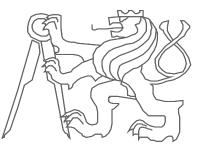
Computer Architectures

Real Arithmetic

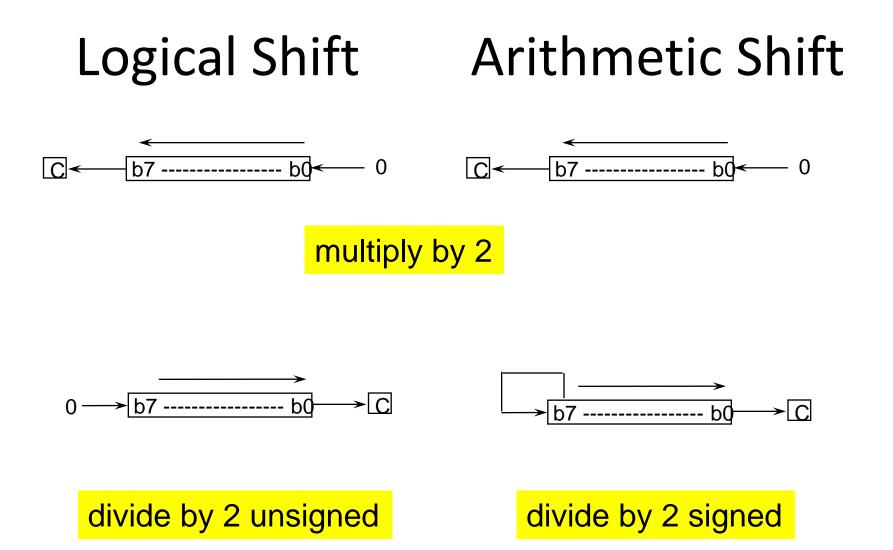
Richard Šusta, Pavel Píša



Czech Technical University in Prague, Faculty of Electrical Engineering

Speed of operations

Operation	Language C	
Bit negation	~X	
Multiplying or dividing by 2 ⁿ	x< <n ,="" x="">>n</n>	
Increment, decrement	++x, x++,x, x	
Minus number <- bit negation+increment	-x	
Adding	x+y	
Subtracting <- minus + addition	х-у	
Multiplying by hardware multiplyer		
Multiplying by sequence multiplyer	x*y	
Divisiov	x/y	

