
AE0B36APO Computer Architectures

Czech Technical University in Prague, Faculty of Electrical Engineering

Computer Architectures

Ver.1.00

Real Arithmetic
Richard Šusta, Pavel Píša

 2019 1

Speed of operations

Operation Language C

Bit negation ~x

Multiplying or dividing by 2n x<<n , x>>n

Increment, decrement ++x, x++, --x, x--

Minus number <- bit negation+increment -x

Adding x+y

Subtracting <- minus + addition x-y

Multiplying by hardware multiplyer
x*y

Multiplying by sequence multiplyer

Divisiov x/y

Logical Shift

C 0 b7 ----------------- b0

C b7 ----------------- b0 0

Arithmetic Shift

C 0 b7 ----------------- b0

C b7 ----------------- b0

multiply by 2

divide by 2 unsigned divide by 2 signed

Sign Extension Example in C

 short int x = 15213;

 int ix = (int) x;

 short int y = -15213;

 int iy = (int) y;

Decimal Hex Binary
x 15213 3B 6D 00111011 01101101

ix 15213 00 00 C4 92 00000000 00000000 00111011 01101101

y -15213 C4 93 11000100 10010011

iy -15213 FF FF C4 93 11111111 11111111 11000100 10010011

4

Hardware divider

negate

hot one

reminder

return

quotient

Non-restoring division

Hardware divider logic (32b case)

ḑivident = quotient ³ divisor + reminder

A̧C MQ

negate

hot one

return

reminder quotient

Non-restoring division

Algorithm of the sequential division

MQ = dividend;

B = divisor; (Condition: divisor is not 0!)

AC = 0;

for(int i=1; i <= n; i++) {

 SL (shift AC MQ by one bit to the left, the LSB bit is kept on zero)

 if(AC >= B) {

 AC = AC – B;

 MQ0 = 1; // the LSB of the MQ register is set to 1

 }

}

 Value of MQ register represents quotient and AC remainder

Restoring division

Example of X/Y division

i operation AC MQ B comment

0000 1010 0011 initial setup

1 SL 0001 0100

nothing 0001 0100 the if condition not true

2 SL 0010 1000

0010 1000 the if condition not true

3 SL 0101 0000 r ² y

AC = AC ς B; MQ0 = 1; 0010 0001

4 SL 0100 0010 r ² y

AC = AC ς B; MQ0 = 1; 0001 0011 end of the cycle

Ḑividend x=1010 and divisor y=0011

x̧ : y = 1010 : 0011 = 0011 reminder 0001, (10 : 3 = 3 reminder 1)

Restoring division

*
a their starage in computers

Fractional Binary Numbers

Reprezentation

righth bits are fractions 2

bi biï1 b2 b1 b0 bï1 bï2 bï3 bïj Å Å Å Å Å Å .

1

2

4

2iï1

2i

Å Å Å
Å Å Å

1/2

1/4

1/8

2ïj

bkÖ2
k

k=-j

i

ä

Fractional numbers

Value Representation

5-3/4 101.11 2

2-7/8 10.111 2

63/64 0.111111 2

Operation

Dividing by 2 - shift right

Multiplying by 2 - shift left

Numbers below 0.111111é2 are less than 1.0

1/2 + 1/4 + 1/8 + … + 1/2i + … 1.0

Comp Sci 251 -- Floating point
12

BinaryČ Decadic

23.47 = 2×101 + 3×100 + 4×10-1 + 7×10-2

 decimal point

10.01two = 1×21 + 0×20 + 0×2-1 + 1×2-2

 binary point

 = 1×2 + 0×1 + 0×½ + 1×¼

 = 2 + 0.25 = 2.25

Comp Sci 251 -- Floating point
13

Scientific notation

Decadic:

 -123,000,000,000,000 Č -1.23 × 1014

 0.000 000 000 000 000 123 Č +1.23× 10-16

Binary:

 110 1100 0000 0000 Č 1.1011× 214 = 2969610

 -0.0000 0000 0000 0001 1011 Č -1.1101 × 2-16

=-2.765655517578125 x 10-5

Comp Sci 251 -- Floating point
14

Beware

Finite decadic number Č infinity binary number

Example:

0.1ten Č 0.2 Č 0.4 Č 0.8 Č 1.6 Č 1.2 Č 3.2 Č 6.4 Č 12.6 Č …

0.110 = 0.00011001100110011…2

15

Example 0.110 to real

0.110 = 0.000110011....2 =

Real numbers

Limits

exact representation only x/2k

Other numbers are inexact

Value Binary float

1/3 0.0101010101[01]é2

1/5 0.001100110011[0011]é2

1/10 0.0001100110011[0011]é2

Type Float

Mantissa: direct code — sign and absolute value

Exponent: additive code
 (K-excess for float +127, for double +1023).

