
B0B17MTB – Matlab

Part #7

Miloslav Čapek
miloslav.capek@fel.cvut.cz

Viktor Adler, Pavel Valtr, Filip Kozák

Department of Electromagnetic Field

B2-634, Prague

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

B0B17MTB: Part #78.4.2019 12:49

2

Learning how to …

Functions
m-function

inputs

outputs

foo.m

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

B0B17MTB: Part #78.4.2019 12:49

3

Functions in Matlab

 more efficient, more transparent and faster than scripts

 defined input and output, comments → function header is necessary

 can be called from Command Window or from other function (in both

cases the function has to be accessible)

 each function has its own work space created upon the function's call

and terminated with the last line of the function

User scripts and functions

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

B0B17MTB: Part #78.4.2019 12:49

4

Function types by origin

 built-in functions

 not accessible for editing by the user, available for execution

 optimized and stored in core

 usually frequently used (elementary) functions

 Matlab library functions ([toolbox] directory)

 subject-grouped functions

 some of them are available for editing (not recommended!)

 user-created functions

 fully accessible and editable, functionality not guaranteed

 mandatory parts: function header

 recommended parts of the function: function description, characterization

of inputs and outputs, date of last editing, function version, comments

User scripts and functions

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

B0B17MTB: Part #78.4.2019 12:49

5

Function header

 has to be the first line of a standalone file! (Matlab 2017a+)

 square brackets [] for one output parameter are not mandatory

 function header has the following syntax:

 functionName has to follow the same rules as a variable's name

 functionName can't be identical to any of its parameters’ name

 functionName is usually typed as lowerCamelCase or using

underscore character (my_function)

function [out1, out2, ...] = functionName(in1, in2, ...)

keyword function’s output parameters function’s name function’s input parameters

User scripts and functions

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

B0B17MTB: Part #78.4.2019 12:49

6

Function header – examples

function functA

%FUNCTA – unusual, but possible, without input and output

function functB(parIn1)

%FUNCTB – e.g. function with GUI output, print etc.

function parOut1 = functC

%FUNCTC – data preparation, pseudorandom data etc.

function parOut1 = functD(parIn1)

%FUNCTD – „proper“ function

function parOut1 = functE(parIn1, parIn2)

%FUNCTE – proper function

function [parOut1, parOut2] = functF(parIn1, parIn2)

%FUNCTF – proper function with more parameters

User scripts and functions

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

B0B17MTB: Part #78.4.2019 12:49

7

Calling Matlab function

>> f = fibonacci(1000); % calling from command prompt

>> plot(f); grid on;

 Matlab carries out commands sequentially

 input parameter: limit

 output variable: Fibonacci series f

 drawbacks:

 input is not treated (any input can be entered)

 matrix f is not allocated, i.e. matrix keeps growing (slow)

function f = fibonacci(limit)

%% Fibonacci sequence

f = [1 1]; pos = 1;

while f(pos) + f(pos+1) < limit

f(pos+2) = f(pos) + f(pos+1);

pos = pos + 1;

end

end

User scripts and functions

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

B0B17MTB: Part #78.4.2019 12:49

8

Simple example of a function

 any function in Matlab can be called with less input parameters than

stated in the header

 any function in Matlab can be called with less output parameters than

stated in the header

 for instance, consider following function:

 all following calling syntaxes are correct

function [parOut1, parOut2, parOut3] = functG(parIn1, parIn2, parIn3)

%FUNCTG – 3 inputs, 3 outputs

>> [parO1, parO2] = functG(pIn1, pIn2, pIn3)

>> [parO1, parO2, parO3] = functG(pIn1)

>> functG(pIn1,pIn2,pIn3)

>> [parO1, parO2, par03] = functG(pIn1, pIn2, pIn3)

>> [parO1, ~, par03] = functG(pIn1, [], pIn3)

>> [~, ~, par03] = functG(pIn1, [], [])

>> functG inputStr1 inputStr2

User scripts and functions

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

B0B17MTB: Part #78.4.2019 12:49

9

Simple example of a function

 propose a function to calculate length of a belt between two wheels

 diameters of both wheels are known as well as their distance (= function’s inputs)

 sketch a draft, analyze the situation and find out what you need to calculate

 test the function for some scenarios and verify results

 comment the function, apply commands doc, lookfor, help, type

100 s ↑

User scripts and functions

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

B0B17MTB: Part #78.4.2019 12:49

10

Simple example of a function

 total length is

 known diameters → recalculate to radiuses

 l2 to be determined using Pythagorean theorem :

