in page table entries?

AE0B36APO Computer Architectures 33

Look-up Table
Page # Offset

V Access rights Frame#

+
Index into
pagetable

Page table

PA – physical address

Page table placed in physical memory

VA – virtual
 address

Page Table
Base Register

PTBR

Page valid bit – if = 0,
page not in the memory

results in page fault

Page Table - How Do Items Look? Meaning of items…

AE0B36APO Computer Architectures 34

• P -bit 0: Present bit – determines whether the page is in memory (1) or on disk (0)

Sometimes this bit is called V - valid.

• R/W -bit 1: Read/Write: if 1 then R/W; otherwise only read

• U/S -bit 2: User/Supervisor: 1 – user access; 0 – only OS

• PWT -bit 3: Write-through/Write-back – writing strategy for the page

• PCD -bit 4: Cache disabled/enabled – some peripherals are mapped directly into

memory (memory mapped I/O), allowing write / read to / from the periphery. These

memory addresses are then I/O ports and they are not written into cache.

Let's look at the item Page Directory (Page Table similar)

31… 1 0

Only OS P=0

31… 12 6 5 4 3 2 1 0

Base Address of Page table … A PCD PWT U/S R/W P=1

Page Table - How Do Items Look? Meaning of items…

AE0B36APO Computer Architectures 35

• A -bit 5: Accessed –Whether we have read / written - helps decide which

pages to remove when we need to free up memory space

• D bit 6: Dirty bit – it is set if we wrote into page.

• 11..7 bit - special use, as memory type, or when to update cache, etc.

• 31-12 bit - Physical Page Address

Let's look at the item Page Table (Page Table on 2nd level)
31… 1 0

Only OS P=0

31… 12 7 6 5 4 3 2 1 0

Bázová adresa Page … D A PCD PWT U/S R/W P=1

Notes

• Each process has a Page Table, that is, its PTBR

(base register) value.

• This, by the way, ensures the memory security of

processes.

• What do we want you to remember from the

Page Table Item Format?
• V – Validity Bit. V=0 Page is not valid (stored of HD).

• AR – Access Rights. (Read Only, Read/Write, Executable, etc.),

• Frame# - frame number (base address into lower level),

• Other as modified/Dirty, and so on.

AE0B36APO Computer Architectures 36

V AR Frame#

Virtual memory – Hardware and software interaction

AE0B36APO Computer Architectures 37

Processor

Address
translation

Page fault
procession by OS

Main
memory

Secondary
store

a

Z

a'

Virtual address
Physical address

OS process data transfer

missing page, i.e. PTE.V = 0

What to do on Page Fault?

If memory is low
• Using LRU, we find the pages that can be released.

• If they have set dirty bits, we write them "somehow" (usually by DMA,

Direct Memory Access, direct memory access) to disk.

• The Process Page Table is updated to allow free memory.

Physical memory is free,
but our data are in a secondary memory (on the disk)..

• The requested page is loaded (by DMA) into an empty frame.

• If the page is not on the disk, i.e. empty memory allocation, and it is

not requested by the kernel, then it must be completely cleared (for

security reasons).

• When DMA transmission is complete, an interrupt is invoked, the

Process Page Table is updated.

During the paging process, you can switch to another pending process that

can continue until the operation is finished.

.
AE0B36APO Computer Architectures 38

TLB-idealized address translation - reading

AE0B36APO Computer Architectures 39

CPU (ALU)

TLB
Main

memory

Cache

hit

hit

miss

miss virtual address

page

tag

of

physical

address
transfer

Page table

into TLB

• Note that there may be 2x miss

• If a TLB miss occurs, we must execute a page walk.

virtual address

offset

Fast MMU/address translation using TLB

AE0B36APO Computer Architectures 40

● Translation-Lookaside Buffer, or may it be, more descriptive name –

Translation-Cache

● Cache of frame numbers where key is page virtual addresses

*

AE0B36APO Computer Architectures 41

27.3.2019 K

1313

5,

ČVU

42

On 64 bit systems

1. It is possible to increase the page length from 4kB to

1GB, but impractical.

2. You can use multi-level paging tables, add

 Page-Directory Pointer Table (Win64: from 4 to 512 address)

 Page-Map Level (Win64: up to512 adres)

Also, the descriptor length in all tables is increased from

32 bits to 64 bits

K 13135, ČVUT FEL Praha 43

Multi-level tables for 64-bit processors

Base

D4 D2 D1 offset

Page

Directory

Page

Table

Page-Directory

Pointer

Of course, some tables, especially read-only "Page Table"

such as libraries, can be shared by processes

D3

Page-Map

 Level

Multi-level paging

Notes on the previous slide :

• Not every process uses its entire address space => is not necessary to

allocate in the second level 210 Page tables

• Page tables can also be paged

General notes :

• Intel IA32 implements 2-level paging

• Page Table on level 1 is Page Directory (10 bits of address)

• Page Table on level 2 is Page Table (next 10 bits of address)

• In the case of a 64-bit virtual address, it is customary to use fewer bits for

a physical address - for example, 48, or 40.