A0M36APO

Architektury poļ²taļŢ
17

Binary point

Sign M

18 B35APO Architektura poļ²taļŢ

ANSI/IEEE Std 754-1985 (2008) – 32b a 64b formát

ANSI/IEEE Std 754-1985 — double— 64b

g . . . 11b f . . . 52b

ANSI/IEEE Std 754-1985 — simple — 32b

The representation/encoding of floating point number

¸ Mantissa encoded as the sign and absolute value

(magnitude) – equivalent to the direct representation

¸ Exponent encoded in biased representation (K=127 for

single precision)

¸ The implicit leading one can be omitted due to

normalization of m ɴộ1, 2) – 23+1 implicit bit for single

Ŗadix point position for E and M

Şign of M

X = -1s 2A(E)-127 m where m ¼ ộ1, 2)

m = 1 + 2-23 M

Examples

A0M36APO Architektura poļ²taļŢ 20

binary

Binary point

Sign M

IEEE-754 conversion float

21

• Convert -12.62510 IEEE-754 float format.

• Step #1: Convert -12.62510 = -1100.1012 = 101 / 8

• Step #2: Normalize -1100.1012 = -1.1001012 * 2
3

• Step #3:

Fill sign -> +/- 0/1.

Expoment + 127 -> 130 -> 1000 0010 .

Leading bit of mantissa is hidden ->

1 1000 0010 . 1001 0100 0000 0000 0000 000

22

Example: 0.75

0.75 10 = 0.11 2 = 1.1 x 2 -1 = 3/4

1.1 = 1. F → F = 1

E – 127 = -1 → E = 127 -1 = 126 = 011111102

S = 0

00111111010000000000000000000000 =

0x3F400000

23

Example 0.110 to float

0.110 = 0.000110011....2

 = 1.100112 x 2
-4 = 1.F x 2 E-127

F = 10011 -4 = E – 127

E = 127 -4 = 123 = 011110112

0011 1101 1100 1100 1100 1100 1100 1100 1100 11..

0x3DCCCCCD, proč je D ?

24 B35APO Architektura poļ²taļŢ

Special numbers NaN, +Inf a -Inf

¸ If the result of the mathematical operation for a given input is not
defined (log -1), or the result is ambiguous as 0/0, + Inf -Inf, then the
NaN (Not-a-Number) value is stored, the exponent is set to all ones,
and mantissa is non zero.

¸ The result of only overflow from the range is epresented by infinity (+
Inf or -Inf), the exponent is all ones and mantissa contain zero.

Infinity

 + 0 11111111 00000000000000000000000 +Inf

 - 1 11111111 00000000000000000000000 -Inf

 NaN 0 11111111 mantis sa !=0 NaN

Normalized and denormalized numbers

If the exponent is between 1 and 254, a normal real

number is represented.

If the exponent is 0:
• if fraction is 0, then value = 0.

• if fraction is not zero, it represents a denormalized

number.

 b1 b2 … b23 represents 0. b1 b2 … b23 rather than

1.b1b2 … b23

Why? To reduce the chance of underflow.

Denormals?

• The purpose of introducing denormalized numbers is to
extend the representation of numbers that are closer to
zero, ie numbers of very small (in the figure below the area
is labeled blue).

• Denormalized numbers have a zero exponent, and the
hidden bit before the command line is implicitly zero.

• The price is the necessity of special treatment of the case
zero exponent, nonzero mantisa -> denormalized numbers
support only some implementations. (Intel co-processors
have)

A0M36APO

Architektury poļ²taļŢ
26

27 B35APO Architektura poļ²taļŢ

Hidden 1

¸ For each standard number, the most important mantissa bit is 1,
thus, it does not need to be stored.

¸ If the value is exponent field is 0, then the number is
"denormalized", hidden bit is 0.

¸ Denormals allow you to maintain a resolution ranging from the
smallest normalized number to zero

the least denormal

0

- underflow

 the least normal number

 -> normalized numbers denormals

Denormals - to be, or to be not ?

Denormal computations use hardware and/or operating system
resources to handle denormals; these can cost hundreds of clock
cycles.
Denormal computations take much longer to calculate than normal
computations.

