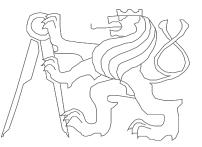
Computer Architectures

Integer Arithmetic Richard Šusta, Pavel Píša



Czech Technical University in Prague, Faculty of Electrical Engineering

Ver.1.00

Important Introductory Note

- The goal is to understand the structure of the computer so you can make better use of its options to achieve its higher performance.
- It is also discussed interconnection of HW / SW

• Webpages:

https://cw.fel.cvut.cz/wiki/courses/a0b36apo/start https://dcenet.felk.cvut.cz/apo/ - they will be opened

• Některé navazující předměty:

B4M35PAP - Advanced Computer Architectures

B3B38VSY - Embedded Systems

B4M38AVS - Embedded Systems Application

B4B35OSY - Operating Systems (OI)

<u>B0B35LSP – Logic Systems and Processors</u> (KyR + part of OI)

• Prerequisite: Šusta, R.: <u>APOLOS</u>, CTU-FEE 2016, 51 pg.

Important Introductory Note

 The course is based on a world-renowned book of authors Paterson, D., Hennessey, V.: Computer Organization and Design, The HW/SW Interface. Elsevier, ISBN: 978-0-12-370606-5

David Andrew Patterson

<u>University of California, Berkeley</u> Works: RISC processor MIPS, RAID, Clusters

John Leroy Hennessy

10th President of <u>Stanford University</u> Works: RISC processors MIPS, DLX a MMIX

Computers

where they are heading...

n

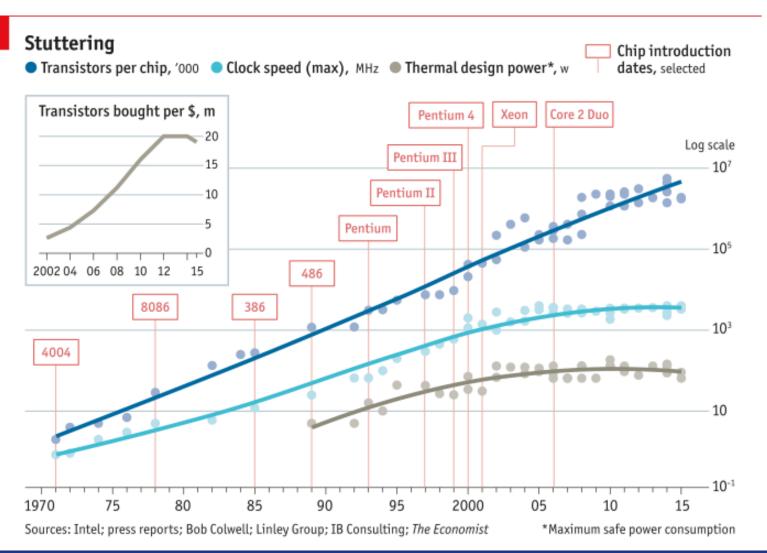
Budoucnost počítačů

Can weather forecast be predicted?

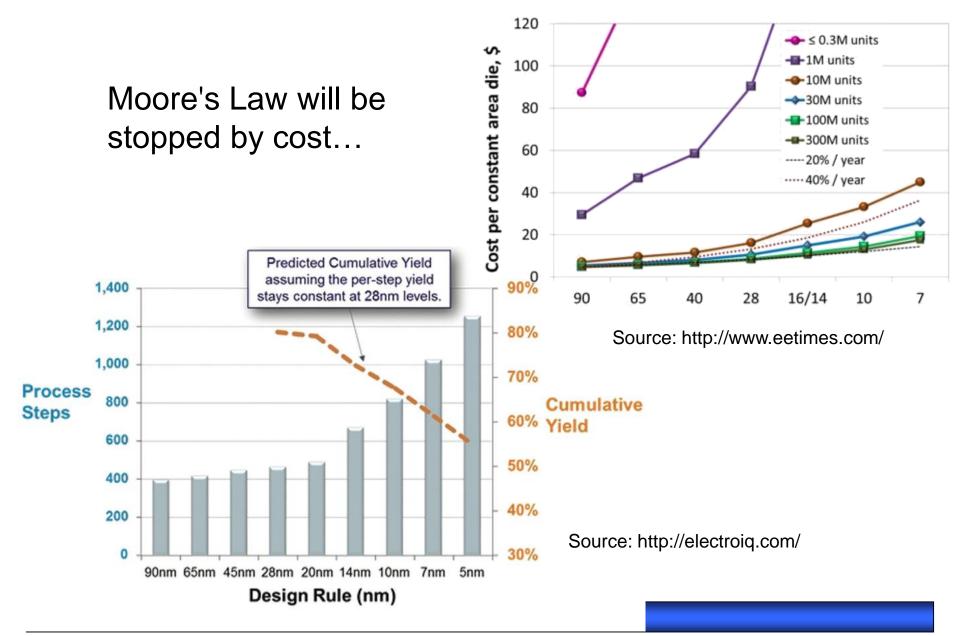
Can the development of computer technology be predicted?

Moore's Law

Gordon Moore, founder of Intel, in 1965: "*The number of transistors on integrated circuits doubles approximately every two years* "



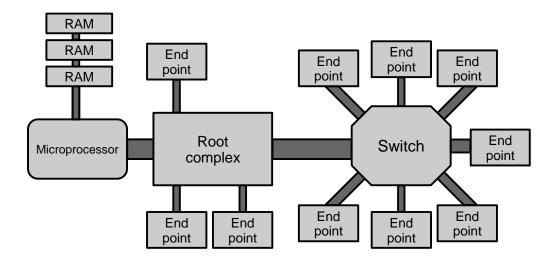
The cost of production is growing with decreasing design rule



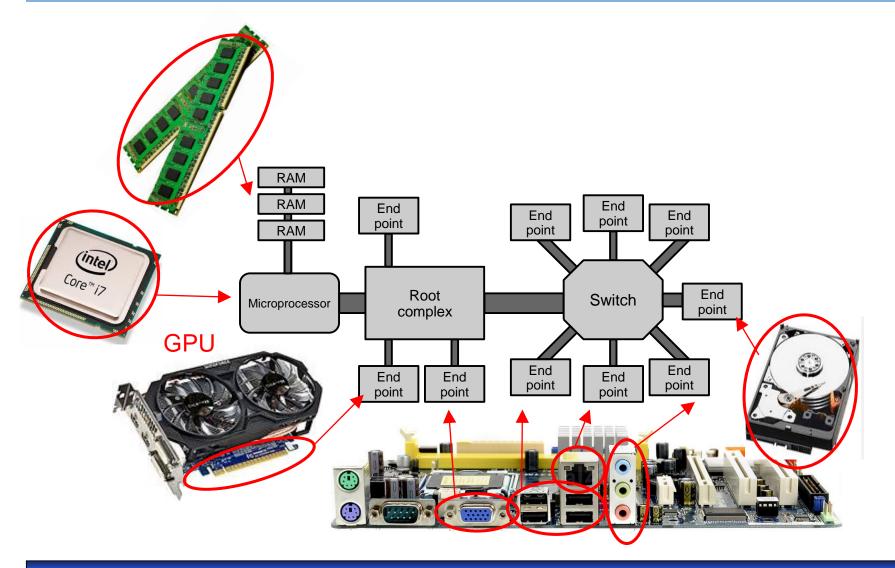
Today PC Computer Base Platform – Motherboard



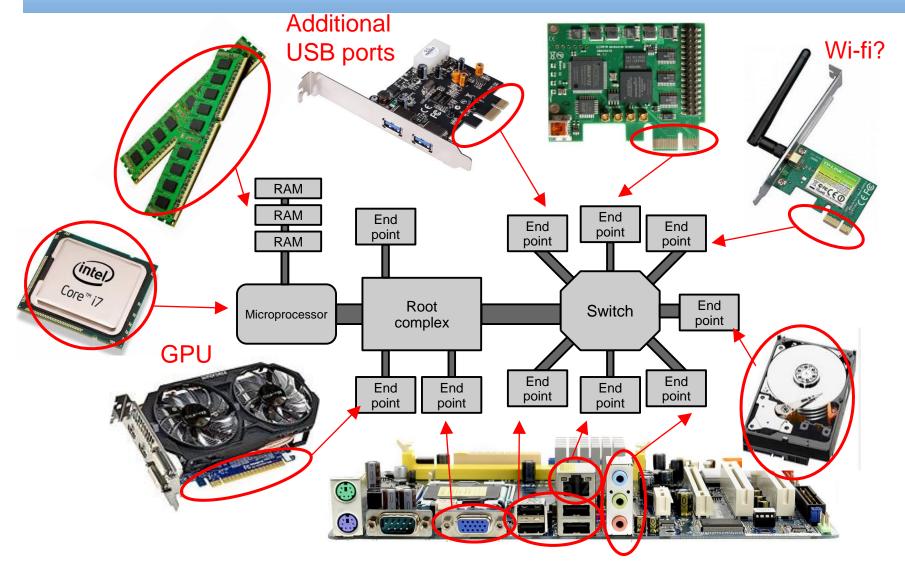
Block Diagram of Components Interconnection

