
AE0B36APO   Computer Architectures 

Czech Technical University in Prague, Faculty of Electrical Engineering 

Computer Architectures 

Ver.1.00 

Real Arithmetic 
Richard Šusta, Pavel Píša 

  2019 1 



Speed of operations 

Operation Language C 

Bit negation ~x 

Multiplying or dividing by 2n x<<n ,  x>>n 

Increment, decrement  ++x, x++, --x, x-- 

Minus number <- bit negation+increment -x 

Adding x+y 

Subtracting <- minus + addition x-y 

Multiplying by hardware multiplyer 
x*y 

Multiplying by sequence multiplyer 

Divisiov x/y 



Logical Shift 

C 0 b7 ----------------- b0 

C b7 ----------------- b0 0 

Arithmetic Shift 

C 0 b7 ----------------- b0 

C b7 ----------------- b0 

multiply by 2 

divide by 2 unsigned divide by 2 signed 



Sign Extension Example in C 

  short int x =  15213; 

  int      ix = (int) x;  

  short int y = -15213; 

  int      iy = (int) y; 

Decimal Hex Binary
x 15213 3B 6D 00111011 01101101

ix 15213 00 00 C4 92 00000000 00000000 00111011 01101101

y -15213 C4 93 11000100 10010011

iy -15213 FF FF C4 93 11111111 11111111 11000100 10010011
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Hardware divider 

negate 

hot one 

reminder 

return 

quotient 

Non-restoring division 



Hardware divider logic (32b case) 

ḑivident = quotient ³ divisor + reminder 

A̧C                  MQ 

negate 

hot one 

return 

reminder quotient 

Non-restoring division 



Algorithm of the sequential division 

MQ = dividend; 

B = divisor; (Condition: divisor is not 0!) 

AC = 0; 

 

 

for( int i=1; i <= n; i++) { 

   SL (shift AC MQ by one bit to the left, the LSB bit is kept on zero) 

 

   if(AC >= B)   { 

 AC = AC – B; 

 MQ0 = 1; // the LSB of the MQ register is set to 1 

    } 

} 

   

 Value of MQ register represents quotient and AC remainder 

Restoring division 



Example of X/Y division 

i operation AC MQ  B comment 

0000 1010 0011 initial setup 

1 SL 0001 0100 

nothing 0001 0100 the if condition not true 

2 SL 0010 1000 

0010 1000 the if condition not true 

3 SL 0101 0000 r ² y 

AC = AC ς B;   MQ0 = 1; 0010 0001 

4 SL 0100 0010 r ² y 

AC = AC ς B;   MQ0 = 1; 0001 0011 end of the cycle 

Ḑividend x=1010 and divisor y=0011 

x̧ : y = 1010 : 0011 = 0011 reminder 0001,   (10 : 3 = 3 reminder 1) 

Restoring division 
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Fractional Binary Numbers  
 

Reprezentation 

righth bits are fractions 2 
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Fractional numbers 

Value Representation 

5-3/4 101.11 2 

2-7/8  10.111 2 

63/64   0.111111 2 

Operation 

Dividing by 2 - shift right 

Multiplying by 2  - shift left 

Numbers below 0.111111é2 are less than 1.0 

1/2 + 1/4 + 1/8 + … + 1/2i + …  1.0 



Comp Sci 251 -- Floating point 
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BinaryČ Decadic 

23.47 = 2×101 + 3×100 + 4×10-1 + 7×10-2 

      decimal point 

 

10.01two = 1×21 + 0×20 + 0×2-1 + 1×2-2 

      binary point 

  = 1×2   + 0×1  + 0×½   + 1×¼ 

  = 2 + 0.25 = 2.25 

 

 



Comp Sci 251 -- Floating point 
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Scientific notation 

Decadic: 

 -123,000,000,000,000  Č  -1.23 × 1014 

 0.000 000 000 000 000 123  Č  +1.23× 10-16 

 

Binary: 

 110 1100 0000 0000   Č  1.1011× 214   = 2969610 

 -0.0000 0000 0000 0001 1011 Č -1.1101 × 2-16 

=-2.765655517578125 x 10-5 

 



Comp Sci 251 -- Floating point 
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Beware 

Finite decadic number Č infinity binary number 

Example:  

0.1ten Č 0.2 Č 0.4 Č 0.8 Č 1.6 Č 1.2 Č 3.2 Č 6.4 Č 12.6 Č … 

 

0.110 = 0.00011001100110011…2 
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Example 0.110    to real 

0.110 = 0.000110011....2 = 

          



Real numbers 

Limits 

exact representation only   x/2k 

Other numbers are inexact 

Value Binary float 

1/3 0.0101010101[01]é2 

1/5 0.001100110011[0011]é2 

1/10 0.0001100110011[0011]é2 

 



Type Float 

Mantissa: direct code — sign and absolute value 

Exponent: additive code  
           (K-excess for float +127, for double +1023). 