There are several ways to avoid denormals and increase the
performance of your application:

• Scale the values into the normalized range.
• Use a higher precision data type with a larger range.
• Flush denormals to zero.

 [Source: https://software.intel.com/en-us/node/523326]

A0M36APO Architektury poļ²taļŢ 28

https://software.intel.com/en-us/node/523326
https://software.intel.com/en-us/node/523326
https://software.intel.com/en-us/node/523326

Overview

A0M36APO Architektura poļ²taļŢ 29

Short and Long IEEE 754 Formats: Features

Some features of ANSI/IEEE standard floating-point formats

Feature Single/Short Double/Long

Word width in bits 32 64

Significand in bits 23 + 1 hidden 52 + 1 hidden

Significand range [1, 2 ï 2ï23] [1, 2 ï 2ï52]

Exponent bits 8 11

Exponent bias 127 1023

Zero (Ñ0) e + bias = 0, f = 0 e + bias = 0, f = 0

Denormal e + bias = 0, f Í 0
represents Ñ0.f ³ 2ï126

e + bias = 0, f Í 0
represents Ñ0.f ³ 2ï1022

Infinity (°Ð) e + bias = 255, f = 0 e + bias = 2047, f = 0

Not-a-number (NaN) e + bias = 255, f Í 0 e + bias = 2047, f Í 0

Ordinary number e + bias Í [1, 254]
e Í [ï126, 127]
represents 1.f ³ 2e

e + bias Í [1, 2046]
e Í [ï1022, 1023]
represents 1.f ³ 2e

min 2ï126 @ 1.2 ³ 10ï38 2ï1022 @ 2.2 ³ 10ï308

max @ 2128 @ 3.4 ³ 1038 @ 21024 @ 1.8 ³ 10308

IEEE 754 Formats

31

Half precision (binary16)

Single precision (binary32)

Double precision (binary64)

Quadruple precision (binary128)

Source: Herbert G. Mayer, PSU

X86 Extended precision (80 bits)

32

Register | Login

About Us | Newsletter Sign Up | Mobile SiteHome News Opinion Messages Video Slideshows Education EELife Events

BREAKING NEWS

Next Session: Jan 20 -- Day 1: What Is an S--Parameter?

1/11/2014

10:21:18 AM

junko.yoshida Another thing that

amazed me at this year's CES was

the display of rows and rows of

beds, mattresses on the show floor!

People are obviously obsessed

with sleep ---- the lack of...

Most Commented Most Popular

Most Recent Comments

Navigate to Related Links

It All Started More Than 40 Years Ago...

What's Upsetting My FPGA?

A Few Good Bits

Seeing FPGAs Though Nemos's Eyes

Doing Math in FPGAs, Part 2 (BCD)

Tom Burke, Senior Systems Engineer
1/7/2014 03:42 PM EST

 20 comments post a comment

2 4

Blog

Doing Math in FPGAs, Part 3
(Floating--Point)

For the purposes of this column we will focus on the IEEE 754

2008 floating--point standard (hereinafter referred to as "754").

754 defines a couple of implementations, primarily based on the

width of their mantissa. These are Half, Single, Double, Double

Extended, and Quad Precision. The binary representations of

these would be as follows:

(Click here to see a larger, more detailed image.)

754 also includes some special formatting for certain values, such

as NaN (not a number), infinity, and some others. I'll leave it to

you to research those. For clarity, I'll stick to the half--precision

(16--bit) format in this article. Except for the range of possible

values and biases (which I'll blather on about in a bit), things work

the same for each type.

First, there's the sign bit. If our number is negative, then the sign

bit will be a "1," otherwise it will be a zero (negative zero is

possible to keep divide by zeroes "honest"). Easy, right?

Next is the exponent. Here, there is a trick;; as the exponent does

not have a sign bit, and we (should) all know that exponents can

be negative. The trick is that the exponent has a bias which must

be subtracted in order to find its true value. The bias can be

computed as follows:

Or, equivalently:

Where:

NO RATINGS

1 saves

LOGIN TO RATE

4Like 1

Planet Analog Power Management Programmable Logic Prototyping SoC Test & Measurement Wireless & Networking

NEWS & ANALYSIS: Chips Are Down for VCs, Wall Street

EE Times on Twitter follow us

 89 Are You Ready When Your Google Car Freaks Out?

 88 A Charm of CPUs & a Deceit of DSPs

 70 Preserving Data Books From Yesteryear

 61 My Arduino Robot Bites the Dust! Oh, the ...

 54 Programmable Logic Designline Welcomes All ...

 51 Soldering Course & Competition at EE Live! ...

 48 Whither My Solder?

 46 Driver Assistance: Radar or Vision?

 45 Do You Have a Working Paper Tape Reader?

 44 A Guide to Low--Cost PCB Tools

Like Us on Facebook

#CEVA gains from #MediaTek's
Global Plan
 eetimes.com/document.asp?dé
via @eetimes @MediaTek
 @CEVADSP