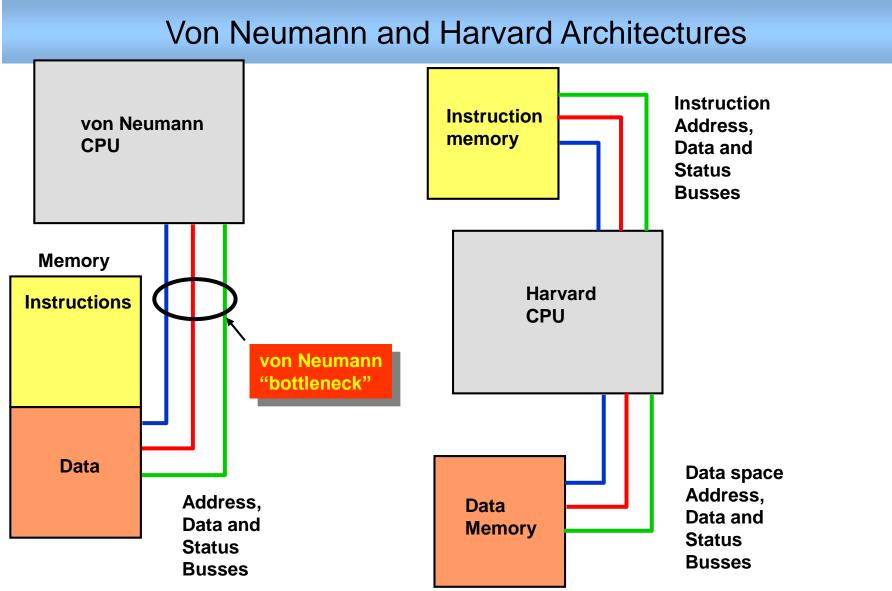


Block Diagram of Components Interconnection

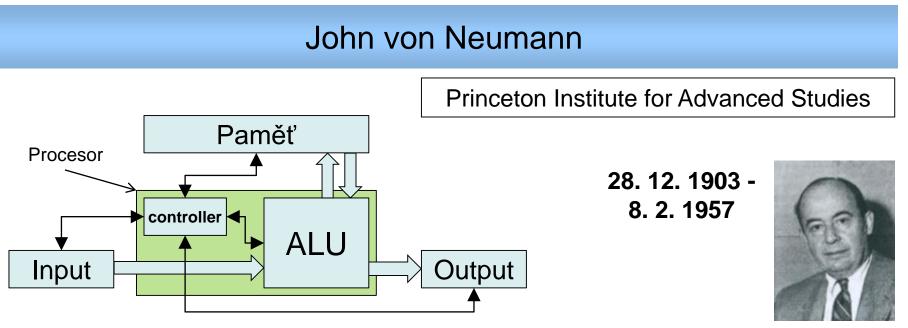


Block Diagram of Components Interconnection





[Arnold S. Berger: Hardware Computer Organization for the Software Professional]



5 units:

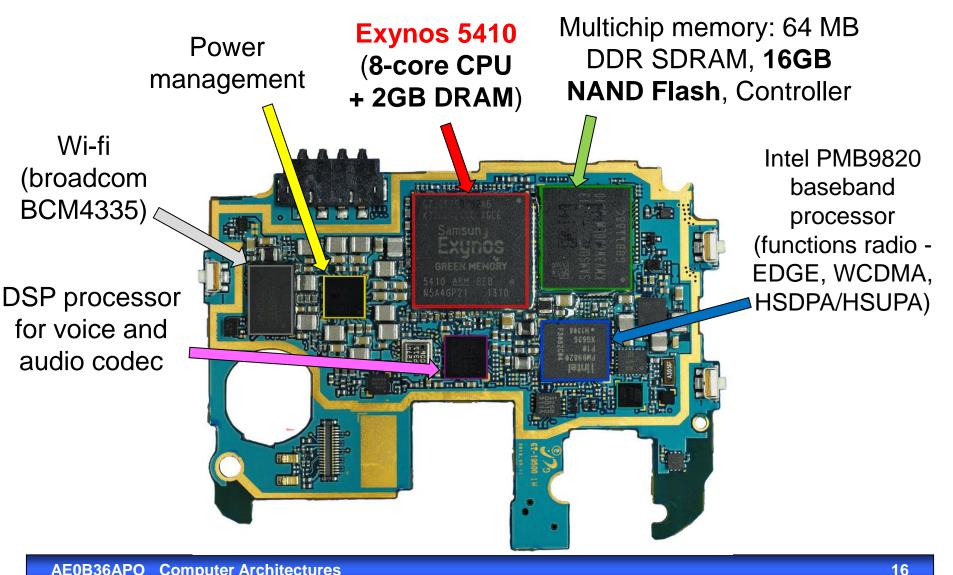
- A processing unit that contains an arithmetic logic unit and processor registers;
- A control unit that contains an instruction register and program counter;
- Memory that stores data and instructions
- External mass storage
- Input and output mechanisms

- Android 5.0 (Lollipop)
- 2 GB RAM
- 16 GB user RAM user
- 1920 x 1080 display
- 8-core CPU (chip Exynos 5410):
 - 4 cores 1.6 GHz ARM Cortex-A15
 - 4 cores 1.2 GHz ARM Cortex-A7

AE0B36APO Computer Architectures

15

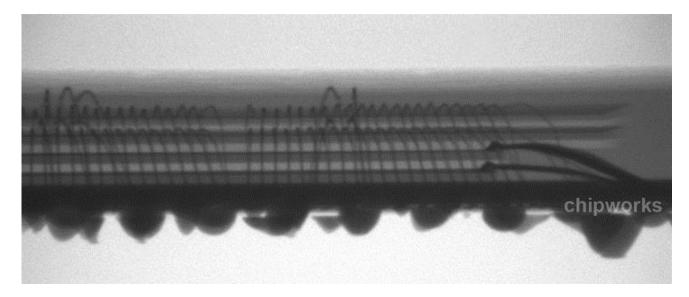
Source: http://www.techinsights.com/about-techinsights/overview/blog/samsung-galaxy-s4-teardown/



AE0B36APO **Computer Architectures**

Source: http://www.techinsights.com/about-techinsights/overview/blog/samsung-galaxy-s4-teardown/

X-ray image of Exynos 5410 hip from the side :



•We see that this is QDP (Quad die package)

To increase capacity, chips have multiple stacks of dies. A **die**, in the context of integrated circuits, is a small block of semiconducting material on which a given functional circuit is fabricated. [Wikipedia]

AE0B36APO Computer Architectures

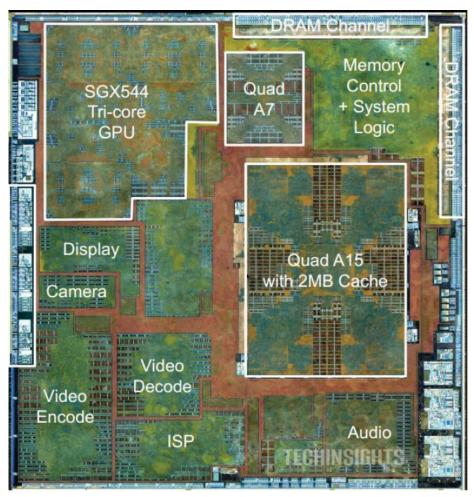
Zdroj: http://gamma0burst.tistory.com/m/600

Chip Exynos 5410 – here, we see DRAM

AE0B36APO Computer Architectures

Source: http://www.embedded-vision.com/platinum-members/embedded-vision-alliance/embedded-vision-training/documents/pages/computational-photography-part-2