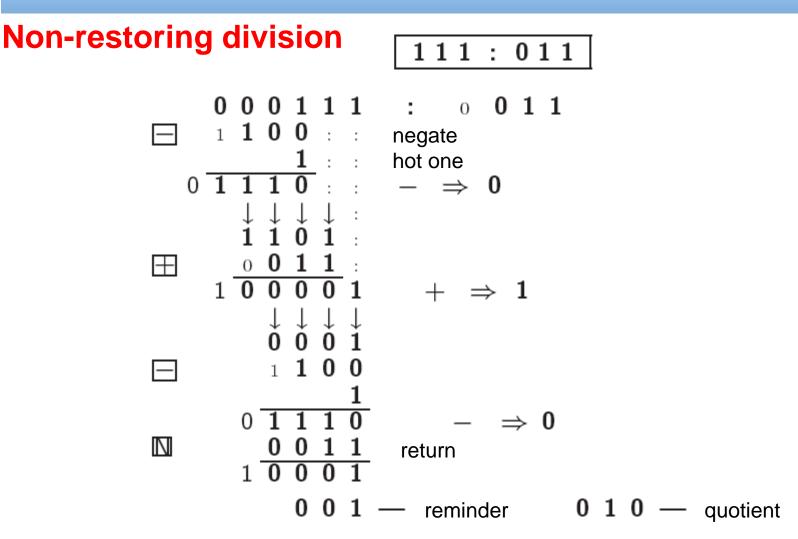


Sign Extension Example in C

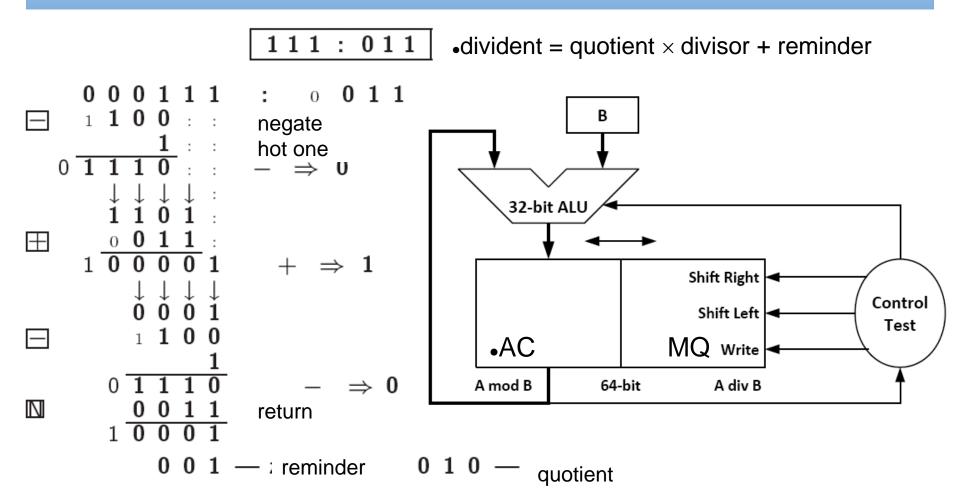
short	int x	=	15213;
int	ix	=	(int) x;
short	int y	=	-15213;
int	iy	=	(int) y;

	Decimal	Hex	K		Bina	ary	
Х	15213	3	BB 6D			00111011	01101101
ix	15213	00 00 C	24 92	00000000	00000000	00111011	01101101
У	-15213	С	24 93			11000100	10010011
iy	-15213	FF FF C	24 93	11111111	11111111	11000100	10010011

Hardware divider



Hardware divider logic (32b case)



Non-restoring division

Algorithm of the sequential division

Restoring division

```
MQ = dividend;
B = divisor; (Condition: divisor is not 0!)
AC = 0;
```

```
for( int i=1; i <= n; i++){
```

SL (shift AC MQ by one bit to the left, the LSB bit is kept on zero)

 \rightarrow Value of MQ register represents quotient and AC remainder

Example of X/Y division

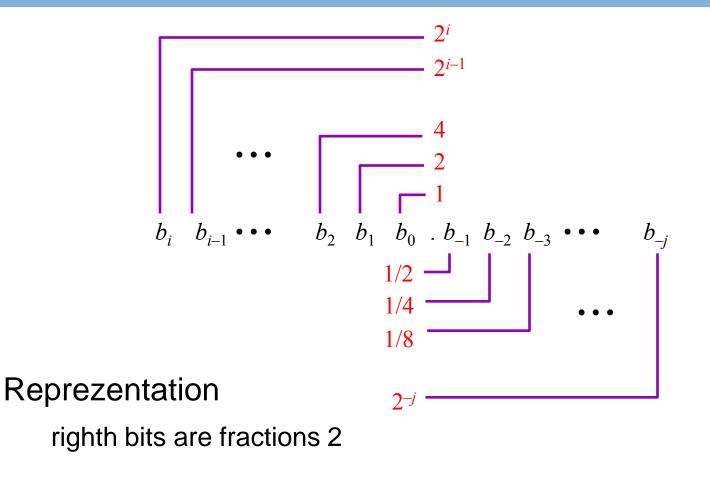
•Dividend x=1010 and divisor y=0011

Restoring division

i	operation	AC	MQ	B	comment
		0000	1010	0011	initial setup
1	SL	0001	0100		
	nothing	0001	0100		the if condition not true
2	SL	0010	1000		
		0010	1000		the if condition not true
3	SL	0101	0000		$r \ge y$
	$AC = AC - B; MQ_0 = 1;$	0010	0001		
4	SL	0100	0010		$r \ge y$
	$AC = AC - B; MQ_0 = 1;$	0001	0011		end of the cycle

•x : y = 1010 : 0011 = 0011 reminder 0001, (10 : 3 = 3 reminder 1)