• Intel Core i7 uses 4-level paging and 48 bit address space

• Page Table level 1: Page global directory (9 bits)

• Page Table level 2: Page upper directory (9 bits)

• Page Table level 3: Page middle directory (9 bits)

• Page Table level 4: Page table (9 bits)
AE0B36APO Computer Architectures 44

Multi-level page table – translation overhead

AE0B36APO Computer Architectures 45

• Translation would take long time, even if entries for all levels were

present in cache. (One access per level, they cannot be done in

parallel.)

• The solution is to cache found/computed physical addresses

• Such cache is labeled as Translation Look-Aside Buffer

• Even multi-level translation caching are in use today

Paging – Intel Nehalem (Core i7)

AE0B36APO Computer Architectures 46

http://cs.nyu.edu/courses/spring13/CSCI-UA.0201-003/lecture18.pdf

Memory management - Intel Nehalem (Core i7)

A4M36PAP Pokročilé architektury počítačů 47

Memory management - Intel Nehalem – notes

A4M36PAP Pokročilé architektury počítačů 48

• Block Size: 64B

• Processor always reads line cache

from system memory aligned to 64B

(6 LSB od addresses are zeros)

and does not support partially filled lines

• L1 - Harvard. In SMT shared by

both threads, Instruction - 4-way,

Data 8-way.

• L2 - unified, 8-way, non-inclusive, WB

• L3 - unified, 16-way, inclusive (L1 or L2 included in L3), WriteBack

• Store Buffers - temporarily store data for each listing. Needless to wait

for writing to cache or memory. They ensure that writes are in the

correct order and also when needed: - exception, interrupt, serialization

instruction, lock, ..

• You may also notice separate TLBs (Translation Lookaside Buffer)

Typical values

AE0B36APO Computer Architectures 49

L1 Paged memories TLB

Size in blocks 256-4k 16 000-250 000 000 40-1024

Size in bytes 16-64 kB 500 - 1 TB 0,25-16 KB

Size of block

in bytes
16-64 4k-64k 4-32

Miss penalty

(clock cycles)
10-25 10M-100M 100-1000

Miss rates 2 % - 5 % 0,00001-0,0001% 0,01-2 %

50

Paging and memory

fragmentation

One death is a

tragedy. A million

deaths is just a

statistic.

 [Joseph Stalin]

[Royo]

K 13135, ČVUT FEL Praha 51 27.3.2019

Memory fragmentation

 Reasins of fragmentations

a) variable program behavior

b) the program requests large blocks of data but
releases only small ones

c) single death

 Data that are not adjacent to each other are
dropped, so their memory areas cannot be
recombined and used for large objects.

52

Example of Fragmentation in C++

Alloccated data

Free RAM

Used RAM in %

Free swap file

Free address space

0

50%, 500 MB

100%, 1000 MB

1500 MB

2000 MB

2500 MB

Fragmentation after

deleting list2

page n1 page n2 page n3 Page n4

1

list1start

list2

list2start

2 1 2 1 2 1 2

list1

If we

delete

list2...!

Memory is released

after deleting list1

More efficient use of memory - a way to accelerate programs

AE0B36APO Computer Architectures 53

Your program may consider page size and use memory more

efficiently - by aligning allocations to multiple page sizes and

then reducing internal and external page fragmentation ..

(allocation order, etc. See also memory pool)

#include <stdio.h>

#include <unistd.h>

int main(void) {

 printf(„Velikost stranky je: %ld B.\n",

 sysconf(_SC_PAGESIZE));

 return 0;

}

Allocation of block aligned in memory:
void * memalign(size_t size, int boundary)

void * valloc(size_t size)

windows

AE0B36APO Computer Architectures 54

#include <stdio.h>

#include <windows.h>

int main(void) {

 SYSTEM_INFO s;

 GetSystemInfo(&s);

 printf("Size of page is: %ld B.\n",

 ns.dwPageSize);

 printf("Address space for application:

 0x%lx – 0x%lx\n",

 s.lpMinimumApplicationAddress,

 s.lpMaximumApplicationAddress);

 return 0;

}