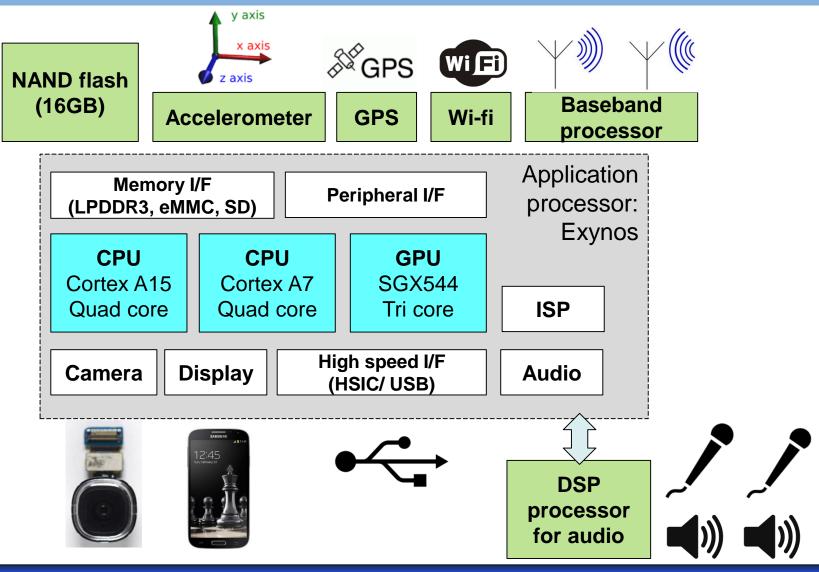
Chip Exynos 5410



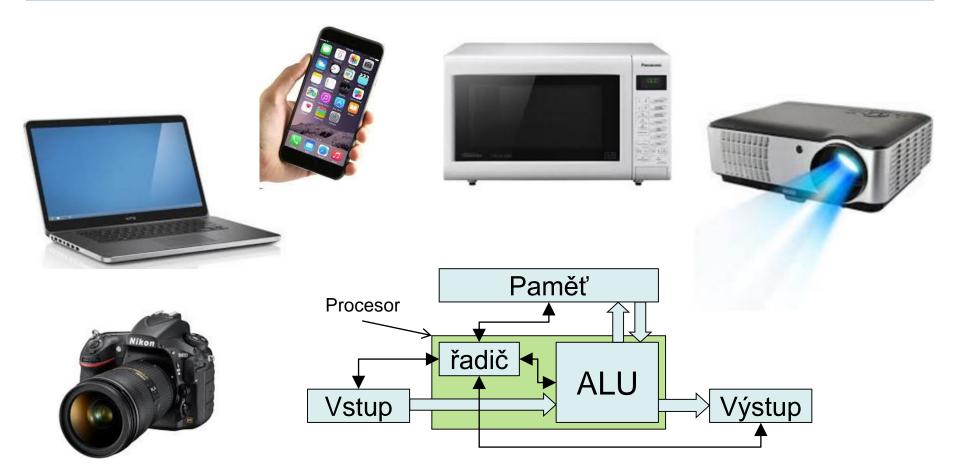
- Note the different sizes of 4 cores A7 and 4 cores A15
- On the chip, other components are integrated outside the processor: the GPU, Video coder and decoder, and more. This is SoC (System on Chip)

AE0B36APO Computer Architectures

Source: http://www.embedded-vision.com/platinum-members/embedded-vision-alliance/embedded-vision-training/documents/pages/computational-photography-part-2, http://gamma0burst.tistory.com/m/600



Common concept



• The processor performs stored memory (ROM, RAM) instructions to operate peripherals, to respond to external events and to process data.

Example of Optimization

Autonomous cars



Source: <u>http://www.nvidia.com/object/autonomous-cars.html</u>

• Many artificial intelligence tasks are based on deep neural networks (deep neural networks)

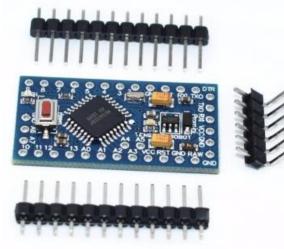
Neural network passage -> matrix multiplication

- How to increase calculation?
- The results of one of many experiments
 - Naive algorithm $(3 \times \text{for}) 3.6 \text{ s} = 0.28 \text{ FPS}$
 - Optimizing memory access 195 ms = 5.13 FPS (necessary knowledge of HW)
 - 4 cores– 114 ms = 8.77 FPS (selection of a proper synchronization)
 - GPU (256 processors) 25 ms = 40 FPS (knowledge of data transfer between CPU and coprocessors)
- Source: Naive algorithm, library Eigen (1 core), 4 cores (2 physical on i7-2520M), GPU results Joela Matějka from http://industrialinformatics.cz/

And Other Systems?

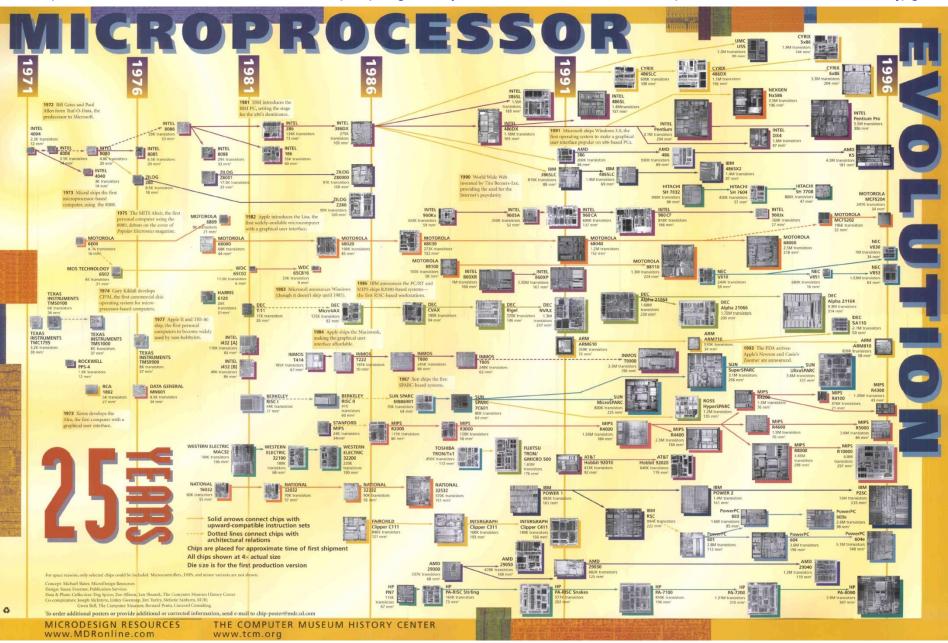
- Using GPUs, we process 40 fps.
- but cars have enough power for them...

 But in an embedded device, it is sometimes necessary to reduce its consumption and cost. There are used very simple processors or microcontrollers, sometimes without real number operations, and programmed with lowlevel C language.



There [were/are/will be] many manufactures of processors

http://research.microsoft.com/en-us/um/people/gbell/CyberMuseum_contents/Microprocessor_Evolution_Poster.jpg