 Analogically for φ:

 and finally :

 verify your results using

500 s ↑

2

12

2

2)(rrdl 

2 1asin
r r

d


 
  

 

1 2 32L l l l  

 

 

1 1

3 2

2

2

l r

l r

 

 









1 22, 2, 5

2 5 16.2832

d d d

L     

  



1 1 2 2/ 2, / 2r d r d

User scripts and functions

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

B0B17MTB: Part #78.4.2019 12:49

11

Simple example of a function

>> doc band_wheel

>> help band_wheel,

>> type band_wheel,

>> lookfor band_wheel,

User scripts and functions

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

B0B17MTB: Part #78.4.2019 12:49

12

Comments inside a function

function [dataOut, idx] = myFcn1(dataIn, method)

%MYFCN1: Calculates...

% syntax, description of input, output,

% expamples of function’s call, author, version

% other similar functions, other parts of help

matX = dataIn(:, 1);

sumX = sum(matX); % sumation

%% displaying the result:

disp(num2str(sumX));

function help,

displayed upon:
>> help myFcn1

1st line (so called H1 line),

this line is searched for by
lookfor. Usually contains

function’s name in capital

characters and a brief

description of the purpose of

the function.
function pdetool(action, flag)

%PDETOOL PDE Toolbox graphical user interface (GUI).

% PDETOOL provides the graphical user ...

DO COMMENT!

% Comments significantly improve

% transparency of functions' code !!!

User scripts and functions

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

B0B17MTB: Part #78.4.2019 12:49

13

Function documentation – example
User scripts and functions

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

B0B17MTB: Part #78.4.2019 12:49

14

Function publish

 serves to create script, function or class documentation

 provides several output formats (html, doc, ppt, LaTeX, ...)

 help creation (>> doc my_fun) directly in the code comments!

 provides wide scale of formatting properties (titles, numbered lists,

equations, graphics insertion, references, ...)

 enables to insert print screens into documentation

 documented code is implicitly launched on publishing

 supports documentation creation directly from editor menu:

User scripts and functions

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

B0B17MTB: Part #7

%% Solver of Quadratic Equation

% Function *solveQuadEq* solves quadratic equation.

%% Theory

% A quadratic equation is any equation having the form

% $ax^2+bx+c=0$

% where |x| represents an unknown, and |a|, |b|, and |c|

% represent known numbers such that |a| is not equal to 0.

%% Head of function

% All input arguments are mandatory!

function x = solveQuadEq(a, b, c)

%%

% Input arguments are:

%%

% * |a| - _qudratic coefficient_

% * |b| - _linear coefficient_

% * |c| - _free term_

%% Discriminant computation

% Gives us information about the nature of roots.

D = b^2 - 4*a*c;

%% Roots computation

% The quadratic formula for the roots of the general

% quadratic equation:

%

% $$x_{1,2} = \frac{ - b \pm \sqrt D }{2a}.$$

%

% Matlab code:

%%

x(1) = (-b + sqrt(D))/(2*a);

x(2) = (-b - sqrt(D))/(2*a);

%%

% For more information visit <http://elmag.org>.

8.4.2019 12:49

15

Function publish - example

publish

User scripts and functions

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

B0B17MTB: Part #78.4.2019 12:49

16

Workspace of a function

 each function has its own workspace

myFunc1

Matlab base

workspace

res = myFunc1(25,125,'test')
function thisOutput = myFunc1(time,samples,tag)

% time = 25; samples = 125; tag = ‘test‘;

% … source sode

% …

if strcmp(tag,'test')

thisOutput = 5*(samples-time);

else

thisOutput = 0;

end

% workspace of function is deleted here!!