Andreas
 Roessler @a_roessler

George
 Leopold @gleopold1

20h

Where:

b = the bias

n = the number of bits in the exponent

More simply, the biases are shown in the table below:

This means that in our half--precision number, our exponent can

have the range [--15 to 16]. That's a lot of zeroes! But this

introduces one of the drawbacks of floating point numbers, and

that is binimal point alignment. So, imagine that we're adding two

numbers with different exponents ---- we first need to shift one of

the numbers (or both) until their binimal points are aligned. We

also need to keep track of the result of the addition and update

the exponent if there was a carry out (overflow).

The final part of our floating point number is the mantissa. In our

half--precision implementation there are 11 bits of information.

"Wait," you might say, "there are actually only 10 bits!" This is true,

but the trick is that the 11th bit (the most--significant bit) is implied.

Basically, you keep shifting the mantissa left (and modifying your

exponent accordingly) until you find the first/last '1' (depending on

the sign of the exponent), at which point you "throw that '1' away."

Here's an example ---- let's store the number 0.02 as follows:

(Click here to see a larger, more detailed image.)

So, that's how we store our number into the floating--point format.

Even though the floating--point format has the advantages of high

dynamic range in a fairly compact space, we can also see that

there are some disadvantages as follows:

1. Floating--point (like all binary representations) does not map

well into decimal (that is, the precision limits the translation).

2. You may need to apply the bias prior to an operation (not

necessary for multiplication or division, as the exponents

add/subtract).

3. To add two numbers, you must first "unroll" the exponents

to align their binimal points.

4. After a math operation, you must "reroll" the exponents.

5. The act of "unrolling" the exponents can lead to a loss of

precision if your registers are too narrow.

There is also a disadvantage in that you may need to "intelligently"

decide which number to unroll for a given operation ---- that is,

there needs to be a decision made about which value is more

significant so you don't lose (or gain) significance during the

unrolling operations. As an example, consider 3.24 + 0.02001;;

which of these should lose bits if it proves necessary to do so?

The answer is 0.02001, as the result cannot be more "precise"

than any of the inputs.

Another drawback that should be obvious at this point is

truncation. 754 defines a couple of different ways to perform

rounding, but I'm betting that in many cases we might not want to

EE
 Times

8,127 people like EE Times.

Facebook social plugin

Like

Source: Herbert G. Mayer, PSU

Bit 1. není skrytý!

*
and their storage in computers

Storage of numbers in memory

32bit hex number: 1234567

Big Endian - downto

Little Endian - to

0x100 0x101 0x102 0x103

01 23 45 67 01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01 67 45 23 01

address in memory

address in memory

Check storage type

• when numbers are transferred between computers

• when single bytes of numbers are picked up

Storage number in memory

Little Endien comes from the book

Gulliver's Travels , Jonathon Swift 1726, in

which denote one of the two feuding

factions of Lilliputs. Her followers ate eggs

from the narrower end to a wider, while the

Big Endien proceeded in reverse. A war

could not be long in coming ...

Remember, how war had ended?

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big Endian - downto

Little Endian - to

01 23 45 67

67 45 23 01

1st seminaries

/* Simple program to examine how are different data types encoded in memory */

#include <stdio.h>
/** The macro determines size of given variable and then

* prints individual bytes of the value representation */

#define PRINT_MEM(a) print_mem((unsigned char*)&(a), sizeof(a))

void print_mem(unsigned char *ptr, int size)

{ int i;

 printf("address = 0x%08lx\n", (long unsigned int)ptr);

 for (i = 0; i < size; i++)

 { printf("0x%02x ", *(ptr + i)); }

 printf("\n");

}

1st seminaries

int main()
{ /* try for more types: long, float, double, pointer */

 unsigned int unsig = 5;
 int sig = -5;