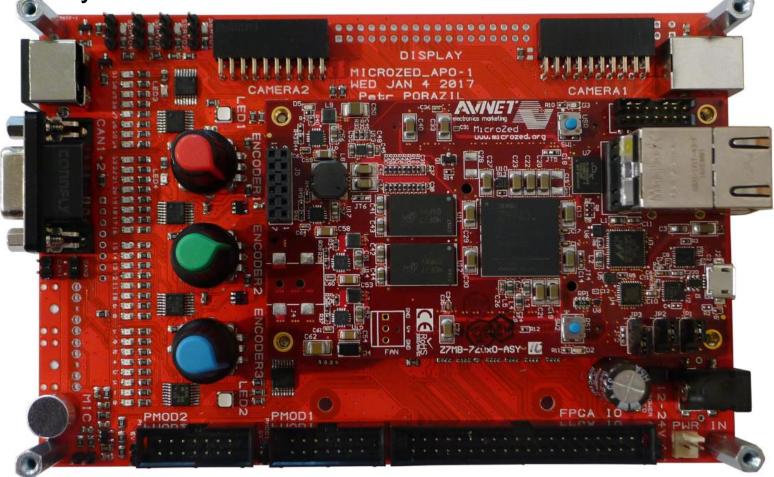


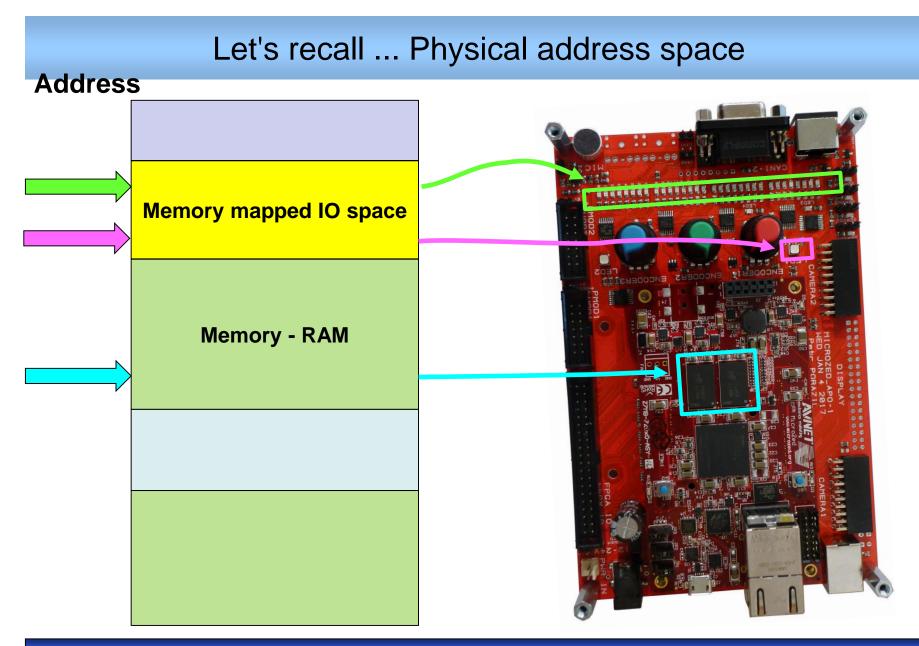
Reasons to study computer architectures

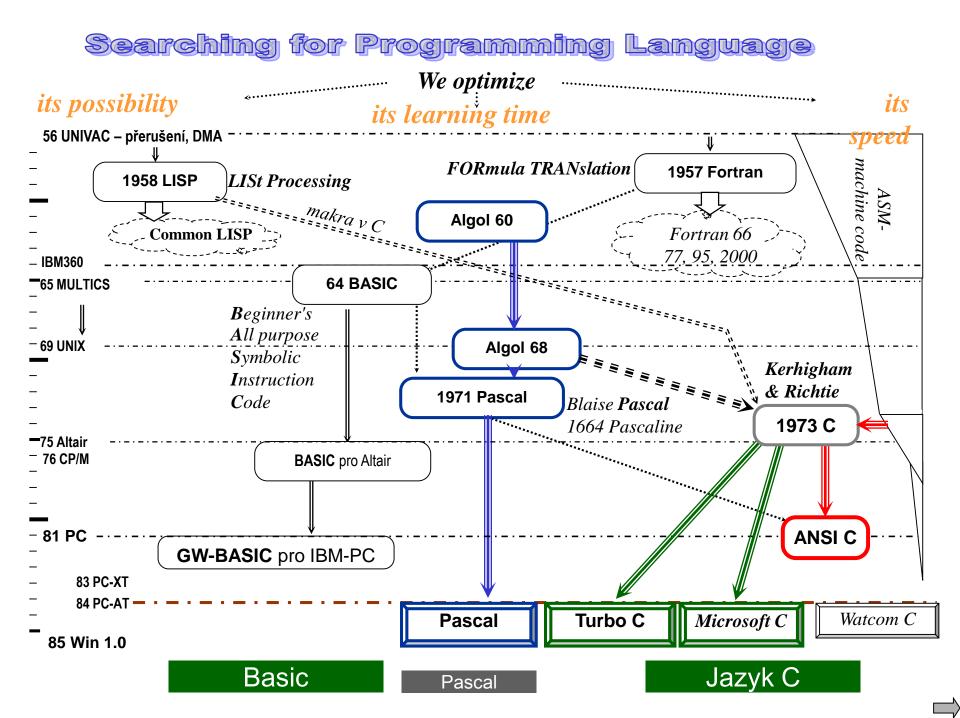
- To invent/design new computer architectures
- To be able to integrate selected architecture into silicon
- To gain knowledge required to design computer hardware/systems (big ones or embedded)
- To understand generic questions about computers, architectures and performance of various architectures
- To understand how to use computer hardware efficiently (i.e. how to write good software)
 - It is not possible to efficiently use resources provided by any (especially by modern) hardware without insight into their constraints, resource limits and behavior
 - It is possible to write some well paid applications without real understanding but this requires abundant resources on the hardware level. But no interesting and demanding tasks can be solved without this understanding.

Another motivation

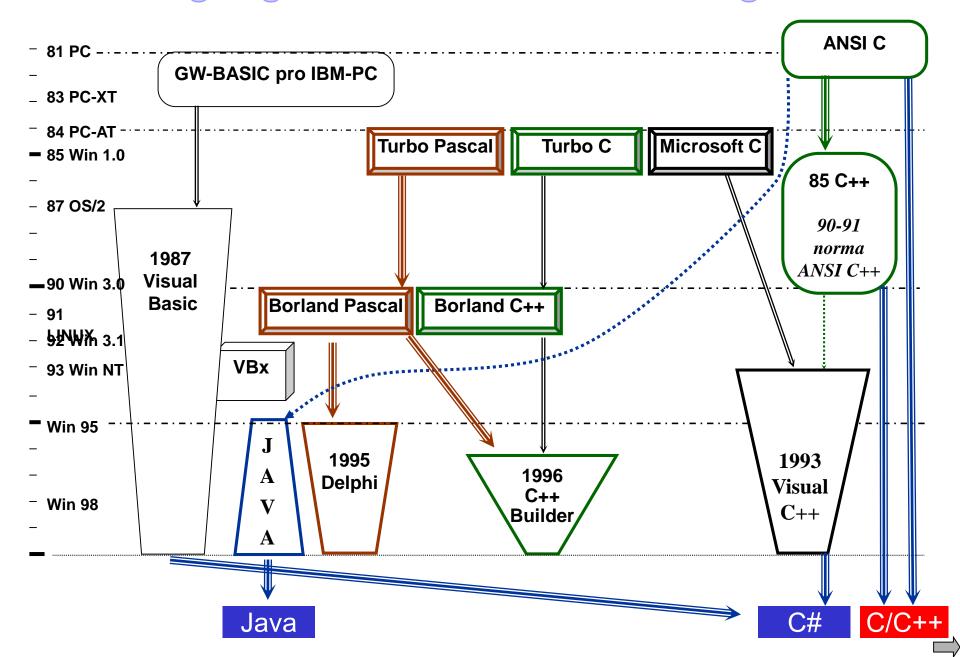
you will later work with this board







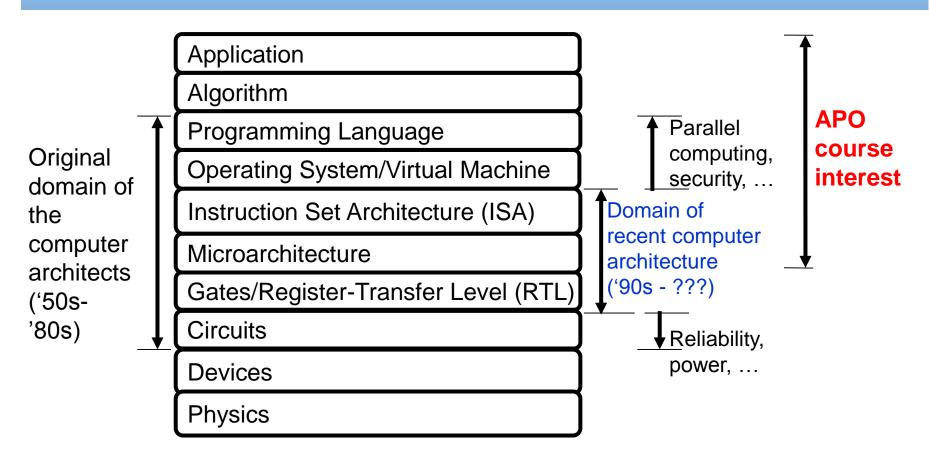
Language C still remains in the game



It is easy to see by formal-logical methods that there exist certain [instruction sets] that are in abstract adequate to control and cause the execution of any sequence of operation. The really decisive considerations from the present point of view, in selecting an [instruction set], are more of a practical nature: simplicity of the equipment demanded by the [instruction set], and **the clarity of its application to the actually important problems together with the speed of its handling of those problems**.