Matlab base

workspace

res = 500

>> clear, clc, A = 1; whos

Name Size Bytes Class Attributes

A 1x1 8 double

>> res = myFunc1(25,125,'test');

>> whos

Name Size Bytes Class Attributes

A 1x1 8 double

res 1x1 8 double

Name Size Bytes Class Attributes

samples 1x1 8 double

tag 1x4 8 char

thisOutput 1x1 8 double

time 1x1 8 double

whos

myFunc1

workspace

User scripts and functions

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

B0B17MTB: Part #78.4.2019 12:49

17

Data space of a function #1

 on a function being called, input variables are not copied into

workspace of the function, just their values are made accessible for

the function (copy-on-write technique)

 if an input variable is modified by the function, however, it is copied to

the function's work space

 with respect to memory saving and calculation speed-up it is

advantageous to take corresponding elements out of a large array first and

modify them rather than to modify the array directly and therefore evoke

its copying in the function's workspace

 if the same variable is used as an input and output parameter it is

immediately copied to the function's workspace

 (provided that the input is modified in the script, otherwise the input and

output variable is a reference to the same data)

User scripts and functions

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

B0B17MTB: Part #78.4.2019 12:49

18

Data space of a function #2

 all principles of programming covered at earlier stages of the course

(operator overloading, data type conversion, memory allocation,

indexing, etc.) apply to Matlab functions

 in the case of overloading a built-in function, builtin is still applicable

 in the case of recursive function calling, own work space is created for

each calling

 pay attention to excessive increase of work spaces

 sharing of variables by multiple work spaces

→ global variables

 be careful with how you use them (utilization of global variables is not

recommended in general) and they are usually avoidable

User scripts and functions

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

B0B17MTB: Part #78.4.2019 12:49

19

Function execution

 when is function terminated?

 Matlab interpreter reaches last line

 interpreter comes across the keyword return

 interpreter encounters an error (can be evoked by error as well)

 on pressing CTRL+C

function res = myFcn2(matrixIn)

if isempty(matrixIn)

error('matrixInCannotBeEmpty');

end

normMat = matrixIn – max(max(matrixIn));

if matrixIn == 5

res = 20;

return;

end

end

User scripts and functions

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

B0B17MTB: Part #78.4.2019 12:49

20

Number of input and output variables

 number of input and output variables is specified by functions
nargin a nargout

 these functions enable to design the function header in a way to enable

variable number of input/output parameters

function [out1, out2] = myFcn3(in1, in2)

nArgsIn = nargin;

if nArgsIn == 1

% do something

elseif nArgsIn == 2

% do something

else

error('Bad inputs!');

end

% computation of out1

if nargout == 2

% computation of out2

end

end

User scripts and functions

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

B0B17MTB: Part #78.4.2019 12:49

21

Number of input and output variables

 modify the function fibonacci.m to enable variable input/output

parameters :

 it is possible to call the function without input parameters

 the series is generated in the way that the last element is less than 1000

 it is possible to call the function with one input parameter in1

 the series is generated in the way that the last element is less than in1

 it is possible to call the function with two input parameters in1, in2

 the series is generated in the way that the last element is less than in1 and at

the same time the first 2 elements of the series are given by vector in2

 it is possible to call the function without output parameters or with one

output parameter

 the generated series is returned

 it is possible to call the function with two output parameters

 the generated series is returned together with an object of class Line, which is

plotted in a graph
hLine = plot(f);

500 s ↑

User scripts and functions

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

B0B17MTB: Part #78.4.2019 12:49

22

Number of input and output variables
User scripts and functions

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

B0B17MTB: Part #74/8/2019 12:49 PM

23

Syntactical types of functions

 any function in Matlab can launch a script which is then evaluated in

the workspace of the function that launched it, not in the base

workspace of Matlab (as usual)

 the order of local functions is not important (logical connection!)

 help of local functions is not accessible using help

Function type Description

main the only one in the m-file visible from outside, above principles apply

local all functions in the same file except the main function, accessed by the main function, has its
own workspace, can be placed into [private] folder to preserve the private access,

function in script file (2016b+)

nested the function is placed inside the main function or local function, sees the WS of all superior

functions

handle function reference (mySinX = @sin)

anonymous similar to handle functions (myGoniomFcn = @(x) sin(x)+cos(x))

OOP class methods with specific access, static methods

User scripts and functions

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

B0B17MTB: Part #74/8/2019 12:49 PM

24

Local functions

 local functions launched by main functions

 all these functions can (should) be terminated with keyword end

 are used for repeated tasks inside the main function (helps to simplify the

problem by decomposing it into simple parts)

 local functions "see" each other and have their own workspaces

 are often used to process graphical elements events (callbacks) when
developing GUI

function PRx = getRxPower(R, PTx, GAnt, freq)