Fractional Binary Numbers



 $\sum_{k=-j} b_k \cdot 2^k$

Fractional numbers

Value	Representation
5-3/4	101.112
2-7/8	10.1112
63/64	0.1111112

Operation

Dividing by 2 - shift right Multiplying by 2 - shift left Numbers below $0.1111111..._2$ are less than 1.0 $1/2 + 1/4 + 1/8 + ... + 1/2^i + ... \rightarrow 1.0$

Binary→ Decadic

 $23.47 = 2 \times 10^{1} + 3 \times 10^{0} + 4 \times 10^{-1} + 7 \times 10^{-2}$ † decimal point

Decadic:

 $-123,000,000,000 \rightarrow -1.23 \times 10^{14}$ $0.000\ 000\ 000\ 000\ 000\ 123 \rightarrow +1.23 \times 10^{-16}$

Binary:

110 1100 0000 0000 → $1.1011 \times 2^{14} = 29696_{10}$ -0.0000 0000 0000 0001 1011 → -1.1101×2^{-16} =-2.765655517578125 × 10⁻⁵

Beware

Finite decadic number → infinity binary number

Example:

 $0.1_{\text{ten}} \rightarrow 0.2 \rightarrow 0.4 \rightarrow 0.8 \rightarrow 1.6 \rightarrow 1.2 \rightarrow 3.2 \rightarrow 6.4 \rightarrow 12.6 \rightarrow \dots$

 $0.1_{10} = 0.00011001100110011..._{2}$

Example 0.1_{10} to real

$0.1_{10} = 0.000110011..._{2} =$

0011 0011...

Real numbers

Limits

exact representation only $x/2^k$

Other numbers are inexact

Value Binary float

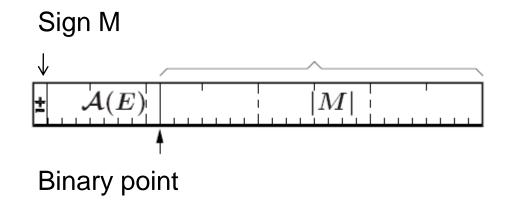
- **1/3** 0.01010101[01]...₂
- **1/5** 0.00110011[0011]...₂
 - **1/10** 0.000110011[0011]...₂

Type Float

Mantissa: direct code — sign and absolute value

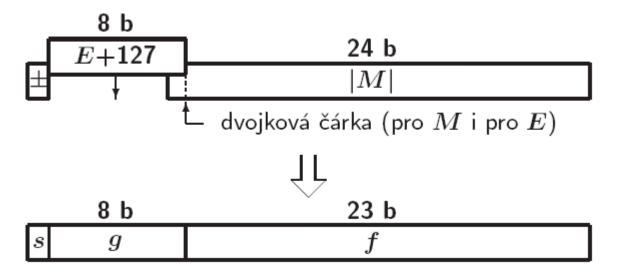
Exponent: additive code

(K-excess for float +127, for double +1023).



ANSI/IEEE Std 754-1985 (2008) – 32b a 64b formát

ANSI/IEEE Std 754-1985 — simple — 32b



ANSI/IEEE Std 754-1985 — double— 64b

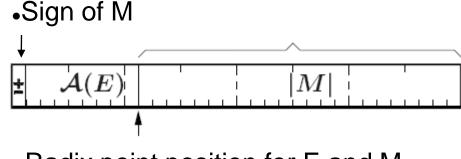
g...11b *f*...52b

The representation/encoding of floating point number

- Mantissa encoded as the sign and absolute value (magnitude) – equivalent to the direct representation
- Exponent encoded in biased representation (K=127 for single precision)
- The implicit leading one can be omitted due to normalization of m \in (1, 2) 23+1 implicit bit for single