[Burks, Goldstine, and von Neumann, 1947]

Computer



Reference: John Kubiatowicz: EECS 252 Graduate Computer Architecture, Lecture 1. University of California, Berkeley

1st lecture

- How they are stored on your computer
 - INTEGER numbers, with or without sign?
- How to perform basic operations
 - Adding, Subtracting,
 - Multiplying

Non-positional numbers ©

http://diameter.si/sciquest/E1.htm

The value is the sum: 1 333 331

AE0B36APO Computer Architectures

Terminology basics

- Positional (place-value) notation
- Decimal/radix point
- z ... base of numeral system
- smallest representable number ε
- Module = \mathbb{Z} , one increment/unit higher than biggest representable number for given encoding/notation
- A, the representable number for given n and m selection, where k is natural number in range []0,z^{n+m+1}-1]
 - The representation and value

$$A \sim a_n a_{n-1} \dots a_0, a_1 \dots a_{-m}$$

$$A = a_n z^n + a_{n-1} z^{n-1} + \dots + a_0 + a_1 z^{-1} \dots a_{-m} z^{-m}$$

$$\begin{bmatrix} a_n & a_{n-1} & \dots & a_0 & a_{-1} & \dots & a_{-m} \\ \hline \\ \varepsilon = z^{-m} & & \uparrow \text{ radix point} \end{bmatrix}$$

n

Λ

_1

$$0 \leq A = k \cdot arepsilon < \mathcal{Z}$$

Unsigned integers

Language C: unsigned int

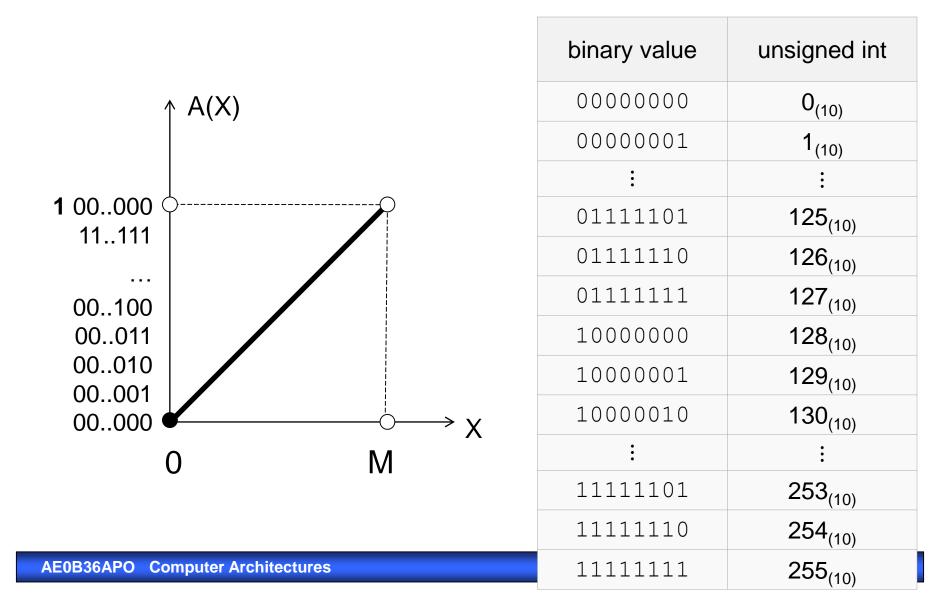
Integer number representation (unsigned, non-negative)

- The most common numeral system base in computers is z=2
- The value of **a**_i is in range {0,1,...z-1}, i.e. {0,1} for base 2
- This maps to true/false and unit of information (bit)
- We can represent number 0 ... 2ⁿ-1 when n bits are used
- Which range can be represented by one byte?

1B (byte) ... 8 bits, $2^8 = 256_d$ combinations, values 0 ... $255_d = 0b1111111_b$

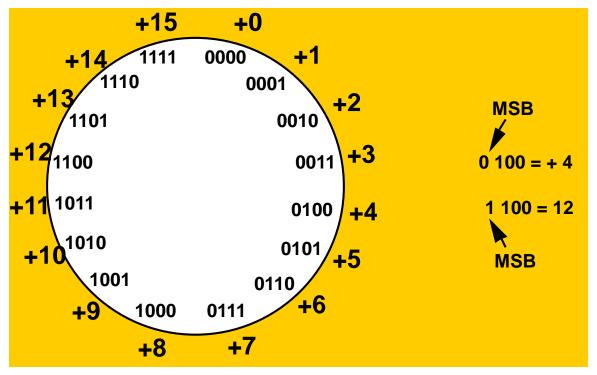
- Use of multiple consecutive bytes
 - 2B ... 2¹⁶ = 65536_d, 0 ... 65535_d = 0xFFFF_h ,(h ... hexadecimal, base 16, a in range 0, ... 9, A, B, C, D, E, F)
 - 4B ... $2^{32} = 4294967296_d$, 0 ... $4294967295_d = 0xFFFFFF_h$

Unsigned integer



Unsigned 4-bit numbers

Assumptions:we'll assume a 4 bit machine word



Cumbersome subtraction

Signed numbers

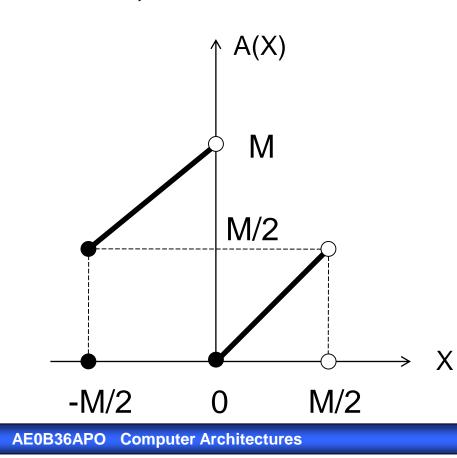
Language C: int signed int

- The most frequent code
- The sum of two opposite numbers with the same absolute value is 00000000H!

Decimal value	4 bit two's compliment
6	0110
-6	1010

Dvojkový doplněk – pokračování...

Pokud N bude počet bitů:
 <-2^{N-1}, 2^{N-1} -1>



Binární hodnota	Dvojkový doplněk
0 0000000	0 ₍₁₀₎
0 0000001	1 ₍₁₀₎
	•
0 1111101	125 ₍₁₀₎
0 1111110	126 ₍₁₀₎
0 1111111	127 ₍₁₀₎
1 0000000	-128 ₍₁₀₎
1 0000001	-127 ₍₁₀₎
1 0000010	-126 ₍₁₀₎
:	:
1 1111101	-3 ₍₁₀₎
1 1111110	-2 ₍₁₀₎
1 1111111	-1 ₍₁₀₎

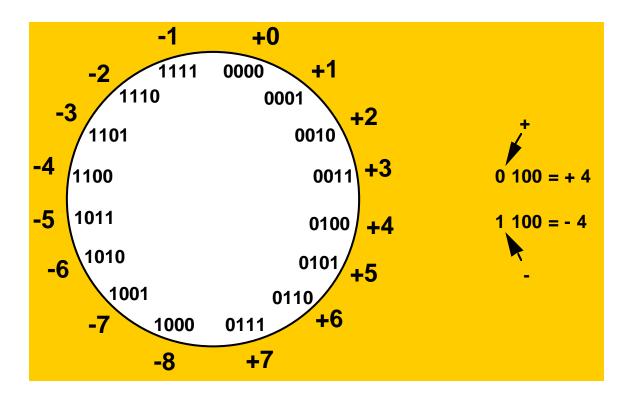
Two's complement - examples

- Examples:
 - 0D = 0000000H,
 - 1D = 0000001H,
 - 2D = 0000002H,
 - 3D = 0000003H,

- -1D = FFFFFFFFH,
- -2D = FFFFFFFEH,
- -3D = FFFFFFDH,

Number Representations

Twos Complement (In Czech: Druhý doplněk)



Only one representation for 0

One more negative number than positive number

[Seungryoul Maeng:Digital Systems]

Two's complement – addition and subtraction

- Addition
 - 000000 0000 0111в ≈ 7ь Symbols use: 0=0н, 0=0в
 - <u>+ 0000000 0000 0110</u> **≈ 6** р
 - 000000 0000 1101в≈ **13**D
- Subtraction can be realized as addition of negated number
 - 000000 0000 0111в ≈ 7_D
 - + FFFFFF 1111 1010в≈ -6р
 - 000000 0000 0001в **≈ 1**р
- Question for revision: how to obtain negated number in two's complement binary arithmetics?

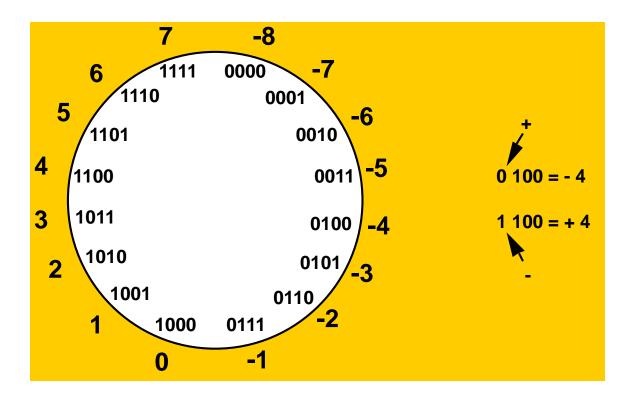
Other Possibilities

Integer – biased representation

- Known as excess-K or offset binary as well
- Transform to the representation $-K \dots 0 \dots 2^{n}-1-K$ D(A) = A+K
- Usually K=Z/2
- Advantages
 - Preserves order of original set in mapped set/representation
- Disadvantages
 - Needs adjustment by -K after addition and +K after subtraction processed by unsigned arithmetic unit
 - Requires full transformation before and after multiplication

Number Systems

Excess-K, offset binary or biased representation



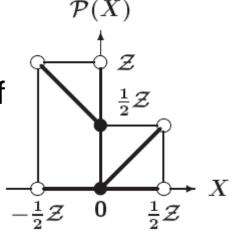
One 0 representation, we can select count of negative numbers - *used e.g. for exponents of real numbers*.