% main function body

FSL = computeFSL(R, freq); % free-space loss

PRx = PTx + 2*GAnt - FSL; % received power

end

function FSL = computeFSL(R, freq)

% local function body

c0 = 3e8;

lambda = c0./freq;

FSL = 20*log10(4*pi*R./lambda);

end

User scripts and functions

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

B0B17MTB: Part #74/8/2019 12:49 PM

25

Local functions

 local functions launched by script (new from R2016b)

 functions have to be at the end of file

 all these functions have to be terminated with keyword end

 local functions "see" each other and have their own workspaces

 local function is not accessible outside the script file

clear;

% start of script

r = 0.5:5; % radii of circles

areaOfCirles = computeArea(r);

function A = computeArea(r)

% local function in script

A = pi*r.^2;

end

User scripts and functions

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

B0B17MTB: Part #78.4.2019 12:49

26

Nested functions

 nested functions are placed inside other functions

 it enables us to use workspace of the parent function and to efficiently

work with (usually small) workspace of the nested function

 functions can not be placed inside conditional/loop control statements
(if-else-elseif / switch-case / for / while / try-catch)

function x = A(p)

% single

% nested function

...

function y = B(q)

...

end

...

end

function x = A(p)

% more

% nested functions

...

function y = B(q)

...

end

function z = C(r)

...

end

...

end

function x = A(p)

% multiple

% nested function

...

function y = B(q)

...

function z = C(r)

...

end

...

end

...

end

User scripts and functions

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

B0B17MTB: Part #78.4.2019 12:49

27

Nested functions: calling

 apart from its workspace, nested functions can also access workspaces

of all functions it is nested in

 nested function can be called from:

 its parent function

 nested function on the same

level of nesting

 function nested in it

 it is possible to create handle to

a nested function

 see later

function x = A(p)

function y = B(q)

...

function z = C(t)

...

end

end

...

function u = D(r)

...

function v = E(s)

...

end

...

end

...

end

User scripts and functions

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

B0B17MTB: Part #74/8/2019 12:49 PM

28

Private functions

 they are basically the local functions, and they can be called by all

functions placed in the root folder

 reside in subfolder [private] of the main function

 private functions can be accessed only by functions placed in the

folder immediately above that private subfolder

 [private] is often used with larger applications or in the case where

limited visibility of files inside the folder is desired

…\TCMapp\

private\

eigFcn.m

impFcn.m

rwgFcn.m

parTCM.m

preTCM.m

postTCM.m

these functions can be called by
parTCM, preTCM and postTCM only

parTCM calls functions

in [private]

User scripts and functions

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

B0B17MTB: Part #78.4.2019 12:49

29

Handle functions

 it is not a function as such

 handle = reference to a given function

 properties of a handle reference enable to call a function that is otherwise

not visible

 reference to a handle (here fS) can be treated in a usual way

 typically, handle references are used as input parameters of functions

>> fS = @sin; % handle creation

>> fS(pi/2)

ans =

1

>> whos

Name Size Bytes Class Attributes

ans 1x1 8 double

fS 1x1 32 function_handle

User scripts and functions

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

B0B17MTB: Part #78.4.2019 12:49

30

Anonymous functions

 anonymous functions make it possible to create handle reference to a

function that is not defined as a standalone file

 the function has to be defined as one executable expression

 anonymous function can have more input parameters

 anonymous function stores variables

required as well as prescription

 >> doc Anonymous Functions

>> sqr = @(x) x.^2; % create anonymous function (handle)

>> res = sqr(5); % x ~ 5, res = 5^2 = 25;

>> A = 4; B = 3; % parameters A,B have to be defined

>> sumAxBy = @(x, y) (A*x + B*y); % function definition

>> res2 = sumAxBy(5,7); % x = 5, y = 7

% res2 = 4*5+3*7 = 20+21 = 41

>> A = 4;

>> multAx = @(x) A*x;

>> clear A

>> res3 = multAx(2);

% res3 = 4*2 = 8

>> Fcn = @(hndl, arg) (hndl(arg))