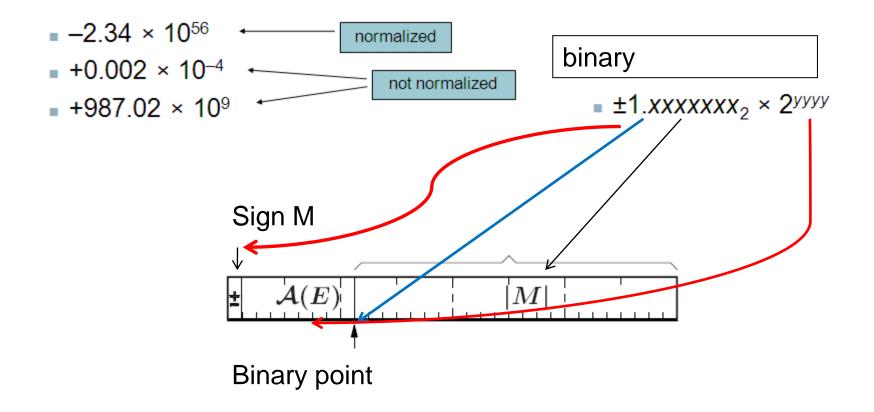
$$X = -1^{s} 2^{A(E)-127} m$$
 where $m \in (1, 2)$

$$m = 1 + 2^{-23} M$$



Radix point position for E and M

Examples



IEEE-754 conversion float

- Convert -12.625₁₀ IEEE-754 float format.
- Step #1: Convert $-12.625_{10} = -1100.101_2 = 101 / 8$
- Step #2: Normalize $-1100.101_2 = -1.100101_2 * 2^3$
- Step #3:

Fill sign -> +/- 0/1.

Expoment + 127 -> 130 -> 1000 0010.

Leading bit of mantissa is hidden ->

$1 \ 1000 \ 0010 \ . \ 1001 \ 0100 \ 0000 \$

Example: 0.75



Example 0.1_{10} to float

 $0.1_{10} = 0.00011 \underline{0011..._2}$ = $1.1 \underline{0011}_2 \times 2^{-4} = 1.F \times 2^{E-127}$ F = $1 \underline{0011}$ -4 = E - 127 E = $127 - 4 = 123 = 01111011_2$

Special numbers NaN, +Inf a -Inf

- If the result of the mathematical operation for a given input is not defined (log -1), or the result is ambiguous as 0/0, + Inf -Inf, then the NaN (Not-a-Number) value is stored, the exponent is set to all ones, and mantissa is non zero.
- The result of only overflow from the range is epresented by infinity (+ Inf or -Inf), the exponent is all ones and mantissa contain zero.

NaN 0 11111111 mantissa !=0	NaN
-----------------------------	-----

Infinity

+	0 1111111 00000000000000000000000000000	+Inf
-	1 1111111 0000000000000000000000000000	-Inf

Normalized and denormalized numbers

If the exponent is between 1 and 254, a normal real number is represented.

If the exponent is 0:

- if fraction is 0, then value = 0.
- if fraction is not zero, it represents a denormalized number.

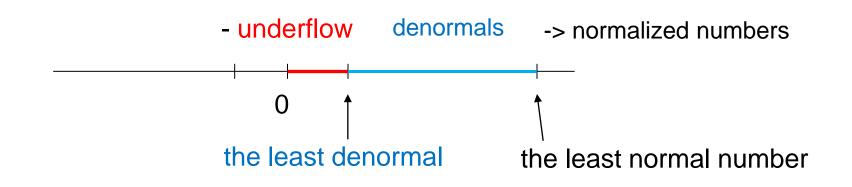
 $b_1\,b_2\,\ldots\,b_{23}$ represents 0. $b_1\,b_2\,\ldots\,b_{23}$ rather than $1.b_1b_2\,\ldots\,b_{23}$

Denormals?

- The purpose of introducing denormalized numbers is to extend the representation of numbers that are closer to zero, ie numbers of very small (in the figure below the area is labeled blue).
- Denormalized numbers have a zero exponent, and the hidden bit before the command line is implicitly zero.
- The price is the necessity of special treatment of the case zero exponent, nonzero mantisa -> denormalized numbers support only some implementations. (Intel co-processors have)

Hidden 1

- For each standard number, the most important mantissa bit is 1, thus, it does not need to be stored.
- If the value is exponent field is 0, then the number is "denormalized", hidden bit is 0.
- Denormals allow you to maintain a resolution ranging from the smallest normalized number to zero



Denormals - to be, or to be not ?