Integer arithmetic unit are not designed to calculate with Excess-K numbers

[Seungryoul Maeng:Digital Systems]

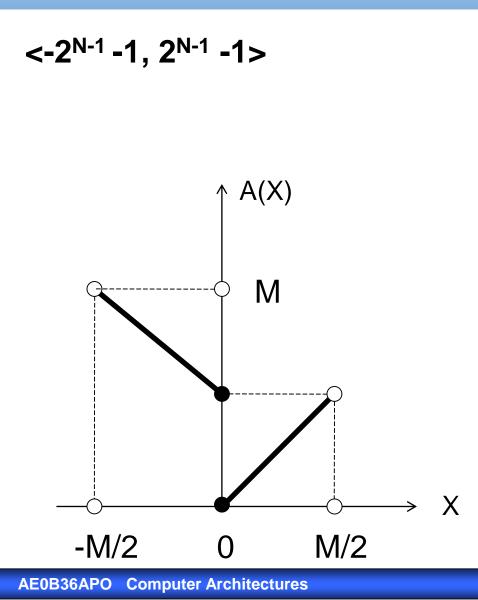
Integer – sign-magnitude code

- Sign and magnitude of the value (absolute value)
- Natural to humans -1234, 1234
- One (usually most significant MSB) bit of the memory location is used to represent the sign
- Bit has to be mapped to meaning
- Common use 0 ≈ "+", 1 ≈ "-"
- Disadvantages:
 - When location is k bits long then only k-1 bits hold magnitude and each operation has to separate sign and magnitude
 - Two representations of the value 0





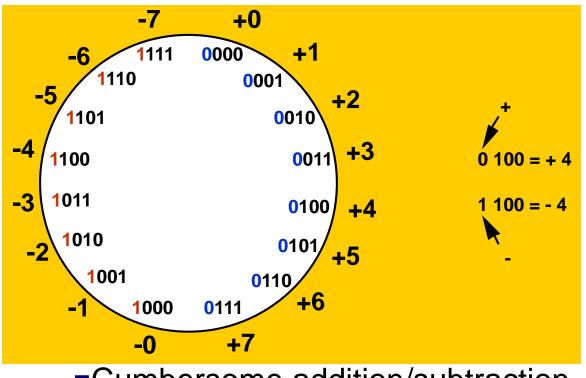
Sign and Magnitude Representation.



Binary value	Code
0 0000000	+0 ₍₁₀₎
0 0000001	1 ₍₁₀₎
:	:
0 1111101	125 ₍₁₀₎
0 1111110	126 ₍₁₀₎
0 1111111	127 ₍₁₀₎
1 0000000	-0 ₍₁₀₎
1 0000001	-1 ₍₁₀₎
1 0000010	-2 ₍₁₀₎
:	:
1 1111101	-125 ₍₁₀₎
1 1111110	-126 ₍₁₀₎
1 1111111	-127 ₍₁₀₎
	50

Number Systems

Sign and Magnitude Representation



Cumbersome addition/subtraction

Sign+Magnitude usually used only for float point numbers

Integers – ones' complement

• Transform to the representation

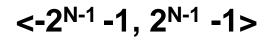
$$-2^{n-1}+1 \dots 0 \dots 2^{n-1}-1$$

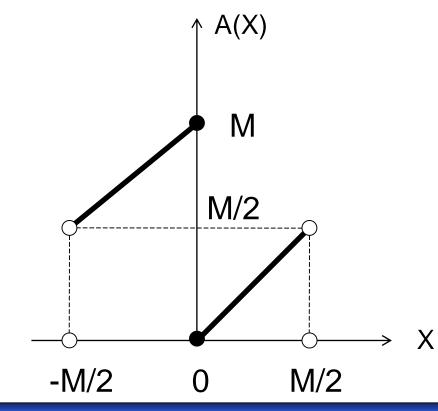
 $D(A) = A \qquad \text{iff } A \ge 0$

D(A) = Z-1-|A| iff A<0 (i.e. subtract from all ones)

- Advantages
 - Symmetric range
 - Almost continuous, requires hot one addition when sign changes
- Disadvantage
 - Two representations of value 0
 - More complex hardware
- Negate (-A) value can be computed by bitwise complement (flipping) of each bit in representation

Ones Complement

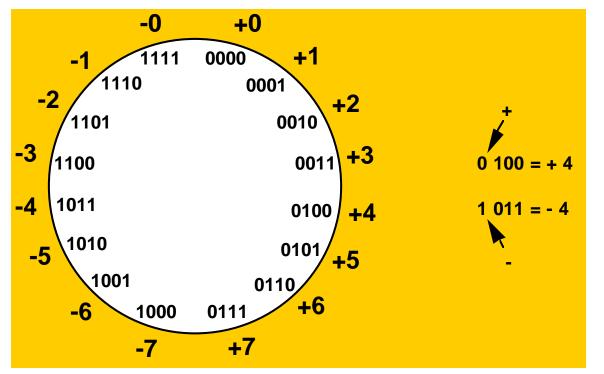




Binary value	Code
0 0000000	0 ₍₁₀₎
0 0000001	1 ₍₁₀₎
:	:
0 1111101	125 ₍₁₀₎
0 1111110	126 ₍₁₀₎
0 1111111	127 ₍₁₀₎
1 0000000	-127 ₍₁₀₎
1 0000001	-126 ₍₁₀₎
1 0000010	-125 ₍₁₀₎
:	:
1 1111101	-2 ₍₁₀₎
1 1111110	-1 ₍₁₀₎
1 1111111	-0 ₍₁₀₎

Number Systems

Ones Complement (In Czech: První doplněk)



Still two representations of 0! This causes some problems Some complexities in addition, nowadays nearly not used

OPERATION WITH INTEGERS

AE0B36APO Computer Architectures

Direct realization of adder as logical function

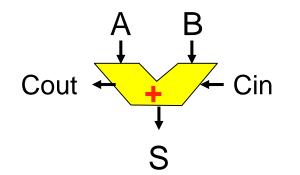
	Number of logic operations
bit width	for calculating sum
1	3
2	22
3	89
4	272
5	727
6	1567
7	3287
8	7127
9	17623
10	53465
11	115933

Complexity is higher than O(2ⁿ)

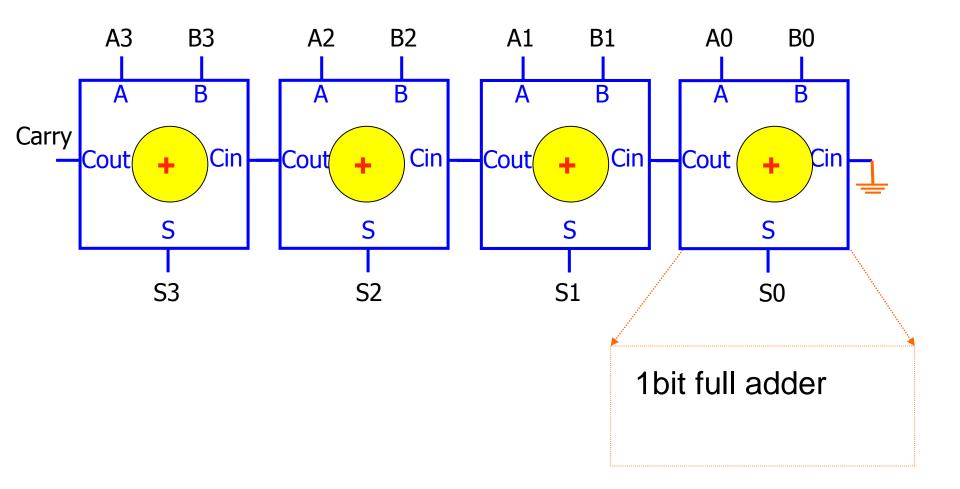
The calculation was performed by BOOM logic minimizer created at the Department of Computer Science CTU-FEE