>> res = Fcn(@sin, pi)

User scripts and functions

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

B0B17MTB: Part #78.4.2019 12:49

31

Anonymous functions – Example

 create anonymous function so that

 calculate and display its components for range

 check the function with Matlab built-in function functions, i.e.,
functions(A)

500 s ↑

User scripts and functions

       1 2 3p A p A p A p   A

   

     

 

2

1

2

3

cos

sin cos

1

A p p

A p p p

A p



 



 0,2p 

 pA

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

B0B17MTB: Part #78.4.2019 12:49

32

Taylor series – script

 expand exponential function using Taylor series:

 in this case it is in fact McLaurin series (expansion about 0)

 compare with result obtained using exp(x)

 find out the deviation in [%] (what is the base, i.e. 100% ?)

 find out the order of expansion for deviation to be lower than 1%

 implement the code as a script, enter :

x (function argument)

N (order of the series)

600 s ↑




 2462
1

!

43

0

2 xxx
x

n

x
e

n

n
x

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

B0B17MTB: Part #78.4.2019 12:49

33

Taylor series – function

 implement as a function

 choose appropriate name for the function

 input parameters of the function are x and N

 Output parameters are values f1, f2 and err

 add appropriate comment to the function (H1 line, inputs, outputs)

 test the function

600 s ↑




 2462
1

!

43

0

2 xxx
x

n

x
e

n

n
x

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

B0B17MTB: Part #78.4.2019 12:49

34

Taylor series – calling function

 create a script to call the above function (with various N)

 find out accuracy of the approximation for

 plot the resulting progress of the accuracy (error as a function of n)

600 s ↑

 0.9, 1, ,10x n 

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

B0B17MTB: Part #78.4.2019 12:49

35

Taylor series – results

 0.9, 1, ,10x n   10, 1, ,30x n   10, 1, ,50x n 

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

B0B17MTB: Part #74/8/2019 12:49 PM

36

Functions – advanced techniques

 in the case the number of input or output parameters is not known one
can use varargin and varargout

 function header has to be modified

 input / output variables have to be obtained from varargin /

varargout

function [parOut1, parOut2] = funcA(varargin)

%% variable number of input parameters

function varargout = funcB(parIn1, parIn2)

%% variable number of output parameters

function varargout = funcC(varargin)

%% variable number of input and output parameters

function [parOut1, varargout] = funcC(parIn1, varargin)

%% variable number of input and output parameters

User scripts and functions

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

B0B17MTB: Part #78.4.2019 12:49

37

varargin function

 typical usage: functions with many optional parameters / attributes

 e.g. GUI (functions like stem, surf etc. include varargin)

 variable varargin is always of type cell, even when it contains

just a single item

 function nargin in the body of a function returns the number of

input parameters upon the function’s call

 function nargin(fx) returns number of input parameters in

function’s header

 when varargin is used in

function's header, returns negative

value

function plot_data(varargin)

nargin

celldisp(varargin)

par1 = varargin{1};

par2 = varargin{2};

% ...

end

User scripts and functions

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

B0B17MTB: Part #78.4.2019 12:49

38

Advanced Anonymous functions

 inline conditional:

 usage:

 map:

 usage:

>> iif = @(varargin) varargin{2*find([varargin{1:2:end}], ...

1, 'first')}();

User scripts and functions

>> min10 = @(x) iif(any(isnan(x)), 'Don''t use NaNs', ...

sum(x) > 10, 'This is ok', ...

sum(x) < 10, 'Sum is low')

>> min10([1 10]) % ans = 'This is ok'

>> min10([1 nan]) % ans = 'Don't use NaNs'

>> map = @(val, fcns) cellfun(@(f) f(val{:}), fcns);

>> x = [3 4 1 6 2];

>> values = map({x}, {@min, @sum, @prod})

>> [extrema, indices] = map({x}, {@min, @max})

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

B0B17MTB: Part #7

>> plot_data(magic(3),...

'Color',[.4 .5 .6],'LineWidth',2);

>> plot_data(sin(0:0.1:5*pi),...

'Marker','*','LineWidth',3);

function plot_data(data, varargin)

%% documentation should be here!

if isnumeric(data) && ~isempty(data)

hndl = plot(data);

else

fprintf(2, ['Input variable ''data''', ...