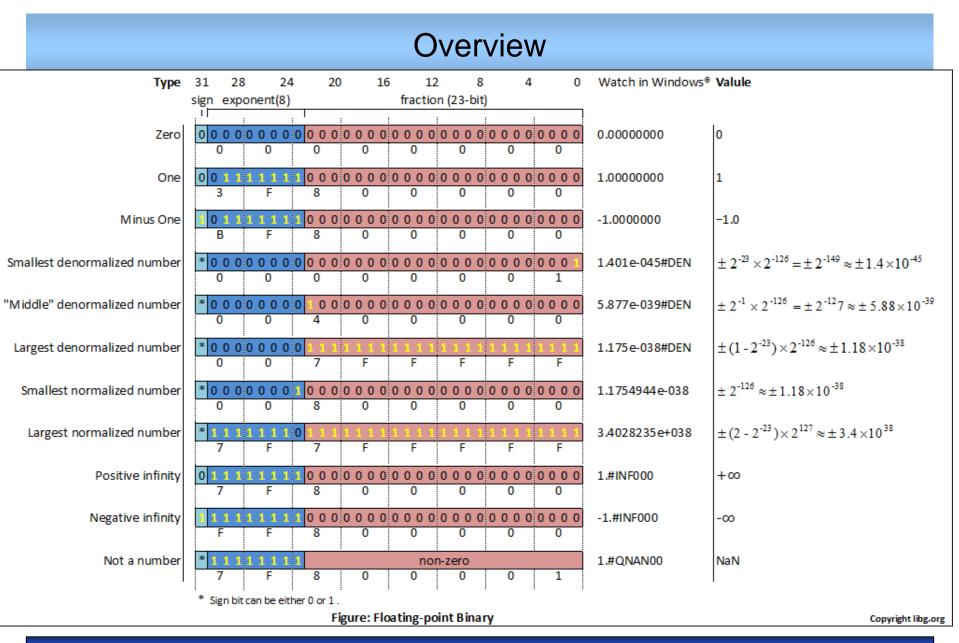
Denormal computations use hardware and/or operating system resources to handle denormals; these can cost hundreds of clock cycles.

Denormal computations take much longer to calculate than normal computations.

There are several ways **to avoid denormals** and increase the performance of your application:

- Scale the values into the normalized range.
- Use a higher precision data type with a larger range.
- Flush denormals to zero.

[Source: https://software.intel.com/en-us/node/523326]