1bit Full Adder

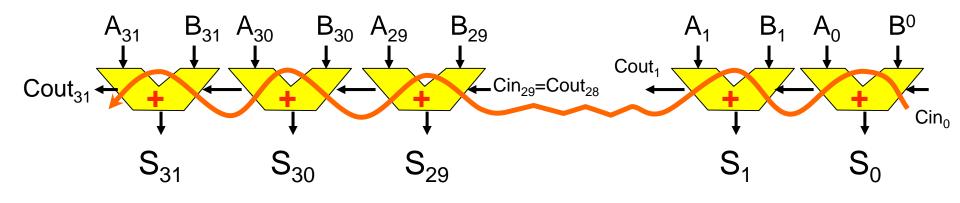
Α	0	0	1	1	0	0	1	1
+B	0	1	0	1	0	1	0	1
Sum	00	01	01		00	01	01	10
+ Carry-In	0	0	0	0	1	1	1	1
CarryOut Sum	00	01	01	10	01	10	10	11



Adder



Simple Adder



Simplest N-bit adder

we chain 1-bit full adders

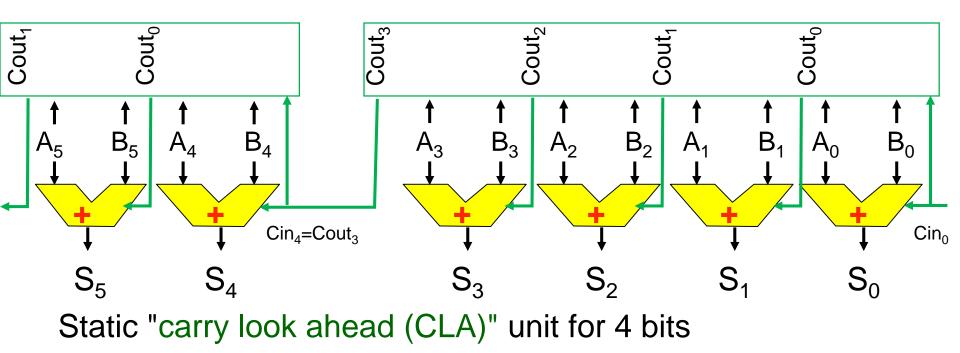
"Carry" ripple through their chain

Minimal number of logical elements

Delay is given by the last Cout - 2*(N-1)+ 3 gates of the last adder

= (2 N+1) times propagation delay of 1 gate

32bit CLA "carry look-ahead" adder The carry-lookahead adder calculates one or more carry bits before the sum, which reduces the wait time to calculate the result of the larger value bits



Increment / Decrement

Very fast operations that do not need an adder!

The last bit is always negated, and the previous ones are negated according to the end 1 / 0

Dec.	Binary 8 4 2 1	+1	Binary 8 4 2 1	-1
0	0000	0001	0000	1111
1	0001	0010	0001	0000
2	0010	001 <mark>1</mark>	001 <mark>0</mark>	00 <mark>01</mark>
3	0011	0100	0011	001 <mark>0</mark>
4	0100	010 <mark>1</mark>	0100	0011
5	010 <mark>1</mark>	0110	0101	010 <mark>0</mark>
6	0110	011 <mark>1</mark>	0110	01 <mark>01</mark>
7	0111	1000	0111	011 <mark>0</mark>
8	1000	100 <mark>1</mark>	1000	0111
9	100 <mark>1</mark>	10 <mark>10</mark>	1001	100 <mark>0</mark>
10	1010	101 <mark>1</mark>	101 <mark>0</mark>	10 <mark>01</mark>
11	10 <mark>11</mark>	1100	1011	101 <mark>0</mark>
12	1100	110 <mark>1</mark>	11 <mark>00</mark>	1011
13	110 <mark>1</mark>	11 <mark>10</mark>	1101	110 <mark>0</mark>
14	1110	111 <mark>1</mark>	111 <mark>0</mark>	11 <mark>01</mark>
15	1111	0000	1111	111 <mark>0</mark>

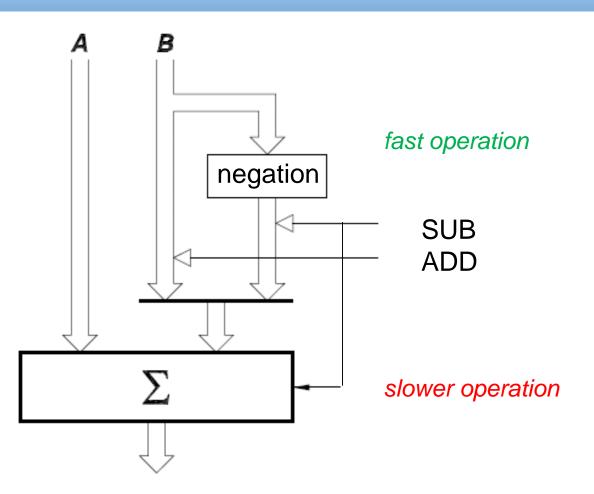
Special Case +1/-1

S0=not A0 S1=A1 xor A0S2=A2 xor (A1 and A0)Eq: $S_i = A_i$ xor $(A_{i-1} \text{ and } A_{i-2} \text{ and } \dots A_1 \text{ and } A_0)$; i=0...n-1 S0=not A0 ∴ <mark>}+</mark>→S S1=A1 xor (not A0)S2=A2 xor (not A1 and not A0)

Eq: $S_i = A_i$ xor (not A_{i-1} and ... and not A_0); i=0...n-1

The number of circuits is given by the arithmetic series, with the complexity O (n^2) where n is the number of bits. The operation can be performed in parallel for all bits, and for the both +1/-1 operations, we use a circuit that differs only by negations.

Addition / Subtraction HW



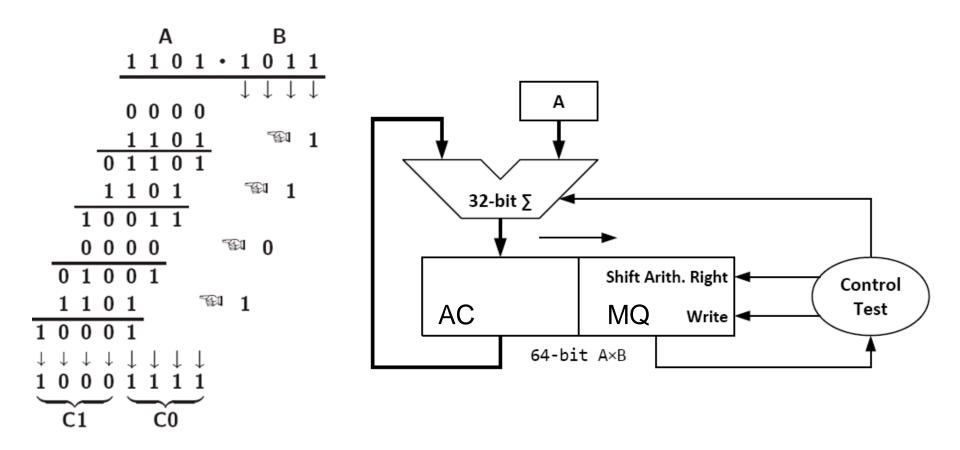
Source: X36JPO, A. Pluháček

AE0B36APO Computer Architectures

Unsigned binary numbers multiplication

					ļ	4				E	3	
				1	1	0	1	•	1	0	1	1
									\downarrow	\downarrow	\downarrow	\downarrow
				0	0	0	0					
				1	1	0	1			de la	1	1
			0	1	1	0	1					
			1	1	0	1	_		P	1	1	
		1	0	0	1	1						
		0	0	0	0	_		P	£1	0		
	0	1	0	0	1							
	1	1	0	1			P	£1	1			
1	0	0	0	1	•							
\downarrow												
1	0	0	0	1	1	1	1					
<u> </u>	c	1		_	C	0						

Sequential hardware multiplier (32b case)



The speed of the multiplier is horrible

Algorithm for Multiplication

```
A = multiplicand;
MQ = multiplier;
AC = 0;
for(int i=1; i <= n; i++) // n – represents number of bits
{
   if (MQ_0 = = 1) AC = AC + A; // MQ_0 = LSB of MQ
   SR (shift AC MQ by one bit right and insert information about
   carry from the MSB from previous step)
end.
```

when loop ends AC MQ holds 64-bit result

Example of the multiply X by Y

Multiplicand x=110 and multiplier y=101.

i	operation	AC	MQ	A	comment
		000	101	110	initial setup
1	AC = AC + MB	110	101		start of the cycle
	SR	011	010		
2	nothing	011	010		because of $MQ_0 = = 0$
	SR	001	101		
3	AC = AC + MB	111	101		
	SR	011	110		end of the cycle

The whole operation: $x \times y = 110 \times 101 = 011110$, ($6 \times 5 = 30$)

Multiplication in two's compliment

Can be implemented, but there is a problem ...