'is not a numerical variable.']);

return;

end

while length(varargin) > 1

set(hndl, varargin{1}, varargin{2});

varargin(1:2) = [];

end

end

4/8/2019 12:49 PM

39

Variable number of input parameters

 input arguments are usually in pairs

 example of setting of several parameters to line object

 for all properties see
>> doc line

property value

Color [R G B]

LineWidth 0.1 – …

Marker 'o', '*', 'x', …

MarkerSize 0.1 – …

and others …

User scripts and functions

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

B0B17MTB: Part #78.4.2019 12:49

40

varargout function

 variable number of output variables

 principle analogical to varargin function

 bear in mind that function's output variables are of type cell

 used sporadically

function [s, varargout] = sizeout(x)

nout = max(nargout, 1) - 1;

s = size(x);

for k = 1:nout

varargout{k} = s(k);

end

end

>> [s, rows, cols] = sizeout(rand(4, 5, 2))

% s = [4 5 2], rows = 4, cols = 5

User scripts and functions

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

B0B17MTB: Part #7

 modify the function fibonacciFcn.m so that it had only one

output parameter varargout and its functionality was preserved

8.4.2019 12:49

41

Output parameter varargout

180 s ↑

User scripts and functions

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

B0B17MTB: Part #78.4.2019 12:49

42

Expression evaluation in another WS

 function evalin („evaluate in“) can be used to evaluate an

expression in a workspace that is different from the workspace where

the expression exists

 apart from current workspace, other workspaces can be used as well

 'base': base workspace of Matlab

 'caller': workspace of parent function (from which the function was

called)

 can not be used recursively

function out = eval_in

%% no input parameters (A isn‘t known here)

k = rand(1,1);

out = evalin('base', ['pi*A*', num2str(k)]);

end

>> clear; clc;

>> A = 5;

>> vysl = eval_in

% res = 12.7976

User scripts and functions

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

B0B17MTB: Part #78.4.2019 12:49

43

Recursion

 Matlab supports recursion (function can call itself)

 recursion is part of some useful algorithms (e.g. Adaptive Simpsons

Method of integration)

 ver. R2014b and older:

 the number of recursion is limited by 500 by default

 the number of recursions can be changed, or get current setting:

 ver. R2015b and newer: recursion calling works until stack memory is

not full

 every calling creates new function's workspace!

>> set(0, 'RecursionLimit', 200)

>> get(0, 'RecursionLimit')

% ans = 200

User scripts and functions

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

B0B17MTB: Part #7

 write a simple function that is able to call itself; input parameter is
rek = 0 which is increased by 1 with each recursive step

 display the increase of the value of rek

 at what number does the increase stop

 think over in what situations the recursion is necessary…

...

...

...

...

...

...

8.4.2019 12:49

44

Number of recursion steps

360 s ↑

>> test_function(0)

User scripts and functions

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

B0B17MTB: Part #7

User scripts and functions

8.4.2019 12:49

45

Matlab path

 list of directories seen by Matlab :

 for more see >> doc path

 addpath: adds folder to path

 rmpath: removes folder from path

>> path

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

B0B17MTB: Part #7

User scripts and functions

8.4.2019 12:49

46

Calling a function – order

 how Matlab searches for a function (simplified):

 it is a variable

 function imported using import

 nested or local function inside given function

 private function

 function (method) of a given class or constructor of the class

 function in given folder

 function anywhere within reach of Matlab (path)

 Inside a given folder is the priority of various suffixes as follows:

 built-in functions

 mex functions

 p-files

 m-files

 doc Function Precedence Order

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

B0B17MTB: Part #7

User scripts and functions

8.4.2019 12:49

47

Function vs. Command Syntax

 In Matlab exist two basic syntaxes how to call a function:

 Command syntax

 all inputs are taken as characters

 outputs can't be assigned

 input containing spaces has to be

closed in single quotation marks

>> disp 'Hello Word!' % Command syntax

>> % vs.

>> disp('Hello Word!') % Function syntax

>> grid on % Command syntax

>> % vs.