/* Read GNU C Library manual for conversion syntax for other types */
/* https://www.gnu.org/software/libc/manual/html_node/Formatted-Output.html */

 printf("value = %d\n", unsig);
 PRINT_MEM(unsig);

 printf("\nvalue = %d\n", sig);
 PRINT_MEM(sig);

return 0;
}

38

optional

parts

optional

parts

Basic Steps of C Compiler

code.C

processor Linker

gcc C-compiler passes 1 to M

C preprocessor modifies source code by substitutions

metacode

code.tmp

Compiler passes M to N: Optimization of metacode

relative object

module

Loader

system

libraries

string.h stdio.h code.h

38

39

C primitive types

1) In many implementations, it is not a standard C datatype, but only common

 custom for user's "#define" macro definitions, see next slides

Size Java C C alternative Range

1 boolean any integer, true if !=0 BOOL(1 0 to !=0

8 byte char(2 signed char –128 to +127

8 unsigned char BYTE(1 0 to 255

16 short int signed short –32768 to +32767

16 unsigned short 0 to + 65535

32 int int signed int -2^31 to 2^31-1

32 unsigned int DWORD(1 0 to 2^32-1

64 long long long int -2^63 to 2^63-1

64 unsigned long LWORD(1 0 to 2^64-1

2) Default is signed, but the best way is to specify.

40

Definition of BYTE and BOOL

// by substitution rule no ; and no type check

#define BYTE unsigned char

#define BOOL int

// by introducing new type, ending ; is required

Â typedef unsigned char BYTE;

Â typedef int BOOL;

C language has no strict type checking #define ~ typedef,

but typedef is usually better integrated into compiler.

41

Defining a Parameterized Macro

#define PRINT_MEM(a) print_mem((unsigned char*)&(a), sizeof(a))

Similar to a C function, preprocessor macros can be
defined with a parameter list; parameters are without
data types.

Syntax:

 #define MACRONAME(parameter_list) text

No white space before (.

42

 Examples:

 #define MAXVAL(A,B) ((A) > (B)) ? (A) : (B)

 #define PRINT(e1,e2)

printf(ò%c\t%d\nò,(e1),(e2));

 #define putchar(x) putc(x, stdout)

#define PRINT_MEM(a) print_mem((unsigned char*)&(a),
sizeof(a))

43

Side-effects!!!
 Example:

 #define PROD1(A,B) A * B

 Wrong result:

 PROD1(1+3,2) Ÿ 1+3 * 2

 Improved example with ()

 #define PROD2(A,B) (A) * (B)

 PROD2(1+3,2) Ÿ (1+3) * (2)

44

Pointer Operators

& (address operator)

Returns the address of its operand

Example

 int y = 5;
int *yPtr;

yPtr = &y; // yPtr gets address of y

yPtr “points to” y

yPtr

y

5

yptr

500000 600000

y

600000 5

address of y

is value of

yptr

45

Pointer Operators

& (address operator)

Returns the address of its operand

* dereference address

Get operand stored in address location

* and & are inverses
(though not always applicable)

Cancel each other out

*&myVar == myVar

 and
&*yPtr == yPtr

46

Size of Pointer in C-kod

int * ptri;

char * ptrc;

double * ptrd;

-

+

ptri

ptri+1

ptrc

ptrc+1

ptrd

ptrd+1

*ptrx ≡ ptrx[0]

*(ptrx+1) ≡ ptrx[1]

*(ptrx+n) ≡ ptrx[n]

*(ptrx-n) ≡ ptrx[-n]

nr1 = sizeof (double);

nr2 = sizeof (double*);

nr1 != nr2

47 B35APO Architektura poļ²taļŢ

Surprise or not ???

int main() { float x; double d;

x = 116777215.0;

 printf("%.3f\n", x); // 116777216.000

 printf("%.3lf\n", x); // 116777216.000 - it has not significance for float/double nem§ l

vĨznam

 printf("%.3g\n", x); // 1.17e+08

 printf("%.3e\n", x); // 1.168e+08

 printf("%lx %f\n", x, x); // 0 0.00000 - Sometime l need not specify 64 bit.

 printf("%llx %f\n", x, x); // 419bd78400000000 116777216.000000

 printf("%lx %f\n", *(long *)&x, x); // 4cdebc20 116777216.00000

x = 116777216.3; printf("%.3f\n", x); // 116777216.000 - float cut end of mantissa

d = 116777216.3; printf("%.3f\n", d); // 116777216.300

x = 116777217.0; printf("%.3f\n", x); // 116777216.000

x = 116777218.0; printf("%.3f\n", x); // 116777216.000

x = 116777219.0; printf("%.3f\n", x); // 116777216.000

x = 116777220.0; printf("%.3f\n", x); // 116777216.000

x = 116777221.0; printf("%.3f\n", x); // 116777224.00

return 0;

}