The intended product is generally not the same as the product of two's numbers!

Details are already outside the intended APO range.

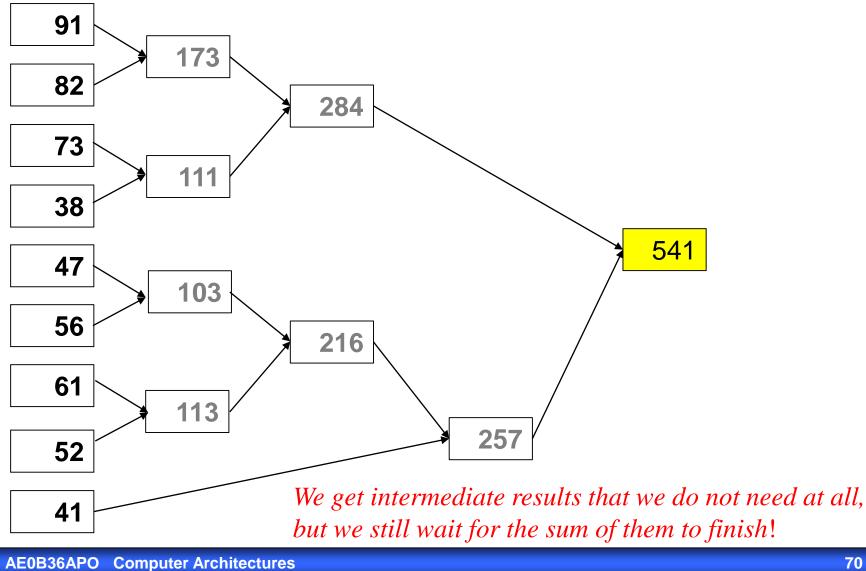
The best way is the multiplication of their absolute values and decision about its sign.

Wallace tree based multiplier

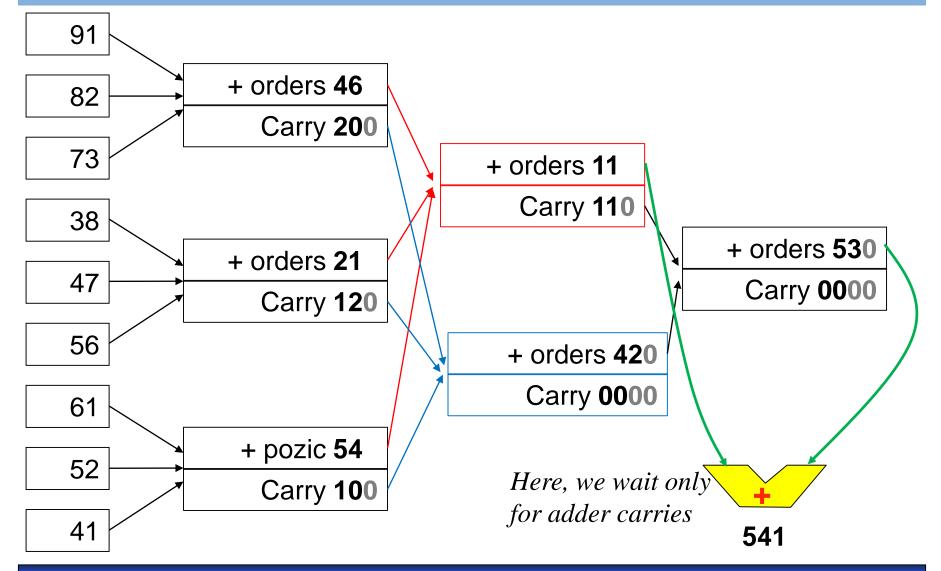
Q=X .Y, X and Y are considered as and 8bit unsigned numbers ($x_7 x_6 x_5 x_4 x_3 x_2 x_1 x_0$). ($y_7 y_6 y_5 y_4 y_3 y_2 y_1 y_0$) =

0	0	0	0	0	0	0	0	x_7y_0	x_6y_0	x_5y_0	x_4y_0	x_3y_0	x_2y_0	x_1y_0	x_0y_0	P0
0	0	0	0	0	0	0	x_7y_1	x_6y_1	x_5y_1	x_4y_1	x_3y_1	x_2y_1	x_1y_1	x_0y_1	0	P1
0	0	0	0	0	0	x_7y_2	x_6y_2	x_5y_2	x_4y_2	x_3y_2	x_2y_2	x_1y_2	x_0y_2	0	0	P2
0	0	0	0	0	x_7y_3	x_6y_3	x_5y_3	x_4y_3	x ₃ y ₃	x_2y_3	x_1y_3	x_0y_3	0	0	0	P3
0	0	0	0	x_7y_4	x_6y_4	x_5y_4	x_4y_4	x_3y_4	x_2y_4	x_1y_4	x_0y_4	0	0	0	0	P4
0	0	0	x_7y_5	x_6y_5	x ₅ y ₅	x_4y_5	x ₃ y ₅	x_2y_5	x_1y_5	x_0y_5	0	0	0	0	0	P5
0	0	x_7y_6	x ₆ y ₆	x_5y_6	x_4y_6	x ₃ y ₆	x_2y_6	x_1y_6	x_0y_6	0	0	0	0	0	0	P6
0	x_7y_7	x_6y_7	x ₅ y ₇	x_4y_7	x ₃ y ₇	x_2y_7	x_1y_7	x_0y_7	0	0	0	0	0	0	0	P7
Q ₁₅	Q ₁₄	Q ₁₃	Q ₁₂	Q ₁₁	Q ₁₀	Q ₉	Q_8	Q ₇	Q_6	Q ₅	Q_4	Q ₃	Q ₂	Q_1	Q_0	
	The sum of P0+P1++P7 gives result of X and Y multiplication. Q = X .Y = P0 + P1 + + P7															

Parallel adder of 9 numbers

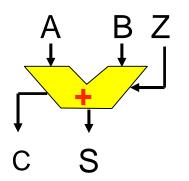


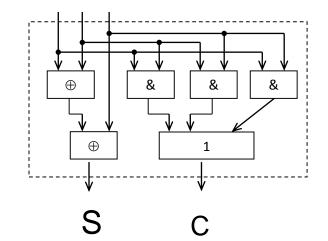
Decadic Carry-save adder



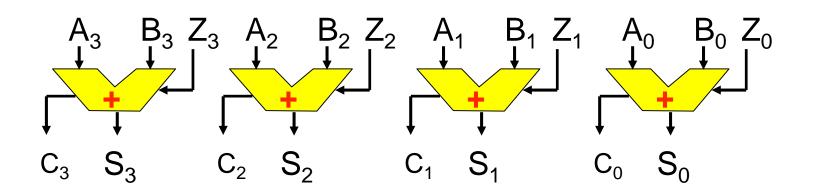
1bit Carry Save Adder

A	0	0	1	1	0	0	1	1
+B	0	1	0	1	0	1	0	1
Z=Carry-In	0	0	0	0	1	1	1	1
Sum	0	1	1	0	1	0	0	1
C=Cout	0	0	0	1	0	1	1	1



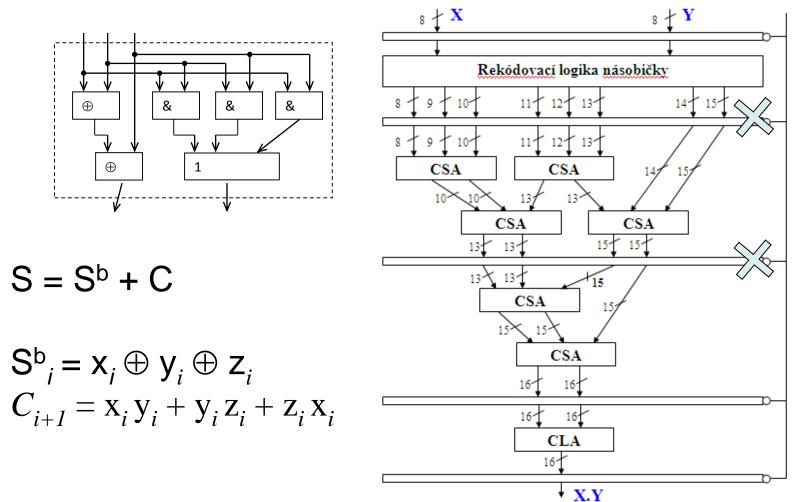


3-bit Carry-save adder



Wallace tree based fast multiplier

The basic element is an CSA circuit (Carry Save Adder)



AE0B36APO Computer Architectures