>> grid('on') % Function syntax

>> a = 1; b = 2;

>> plus a b % = 97 + 98

ans =

195

>> p = plus a b % error

>> p = plus(a, b);

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

B0B17MTB: Part #7

 enables to easily test input parameters of a function

 it is especially useful to create functions with many input parameters
with pairs 'parameter', value

 very typical for graphical functions

 method addParameter enables to insert optional parameter

 initial value of the parameter has to be set

 the function for validity testing is not required

 method addRequired defines name of mandatory parameter

 on function call it always has to be entered at the right place

8.4.2019 12:49

48

Class inputParser #1

>> x = -20:0.1:20;

>> fx = sin(x)./x;

>> plot(x, fx, 'LineWidth', 3, 'Color', [0.3 0.3 1], 'Marker', 'd',...

'MarkerSize', 10, 'LineStyle', ':')

User scripts and functions

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

B0B17MTB: Part #7

 following function plots a circle or a square of defined size, color and

line width

8.4.2019 12:49

49

Class inputParser #2

function drawGeom(dimension, shape, varargin)

p = inputParser; % instance of inputParser

p.CaseSensitive = false; % parameters are not case sensitive

defaultColor = 'b'; defaultWidth = 1;

expectedShapes = {'circle', 'rectangle'};

validationShapeFcn = @(x) any(ismember(expectedShapes, x));

p.addRequired('dimension', @isnumeric); % required parameter

p.addRequired('shape', validationShapeFcn); % required parameter

p.addParameter('color', defaultColor, @ischar); % optional parameter

p.addParameter('linewidth', defaultWidth, @isnumeric) % optional parameter

p.parse(dimension, shape, varargin{:}); % parse input parameters

switch shape

case 'circle'

figure;

rho = 0:0.01:2*pi;

plot(dimension*cos(rho), dimension*sin(rho), ...

p.Results.color, 'LineWidth', p.Results.linewidth);

axis equal;

case 'rectangle'

figure;

plot([0 dimension dimension 0 0], ...

[0 0 dimension dimension 0], p.Results.color, ...

'LineWidth', p.Results.linewidth)

axis equal;

end

User scripts and functions

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

B0B17MTB: Part #7

 checks correctness of inserted parameter with respect to various criteria

 it is often used in relation with class inputParser

 check whether matrix is of size 2x3, is of class double and contains

positive integers only:

 it is possible to use notation where all tested classes and attributes are in one

cell :

 for complete list of options >> doc validateattributes

8.4.2019 12:49

50

Function validateattributes

A = [1 2 3;4 5 6];

validateattributes(A, {'double'}, {'size',[2 3]})

validateattributes(A, {'double'}, {'integer'})

validateattributes(A, {'double'}, {'positive'})

B = eye(3)*2;

validateattributes(B, {'double', 'single', 'int64'},...

{'size',[3 3], 'diag', 'even'})

User scripts and functions

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

B0B17MTB: Part #78.4.2019 12:49

51

Original names of input variables

 function inputname makes it possible to determine names of input

parameters ahead of function call

 consider following function call :

 and then inside the function:

>> y = myFunc1(xdot, time, sqrt(25));

function output = myFunc1(par1, par2, par3)

% ...

p1str = inputname(1); % p1str = 'xdot';

p2str = inputname(2); % p2str = 'time';

P3str = inputname(3); % p3str = '';

% ...

User scripts and functions

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

B0B17MTB: Part #78.4.2019 12:49

52

Function creation – advices

 viewpoint of efficiency – the more often a function is used, the better its

implementation should be

 code scaling

 it is appropriate to verify input parameters

 it is appropriate to allocate provisional output parameters

 debugging

 optimization of function time

 principle of code fragmentation – in the

ideal case each function should solve just

one thing; each problem should be solved

just once

xkcd.com/1132/

User scripts and functions

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

B0B17MTB: Part #78.4.2019 12:49

53

Selected advices for well arranged code

 ideally just one degree of abstraction

 code duplicity prevention

 function and methods should

 solve one problem only, but properly

 be easily and immediately understandable

 be as short as possible

 have the least possible number of input variables (< 3)

 further information:

 Martin: Clear Code (Prentice Hall)

 McConnell: Code Complete 2 (Microsoft Press)

 Johnson: The Elements of Matlab Style (Cambridge Press)

 Altman: Accelerating Matlab Performance (CRC)

User scripts and functions

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

B0B17MTB: Part #78.4.2019 12:49

54

Useful tools for long functions

 bookmarks

 CTRL+F2 (add / remove bookmark)

 F2 (next bookmark)

 SHIFT+F2 (previous bookmark)

 Go to...