A0M36APO   

Architektury poļ²taļŢ 
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Binary point 

Sign M 
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ANSI/IEEE Std 754-1985 (2008) – 32b a 64b formát 

ANSI/IEEE Std 754-1985 — double— 64b 

g . . . 11b f . . . 52b 

ANSI/IEEE Std 754-1985 — simple — 32b 



The representation/encoding of floating point number 

¸ Mantissa encoded as the sign and absolute value 

(magnitude) – equivalent to the direct representation 

¸ Exponent encoded in biased representation (K=127 for 

single precision) 

¸ The implicit leading one can be omitted due to 

normalization of m  ɴộ1, 2)  – 23+1 implicit bit for single 

Ŗadix point position for E and M 

Şign of M 

X = -1s 2A(E)-127 m where m ¼ ộ1, 2) 

m = 1 + 2-23 M 



Examples 
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binary 

Binary point 

Sign M 



IEEE-754 conversion float 

21 

• Convert -12.62510 IEEE-754 float format. 

• Step #1: Convert -12.62510 = -1100.1012   = 101 / 8 

•  Step #2: Normalize -1100.1012 = -1.1001012 * 2
3 

•  Step #3:  

Fill sign -> +/- 0/1.  

Expoment + 127 -> 130 -> 1000 0010 .   

Leading bit of mantissa is hidden -> 

 

1  1000 0010 . 1001 0100 0000 0000 0000 000 
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Example: 0.75 

0.75 10 = 0.11 2 = 1.1 x 2 -1 = 3/4 

1.1 = 1. F → F = 1 

E – 127 = -1 → E = 127 -1 = 126 = 011111102 

S = 0 

 

00111111010000000000000000000000 = 

0x3F400000 
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Example 0.110    to float 

0.110 = 0.000110011....2 

         = 1.100112 x 2 
-4 = 1.F x 2 E-127 

F = 10011    -4 = E – 127 

E = 127 -4 = 123 = 011110112 

 

0011 1101 1100 1100 1100 1100 1100 1100 1100 11.. 

0x3DCCCCCD, proč je D ? 
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Special numbers NaN, +Inf a -Inf 

¸ If the result of the mathematical operation for a given input is not 
defined (log -1), or the result is ambiguous as 0/0, + Inf -Inf, then the 
NaN (Not-a-Number) value is stored, the exponent is set to all ones, 
and mantissa is non zero. 

¸ The result of only overflow from the range is epresented by infinity (+ 
Inf or -Inf), the exponent is all ones and mantissa contain zero. 

Infinity 

 + 0 11111111 00000000000000000000000 +Inf 

 - 1 11111111 00000000000000000000000 -Inf 

 NaN 0 11111111   mantis sa !=0  NaN 



Normalized and denormalized numbers 

 
If the exponent is between 1 and 254, a normal real 

number is represented. 

 

If the exponent is 0: 
•  if fraction is 0, then value = 0.  

 

•  if fraction is not zero, it represents a denormalized 

number. 

    

 b1 b2 … b23 represents 0. b1 b2 … b23 rather than  

1.b1b2 … b23  

 

Why? To reduce the chance of underflow. 



Denormals? 

• The purpose of introducing denormalized numbers is to 
extend the representation of numbers that are closer to 
zero, ie numbers of very small (in the figure below the area 
is labeled blue). 
 

• Denormalized numbers have a zero exponent, and the 
hidden bit before the command line is implicitly zero. 
 

• The price is the necessity of special treatment of the case 
zero exponent, nonzero mantisa -> denormalized numbers 
support only some implementations. (Intel co-processors 
have) 

A0M36APO   
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Hidden 1 

¸ For each standard number, the most important mantissa bit is 1, 
thus, it does not need to be stored. 

¸ If the value is exponent field is 0, then the number is 
"denormalized", hidden bit is 0. 

¸ Denormals allow you to maintain a resolution ranging from the 
smallest normalized number to zero 

the least denormal 

0 

- underflow 

   the least normal number 

  -> normalized numbers denormals 



Denormals - to be, or to be not ? 

Denormal computations use hardware and/or operating system 
resources to handle denormals; these can cost hundreds of clock 
cycles.  
Denormal computations take much longer to calculate than normal 
computations. 
 