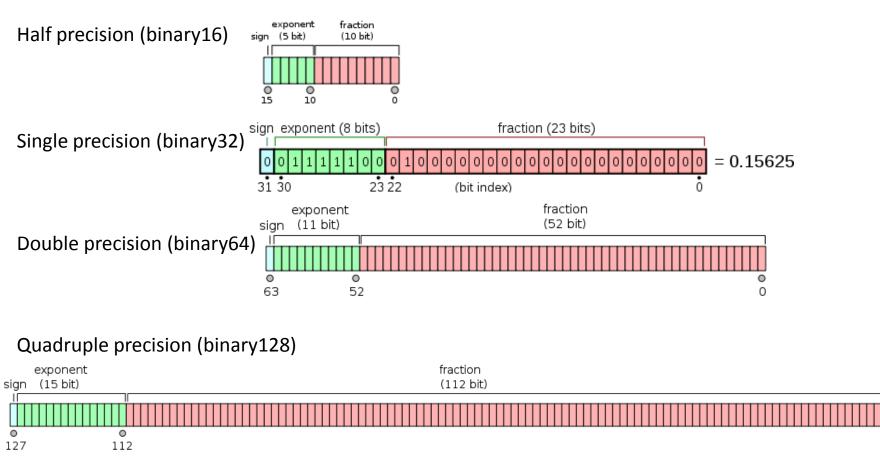


Short and Long IEEE 754 Formats: Features

Some features of ANSI/IEEE standard floating-point formats

Feature	Single/Short	Double/Long
Word width in bits	32	64
Significand in bits	23 + 1 hidden	52 + 1 hidden
Significand range	$[1, 2-2^{-23}]$	$[1, 2 - 2^{-52}]$
Exponent bits	8	11
Exponent bias	127	1023
Zero (±0)	e + bias = 0, f = 0	e + bias = 0, f = 0
Denormal	$e + bias = 0, f \neq 0$	$e + bias = 0, f \neq 0$
	represents $\pm 0.f \times 2^{-126}$	represents $\pm 0.f \times 2^{-1022}$
Infinity $(\pm \infty)$	e + bias = 255, f = 0	e + bias = 2047, f = 0
Not-a-number (NaN)	$e + bias = 255, f \neq 0$	$e + bias = 2047, f \neq 0$
Ordinary number	$e + bias \in [1, 254]$	$e + bias \in [1, 2046]$
	$e \in [-126, 127]$	$e \in [-1022, 1023]$
	represents $1 f \times 2^e$	represents $1 \cdot f \times 2^e$
min	$2^{-126} \cong 1.2 \times 10^{-38}$	$2^{-1022} \cong 2.2 \times 10^{-308}$
тах	$\simeq 2^{128} \simeq 3.4 \times 10^{38}$	$\cong 2^{1024} \cong 1.8 \times 10^{308}$

IEEE 754 Formats

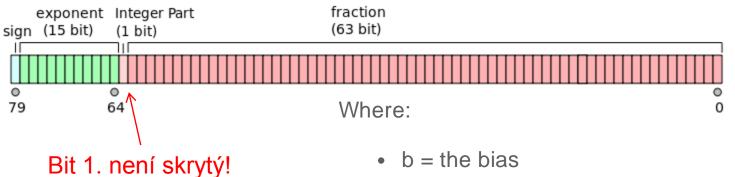


Source: Herbert G. Mayer, PSU

31_

0

X86 Extended precision (80 bits)



• n = the number of bits in the exponent

More simply, the biases are shown in the table below:

Туре	Bits	Bias
Half	5	15
Single	8	127
Double	11	1023
Extended	15	16383
Quad	15	16383

$$b = \frac{2^n}{2} - 1$$

 a^n

Or, equivalently:

$$b = (2^{n-1}) - 1$$

*Real number

and their storage in computers

Storage of numbers in memory

32bit hex number: 1234567

Big Endian - downto

address in memory 0x100 0x101 0x102 0x103

01	23	45	67		
----	----	----	----	--	--

Little Endian - to

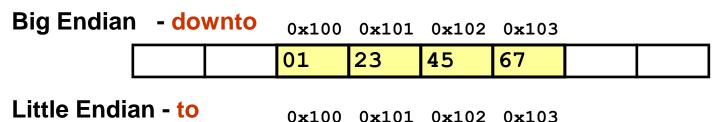
address in memory 0x100 0x101 0x102 0x103

67 45 23 01	
-------------	--

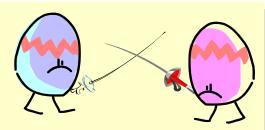
Check storage type

- when numbers are transferred between computers
- when single bytes of numbers are picked up

Storage number in memory



 67
 45
 23
 01



Little Endien comes from the book Gulliver's Travels , Jonathon Swift 1726, in which denote one of the two feuding factions of Lilliputs. Her followers ate eggs from the narrower end to a wider, while the **Big Endien** proceeded in reverse. A war could not be long in coming ...

Remember, how war had ended?

1st seminaries

/* Simple program to examine how are different data types encoded in memory */ #include <stdio.h>

/** The macro determines size of given variable and then

* prints individual bytes of the value representation */

#define PRINT_MEM(a) print_mem((unsigned char*)&(a), sizeof(a))

```
void print_mem(unsigned char *ptr, int size)
{ int i;
    printf("address = 0x%08lx\n", (long unsigned int)ptr);
    for (i = 0; i < size; i++)
    { printf("0x%02x ", *(ptr + i)); }
    printf("\n");</pre>
```