 CTRL+G (go to line)

 long files can be split

 same file can be opened e.g. twice

User scripts and functions

bookmarks

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

B0B17MTB: Part #78.4.2019 12:49

55

Discussed functions

function key word to create Matlab function

@ handle, anonymous function

varargin, varargout variable number of input / output variables

evalin, assignin evaluation of a command / assignment in another workspace

inputname names of input variables in parent's workspace

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

B0B17MTB: Part #78.4.2019 12:49

56

Exercise #1 - notes

 find the unknown x in equation using Newton’s method

 typical implementation steps:

(1) mathematical model

 size the problem, its formal solution

(2) pseudocode

 layout of consistent and efficient code

(3) Matlab code

 transformation into Matlab’s syntax

(4) testing

 usually using a problem with known (analytical) solution

 try other examples...

  0f x 

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

B0B17MTB: Part #78.4.2019 12:49

57

Exercise #2

 find the unknown x in equation of type

 use Newton’s method

 Newton’s method:

  0f x 

0 xk+1

f´(x)k

f(x)k

xxk

f(x)

 
d

'
d

k

f f
f x

x x


 


 
1

() 0
' k

k

k k

f xf
f x

x x x 


 
 

 

 
1

'

k

k k

k

x
f x

x
f x

  

xk+1

f(x)k

xk

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

B0B17MTB: Part #78.4.2019 12:49

58

Exercise #3

 find the unknown x in equation using Newton’s method

 pseudocode draft:

 pay attention to correct condition of the (while) cycle

 create a new function to evaluate

 use following numerical difference scheme to calculate : ' kf x

 
   

2
'

k k

k

f x f x
ff x

 
 






   , 'k kf x f x

(1) until 𝑥𝑘+1 − 𝑥𝑘 /𝑥𝑘 ≥ 𝑒𝑟𝑟 and simultaneously k < 20 do:

(2) 𝑥𝑘+1 = 𝑥𝑘 −
𝑓 𝑥𝑘

𝑓′ 𝑥𝑘

(3) disp(𝑘 𝑥𝑘+1 𝑓 𝑥𝑘+1)

(4) k = k + 1

  0f x 

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

B0B17MTB: Part #7

clear; close all; clc;

% enter variables

% xk, xk1, err, k, delta

while cond1 and_simultaneously cond2

% get xk from xk1

% calculate f(xk)

% calculate df(xk)

% calculate xk1

% display results

% increase value of k

end

8.4.2019 12:49

59

Exercise #4

 find the unknown x in equation using Newton’s method

 implement the above method in Matlab to find the unknown x in

 the method comes in the form of a script calling following function :

600 s ↑

  0f x 
3 3 0x x  

function fx = optim_fcn(x)

fx = x^3 + x - 3;

end

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

B0B17MTB: Part #78.4.2019 12:49

60

Exercise #5

 what are the limitations of Newton's method

 in relation with existence of multiple roots

 is it possible to apply the method to complex values of x?

function fx = optim_fcn(x)

fx = x^3 + x - 3;

end

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

B0B17MTB: Part #78.4.2019 12:49

61

Exercise #6

 modify Newton's method in the way that the polynomial is entered in the

form of a handle function

 verify the code by finding roots of following polynomials :

 verify the result using function roots

600 s ↑

22 0, 1x x  

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

B0B17MTB: Part #7

 using integral function calculate integral of current 𝑄 = 𝐼 𝑡 𝑑𝑡

in the interval 𝑡 ∈ 0,1 s. The current has following time dependency,

where 𝑓 = 50 Hz

 solve the problem using handle function

 using anonymous function

8.4.2019 12:49

62

Exercise #7

600 s ↑

10cos 2 5cos 4ft fI t t

Thank you!

ver. 11.1 (8/4/2019)

Miloslav Čapek, Pavel Valtr
miloslav.capek@fel.cvut.cz

Apart from educational purposes at CTU, this document may be reproduced,
stored or transmitted only with the prior permission of the authors.

Document created as part of B0B17MTB course.