There are several ways to avoid denormals and increase the 
performance of your application: 
 
• Scale the values into the normalized range. 
• Use a higher precision data type with a larger range. 
• Flush denormals to zero. 
 
                    [Source: https://software.intel.com/en-us/node/523326  ] 
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Overview 
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Short and Long IEEE 754 Formats: Features 

Some features of ANSI/IEEE standard floating-point formats  

Feature Single/Short Double/Long 

Word width in bits 32 64 

Significand in bits 23 + 1 hidden 52 + 1 hidden 

Significand range [1, 2 ï 2ï23] [1, 2 ï 2ï52] 

Exponent bits 8 11 

Exponent bias 127 1023 

Zero (Ñ0) e + bias = 0, f = 0 e + bias = 0, f = 0 

Denormal e + bias = 0, f Í 0 
represents Ñ0.f ³ 2ï126 

e + bias = 0, f Í 0 
represents Ñ0.f ³ 2ï1022 

Infinity (°Ð) e + bias = 255, f = 0 e + bias = 2047, f = 0 

Not-a-number (NaN) e + bias = 255, f Í 0 e + bias = 2047, f Í 0 

Ordinary number e + bias Í [1, 254] 
e Í [ï126, 127] 
represents 1.f ³ 2e  

e + bias Í [1, 2046] 
e Í [ï1022, 1023] 
represents 1.f ³ 2e 

min 2ï126 @ 1.2 ³ 10ï38 2ï1022 @ 2.2 ³ 10ï308 

max @ 2128 @ 3.4 ³ 1038  @ 21024 @ 1.8 ³ 10308 



IEEE 754 Formats 
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Half precision (binary16) 

Single precision (binary32) 

Double precision (binary64) 

Quadruple precision (binary128) 

Source: Herbert G. Mayer, PSU 

 



X86 Extended precision (80 bits) 

32 
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Doing  Math  in  FPGAs,  Part  3
(Floating--Point)

For  the  purposes  of  this  column  we  will  focus  on  the  IEEE  754

2008  floating--point  standard  (hereinafter  referred  to  as  "754").

754  defines  a  couple  of  implementations,  primarily  based  on  the

width  of  their  mantissa.  These  are  Half,  Single,  Double,  Double

Extended,  and  Quad  Precision.  The  binary  representations  of

these  would  be  as  follows:

(Click  here  to  see  a  larger,  more  detailed  image.)

754  also  includes  some  special  formatting  for  certain  values,  such

as  NaN  (not  a  number),  infinity,  and  some  others.  I'll  leave  it  to

you  to  research  those.  For  clarity,  I'll  stick  to  the  half--precision

(16--bit)  format  in  this  article.  Except  for  the  range  of  possible

values  and  biases  (which  I'll  blather  on  about  in  a  bit),  things  work

the  same  for  each  type.

First,  there's  the  sign  bit.  If  our  number  is  negative,  then  the  sign

bit  will  be  a  "1,"  otherwise  it  will  be  a  zero  (negative  zero  is

possible  to  keep  divide  by  zeroes  "honest").  Easy,  right?

Next  is  the  exponent.  Here,  there  is  a  trick;;  as  the  exponent  does

not  have  a  sign  bit,  and  we  (should)  all  know  that  exponents  can

be  negative.  The  trick  is  that  the  exponent  has  a  bias  which  must

be  subtracted  in  order  to  find  its  true  value.  The  bias  can  be

computed  as  follows:

Or,  equivalently:

Where:
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Where:

b  =  the  bias

n  =  the  number  of  bits  in  the  exponent

More  simply,  the  biases  are  shown  in  the  table  below:

This  means  that  in  our  half--precision  number,  our  exponent  can

have  the  range  [--15  to  16].  That's  a  lot  of  zeroes!  But  this

introduces  one  of  the  drawbacks  of  floating  point  numbers,  and

that  is  binimal  point  alignment.  So,  imagine  that  we're  adding  two

numbers  with  different  exponents  ----  we  first  need  to  shift  one  of

the  numbers  (or  both)  until  their  binimal  points  are  aligned.  We

also  need  to  keep  track  of  the  result  of  the  addition  and  update

the  exponent  if  there  was  a  carry  out  (overflow).

The  final  part  of  our  floating  point  number  is  the  mantissa.  In  our

half--precision  implementation  there  are  11  bits  of  information.

"Wait,"  you  might  say,  "there  are  actually  only  10  bits!"  This  is  true,

but  the  trick  is  that  the  11th  bit  (the  most--significant  bit)  is  implied.

