
Exploration and path planning

Autonomous Robotics Labs

Labs 04



Outline

I Path planning

I OccupancyGrid

I Exploration
I Frontier-based exploration
I WFD
I Frontier �ltering
I Frontier selection



Path planning � quick refresh

Path an ordered set of points ∼ locations in either joint or
operational space � that the robot should follow

Trajectory is path plus velocities and accelerations at each point

I We will be concerned only with path

I Planning on a 2D grid (oocupancy grid �
nav_msgs/OccupancyGrid)

I Graph based algorithms (other types exist)
I Breadth-�rst search (BFS) � �Grass �re�
I Depth-�rst search (DFS)

I A very simplistic explanations of some well-known algorithms:
I Dijkstra � explore the node that has the least cost so far
I A* � explore the node with the lowest expected distance

I uses a heuristic to estimate the distance to target

expected cost(node) = cost so far (node) + heuristic (node)

I Performance depends on the space (e.g., complexity of obstacles)
and the speci�c task (single vs. multi-target search)

I There are many search algorithms and modi�cations of the most
popular ones (A*, Dijkstra)



Path planning

I Note: Even the most simplistic approach will (probably) work, the
di�erence is execution time and overall e�ciency (...memory)

I Obstacles:
I path planning with su�cient �safety� margin
I easiest approach (only possible with a rigid robot or maybe

holonomic):
I in�ate obstacles
I in case of occupancy grid � morphological dilation can be used, e.g.:

from scipy.ndimage import morphology

inflated_grid = morphology.binary_dilation(grid)

OR

inflated_grid = morphology.grey_dilation(grid)

Parameters:

size=(n, m) # kernel size

structure=np.ones((n, m)) # the kernel itself

iteration =1 # number of iterations



OccupancyGrid

nav_msgs/OccupancyGrid

data (int8[]) the occupancy grid itself (�attened)

I 0 == empty cell
I 1 . . . 100 == (probably) occupied cell
I −1 == unknown (unseen) cell

info (nav_msgs/MapMetaData) additional information about
the grid

resolution (�oat23) �size� of cell in meters
width width of the grid (in cells)
height height of the grid (in cells)
origin (geometry_msgs/Pose) the relation of the

origin [0, 0] of the grid to the �real world�
(e.g. map tf)

position (Point) translation of the
origin w.r.t. real world

orientation (Quaternion) rotation of the
XY-axes w.r.t. real world



OccupancyGrid

I Remember:
I robot position needs to be transformed to �t into the grid

coordinates
I translation and rotation � origin
I scaling � resolution

I thresholding and/or recalculation of the values of the grid might be
necessary depending on the operation (e.g. dilation, probability
threshold, ...)

I make sure you know where the origin is and which is the X-direction
and which is the Y-direction (might be confusing when plotting)

I It's a good idea to optimize the code � operations on a large grid will
be costly



Exploration

I Goal:
I explore the existing world (e.g., the maze)
I map currently unknown locations → where to focus the search?
∼ explore the �frontier�

Frontier a cell that separates known and unknown regions, possibly
hiding new parts of the �maze�

I Cells in the grid:

Open space p(occupied) < threshold
Occupied space p(occupied) > threshold
Known_region cell value ≥ 0
Unknown region cell value = −1

I Frontier-based exploration (in as few words as possible):

1. Find frontiers
2. Select and go to a frontier
3. Repeat until there are no more frontiers (or some other goal is

reached)



Frontier-based exploration

[1] YAMAUCHI, Brian, et al. Frontier-based exploration using multiple
robots. In: Agents. 1998. p. 47-53.

[2] TOPIWALA, Anirudh; INANI, Pranav; KATHPAL, Abhishek.
Frontier Based Exploration for Autonomous Robot. arXiv preprint
arXiv:1806.03581, 2018.

[3] USLU, Erkan, et al. Implementation of frontier-based exploration
algorithm for an autonomous robot. In: 2015 International
Symposium on Innovations in Intelligent SysTems and Applications
(INISTA). IEEE, 2015. p. 1-7.

Slightly more indepth article & more e�cient implementations:

[4] KEIDAR, Matan; KAMINKA, Gal A. E�cient frontier detection for
robot exploration. The International Journal of Robotics Research,
2014, 33.2: 215-236.



Wave-front detection (WFD)

I A BFS algorithm to search for frontiers

outer BFS search for frontier points connected to the robot
position

inner BFS �frontier assembly� � search for contiguous frontier
points

I De�nitions:

pose the robot position in the occupancy grid

Map-Open-List list of points enqueued (selected for processing) by the
outer BFS

Map-Close-List list of points dequeued (already processed) by the outer
BFS

Frontier-Open-List list of points enqueued by the inner BFS

Frontier-Close-list of points dequeued by the inner BFS

queuem a queue for the map points (points for the outer BFS)

queuef a queue for the frontier points (points for the inner BFS)



Wave-front detection [4]

queuem ← φ
ENQUEUE(queuem , pose)

mark pose as "Map -Open -List"

while queuem is not empty:

p ← DEQUEUE(queuem)

if p is marked as "Map -Close -List":

continue

if p is a frontier point:

queue f ← φ
NewFrontier ← φ
ENQUEUE(queue f , p)

mark p as "Frontier -Open -List"

while queue f is not empty:

q ← DEQUEUE(queue f )

if q is marked as {"Map -Close -List","Frontier -Close -List"}:

continue

if q is a frontier point:

NewFrontier ← q

for all w ∈ neighbors(q):

if w not marked as {"Frontier -Open -List",

"Frontier -Close -List","Map -Close -List"}:

ENQUEUE(queue f , w)

mark w as "Frontier -Open -List"

mark q as "Frontier -Close -List"

save data of NewFrontier

mark all points of NewFrontier as "Map -Close -List"

for all v ∈ neighbors(p):

if v not marked as {"Map -Open -List","Map -Close -List"}

and v has at least one "Map -Open -Space" neighbor:

ENQUEUE(queuem, v)

mark v as "Map -Open -List"

mark p as "Map -Close -List"



Frontier �ltering

I Make sure the frontier is reachable
I test path planning
I run WFD on grid with in�ated obstacles

I remember connectivity
I keep occupancy information (-1/0/>0)

I Discard useless frontiers
I too small
I possibly does not conceal explorable areas



Frontier selection

I Simple approach:
Random frontier

I Better approach:
Closest frontier
I direct distance (Euclidean, Manhattan)
I path distance � costly but more accurate & includes reachability test

Most promising frontier
I e.g., expected distance to a goal



Thank you for your attention


	Outline
	Path planning
	Occupancy Grid
	Exploration
	Wave-front detection