1st seminaries

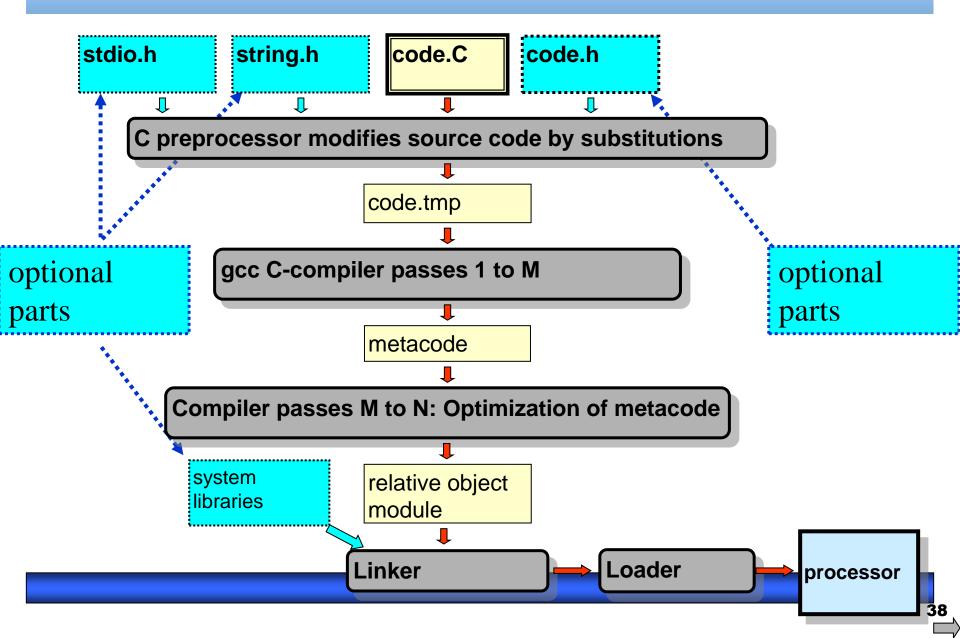
```
int main()
{ /* try for more types: long, float, double, pointer */
    unsigned int unsig = 5;
    int sig = -5;
```

/* Read GNU C Library manual for conversion syntax for other types */
/* https://www.gnu.org/software/libc/manual/html_node/Formatted-Output.html */
printf("value = %d\n", unsig);
PRINT_MEM(unsig);

```
printf("\nvalue = %d\n", sig);
PRINT_MEM(sig);
```

```
return 0;
```

Basic Steps of C Compiler



C primitive types						
Size	Java	C	C alternative	Range		
1	boolean	any integer, true if !=0	BOOL ⁽¹	0 to !=0		
8	byte	char ⁽²	signed char	-128 to +127		
8		unsigned char	BYTE ⁽¹	0 to 255		
16	short	int	signed short	-32768 to +32767		
16		unsigned short		0 to + 65535		
32	int	int	signed int	-2^31 to 2^31-1		
32		unsigned int	DWORD ⁽¹	0 to 2^32-1		
64	long	long	long int	-2^63 to 2^63-1		
64		unsigned long	LWORD ⁽¹	0 to 2^64-1		

1) In many implementations, it is not a standard C datatype, but only common custom for user's "#define" macro definitions, see next slides

2) Default is signed, but the best way is to specify.

// by substitution rule no ; and no type check
#define BYTE unsigned char
#define BOOL int

// by introducing new type, ending ; is required
typedef unsigned char BYTE;
typedef int BOOL;

C language has no strict type checking #define ~ typedef, but typedef is usually better integrated into compiler.

Defining a Parameterized Macro

#define PRINT_MEM(a) print_mem((unsigned char*)&(a), sizeof(a))

Similar to a C function, preprocessor macros can be defined with a parameter list; parameters are without data types.

Syntax:

Examples:

#define MAXVAL(A,B) ((A) > (B)) ? (A) : (B)

```
#define PRINT(e1,e2)
printf("%c\t%d\n",(e1),(e2));
```

#define putchar(x) putc(x, stdout)

#define PRINT_MEM(a) print_mem((unsigned char*)&(a),
 sizeof(a))

Side-effects!!!