Basically,  you  keep  shifting  the  mantissa  left  (and  modifying  your

exponent  accordingly)  until  you  find  the  first/last  '1'  (depending  on

the  sign  of  the  exponent),  at  which  point  you  "throw  that  '1'  away."

Here's  an  example  ----  let's  store  the  number  0.02  as  follows:

(Click  here  to  see  a  larger,  more  detailed  image.)

So,  that's  how  we  store  our  number  into  the  floating--point  format.

Even  though  the  floating--point  format  has  the  advantages  of  high

dynamic  range  in  a  fairly  compact  space,  we  can  also  see  that

there  are  some  disadvantages  as  follows:

1.  Floating--point  (like  all  binary  representations)  does  not  map

well  into  decimal  (that  is,  the  precision  limits  the  translation).

2.  You  may  need  to  apply  the  bias  prior  to  an  operation  (not

necessary  for  multiplication  or  division,  as  the  exponents

add/subtract).

3.  To  add  two  numbers,  you  must  first  "unroll"  the  exponents

to  align  their  binimal  points.

4.  After  a  math  operation,  you  must  "reroll"  the  exponents.

5.  The  act  of  "unrolling"  the  exponents  can  lead  to  a  loss  of

precision  if  your  registers  are  too  narrow.

There  is  also  a  disadvantage  in  that  you  may  need  to  "intelligently"

decide  which  number  to  unroll  for  a  given  operation  ----  that  is,

there  needs  to  be  a  decision  made  about  which  value  is  more

significant  so  you  don't  lose  (or  gain)  significance  during  the

unrolling  operations.  As  an  example,  consider  3.24  +  0.02001;;

which  of  these  should  lose  bits  if  it  proves  necessary  to  do  so?

The  answer  is  0.02001,  as  the  result  cannot  be  more  "precise"

than  any  of  the  inputs.

Another  drawback  that  should  be  obvious  at  this  point  is

truncation.  754  defines  a  couple  of  different  ways  to  perform

rounding,  but  I'm  betting  that  in  many  cases  we  might  not  want  to
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Bit 1. není skrytý! 
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Storage of numbers in memory 

32bit hex number: 1234567 

Big Endian    - downto  

Little Endian  - to  

0x100 0x101 0x102 0x103 

01 23 45 67 01 23 45 67 

0x100 0x101 0x102 0x103 

67 45 23 01 67 45 23 01 

address in memory 

address in memory 

Check storage type 

• when numbers are transferred between computers 

• when single bytes of numbers are picked up 



Storage number in memory 

 

 

 

 

 

 

 

Little Endien comes from the book 

Gulliver's Travels , Jonathon Swift 1726, in 

which denote one of the two feuding 

factions of Lilliputs. Her followers ate eggs 

from the narrower end to a wider, while the 

Big Endien proceeded in reverse. A war 

could not be long in coming ... 

Remember, how war had ended? 

0x100 0x101 0x102 0x103 

01 23 45 67 

0x100 0x101 0x102 0x103 

67 45 23 01 

Big Endian   - downto  

Little Endian - to  

01 23 45 67 

67 45 23 01 



1st seminaries 

/* Simple program to examine how are different data types encoded in memory */ 

#include <stdio.h> 
/** The macro determines size of given variable and then 

* prints individual bytes of the value representation */ 

#define PRINT_MEM(a) print_mem((unsigned char*)&(a), sizeof(a)) 

 

void print_mem(unsigned char *ptr, int size)  

{   int i; 

    printf("address = 0x%08lx\n", (long unsigned int)ptr); 

    for (i = 0; i < size; i++)  

    {  printf("0x%02x ", *(ptr + i));  } 

    printf("\n"); 

} 



1st seminaries 

int main()  
{ /* try for more types: long, float, double, pointer */ 

  unsigned int unsig = 5; 
  int sig = -5; 
 
/* Read GNU C Library manual for conversion syntax for other types */ 
/* https://www.gnu.org/software/libc/manual/html_node/Formatted-Output.html */ 

  printf("value = %d\n", unsig); 
  PRINT_MEM(unsig); 
 
  printf("\nvalue = %d\n", sig); 
  PRINT_MEM(sig); 
   
return 0; 
} 
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optional 

parts 

optional 

parts 

Basic Steps of C Compiler  

code.C 

 