Example:

#define PROD1(A,B) A * B

Wrong result:

PROD1(1+3,2) \rightarrow 1+3 * 2

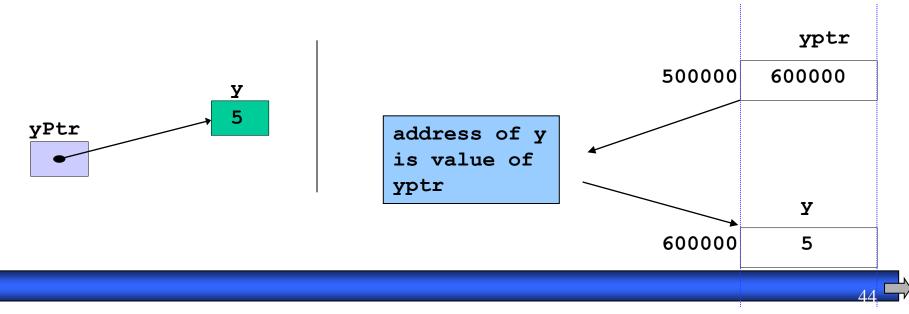
Improved example with ()
#define PROD2(A,B) (A) * (B)

PROD2(1+3,2) \rightarrow (1+3) * (2)

& (address operator)

Returns the address of its operand

Example



Pointer Operators

& (address operator)

Returns the address of its operand

* dereference address

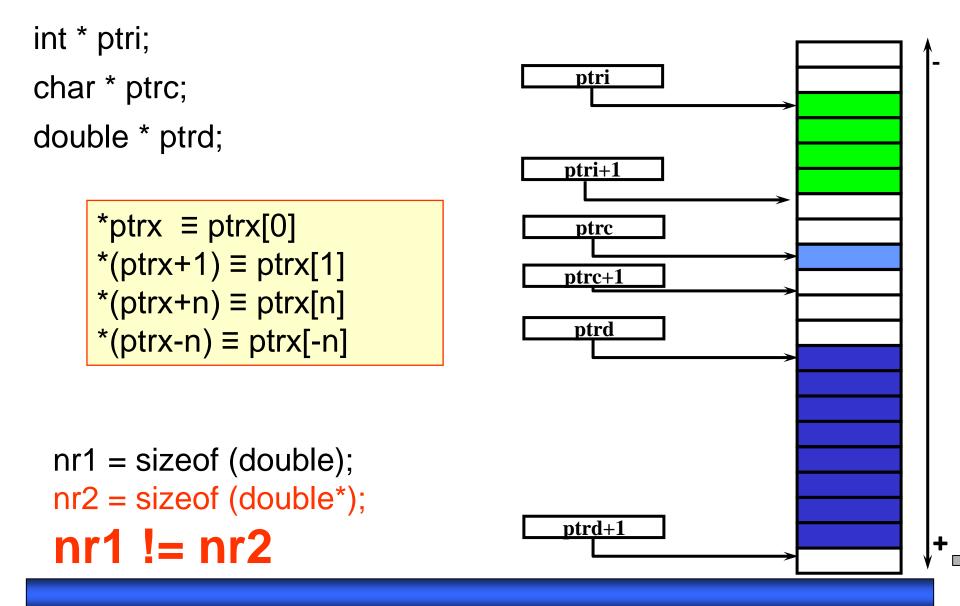
Get operand stored in address location

* and & are inverses (though not always applicable)

Cancel each other out

*&myVar == myVar and &*yPtr == yPtr

Size of Pointer in C-kod



Surprise or not ???

```
int main() { float x; double d;
x = 116777215.0;
 printf("%.3f\n", x);
                    // 116777216.000
 printf("%.3lf\n", x);
                       // 116777216.000 - it has not significance for float/double nemá l
   význam
 printf("%.3g\n", x); // 1.17e+08
 printf("%.3e\n", x); // 1.168e+08
 printf("%lx %f\n", x, x); // 0 0.00000 - Sometime I need not specify 64 bit.
 printf("%llx %f\n", x, x); // 419bd7840000000 116777216.000000
 printf("%lx %f\n", *(long *)&x, x); // 4cdebc20 116777216.00000
x = 116777216.3; printf("%.3f\n", x); // 116777216.000 - float cut end of mantissa
d = 116777216.3; printf("%.3f\n", d); // 116777216.300
x = 116777217.0; printf("%.3f\n", x); // 116777216.000
x = 116777218.0; printf("%.3f\n", x); // 116777216.000
x = 116777219.0; printf("%.3f\n", x); // 116777216.000
x = 116777220.0; printf("%.3f\n", x); // 116777216.000
x = 116777221.0; printf("%.3f\n", x); // 116777224.00
return 0;
```