processor Linker  

gcc C-compiler passes 1 to M 

C preprocessor modifies source code by substitutions 

metacode 

code.tmp 

Compiler passes M to N: Optimization of metacode 

relative object 

module 

Loader  

system 

libraries 

string.h stdio.h code.h 

38  
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C primitive types 

1) In many implementations, it is not a standard C datatype, but only common  

    custom for user's "#define" macro definitions, see next slides 

Size Java C  C alternative Range 

1 boolean any integer, true if !=0  BOOL(1 0  to !=0 

8 byte char(2 signed char –128 to +127 

8 unsigned char BYTE(1 0 to 255 

16 short int  signed short –32768 to +32767 

16 unsigned short 0 to + 65535 

32 int int signed int -2^31 to 2^31-1 

32 unsigned int DWORD(1 0 to 2^32-1 

64 long long long int -2^63 to 2^63-1 

64 unsigned long LWORD(1 0 to 2^64-1 

2) Default is signed, but the best way is to specify. 
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Definition of BYTE and BOOL 

// by substitution rule no ; and no type check 

#define BYTE unsigned char 

#define BOOL int 

// by introducing new type, ending ; is required 

Â typedef unsigned char BYTE; 

Â typedef int BOOL; 

C language has no strict type checking #define ~ typedef,  

but typedef is usually better integrated into compiler. 
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Defining a Parameterized Macro 

#define PRINT_MEM(a) print_mem((unsigned char*)&(a), sizeof(a)) 
 

Similar to a C function, preprocessor macros can be 
defined with a parameter list; parameters are without 
data types. 

 

Syntax: 

 #define MACRONAME(parameter_list ) text 

 

No white space before (. 
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 Examples: 

 #define MAXVAL(A,B) ((A) > (B)) ? (A) : (B) 

 

 #define PRINT(e1,e2) 

printf(ò%c\t%d\nò,(e1),(e2)); 

 

 #define putchar(x) putc(x, stdout) 

 

#define PRINT_MEM(a) print_mem((unsigned char*)&(a), 
sizeof(a)) 
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Side-effects!!! 
 Example: 

 #define PROD1(A,B) A * B 

 Wrong result: 

 PROD1(1+3,2) Ÿ 1+3 * 2 

 

  Improved example with () 

 #define PROD2(A,B) (A) * (B) 

 

 PROD2(1+3,2) Ÿ (1+3) * (2) 
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Pointer Operators  

& (address operator) 

Returns the address of its operand 

Example 

  int y = 5; 
int *yPtr; 

yPtr = &y;    // yPtr gets address of y 

yPtr “points to” y 

 

yPtr 

y 

5 

yptr 

500000 600000 

y 

600000 5 

address of y 

is value of 

yptr 
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Pointer Operators 

& (address operator) 

Returns the address of its operand 

* dereference address 

Get operand stored in address location 

*  and  &  are inverses  
(though not always applicable) 

Cancel each other out 

*&myVar == myVar 

              and 
&*yPtr == yPtr 



46 

Size of Pointer in C-kod 

int * ptri; 

char * ptrc; 

double * ptrd; 

- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+ 

ptri  

ptri+1  

ptrc  

ptrc+1 

ptrd  

ptrd+1 

*ptrx  ≡ ptrx[0]  

*(ptrx+1) ≡ ptrx[1] 

*(ptrx+n) ≡ ptrx[n] 

*(ptrx-n) ≡ ptrx[-n] 

nr1 = sizeof (double); 

nr2 = sizeof (double*); 

nr1 != nr2 
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Surprise or not ??? 

int main()  { float x; double d; 

x = 116777215.0;   

   printf("%.3f\n", x);        // 116777216.000 

   printf("%.3lf\n", x);       // 116777216.000 - it has not significance for float/double nem§ l 

vĨznam 

   printf("%.3g\n", x);       // 1.17e+08 

   printf("%.3e\n", x);       // 1.168e+08 

   printf("%lx %f\n", x, x);  // 0 0.00000   -  Sometime l need not specify 64 bit. 

   printf("%llx %f\n", x, x); // 419bd78400000000 116777216.000000 

   printf("%lx %f\n", *(long *)&x, x); // 4cdebc20 116777216.00000 

x = 116777216.3;  printf("%.3f\n", x); // 116777216.000  - float cut end of mantissa 

d = 116777216.3;  printf("%.3f\n", d); // 116777216.300 

x = 116777217.0;  printf("%.3f\n", x); // 116777216.000 

x = 116777218.0;  printf("%.3f\n", x); // 116777216.000  

x = 116777219.0;  printf("%.3f\n", x); // 116777216.000 

x = 116777220.0;  printf("%.3f\n", x); // 116777216.000 

x = 116777221.0;  printf("%.3f\n", x); // 116777224.00 

return 0;  

}  


